
CloudView CV23

Configuration

Table of Contents

Table of Contents

Configuration...10

What's New?...11

Workflow and Concepts.. 12
About Index Schemas and Search Logics.. 12

What is an Index Schema?.. 12
What is a Search Logic?..13
Modifying the Index Schema and Search Logics... 13
When do I need to Re-Index Documents?... 14

The Indexing and Search Processes... 15
About the Indexing Process... 15
About the Search Process..17

Configuring CloudView with the Data Model..20
About the Data Model...20

What is the Data Model Expansion...21
What is generated by the Data Model Expansion..22
Controlling the Data Model Expansion... 23
Taking Control over Generated Index Fields... 25

Working with Data Model Classes...26
Can I Delete the Default Document Class?.. 26
Working with Multiple Classes.. 26
Impact of Multiple Classes on Performance.. 26

Using Properties to Configure Document Metas..26
Data Types and Semantic Types for Properties... 27
Indexing Options for All Properties... 27
Indexing Options for Alphanumeric Properties.. 29
Indexing Options for Numerical Properties... 30
Indexing Options for Date Properties.. 30
Indexing Options for Geographical Properties... 33
Indexing Options for Measure Properties... 33

Creating Dynamic Properties..34
Add a Dynamic Property..34
About Storing and Displaying Dynamic Property Fields.. 35
Store Properties in a Parent Class Dynamic Property.. 37
Search Dynamic Property Fields... 37

Creating Multivalued Properties..38

Tools to Create a Data Model from Your Corpus...39
Create a Data Model from Sample Documents... 39
Store Unprocessed metas.. 39

Configuring Data Processing... 41
Understanding and Using the Analysis Pipeline.. 41

About Data Processing.. 41
The Analysis Pipeline Sequence of Processors.. 45
Use Multiple Pipelines with Conditions... 46
Use a Single Pipeline with Groups of Processors...47
Multiple Pipelines vs. Single Pipeline with Groups... 48
Configuring the Analysis Pipeline Manually...48

Testing your Analysis Pipeline Behavior...51
Test the Analysis Pipeline with an Indexed Document... 51
Test the Analysis Pipeline with a New Custom Document...56
Display Document Processing Information..57
Test the Semantic Processing of your Analysis Pipeline..59

More About Semantic Analysis...61
When does Semantic Analysis take Place?... 62
Set Up Semantic Analysis?.. 62
Index-Time Semantic Analysis..63
Other Documentation about Semantic Analysis...63

2 - Table of Contents

Table of Contents

Tokenizing Text.. 63
Using Native Tokenizers...64
Using Basis Tech Tokenizer.. 69
About Creating Additional Tokenization Configurations...72
Customizing the Tokenization Config... 73
About Decompounding...74

Creating and Deploying Semantic Resources... 76
Create a Resource File from the Administration Console.. 76
Manage Resources in cvadmin..76

Managing Semantic Annotations...82
Manage Annotations with the Annotation Manager..82
Manage Annotations with Custom Code...85

Configuring Form Indexing.. 87
Use Form indexing for Over-Indexing Acronyms... 87
Set Weight...87

Configuring Search Queries.. 90
User Query Language (UQL)..90

The Different Types of Search in UQL... 91
Reserved Characters in UQL...99
Operands... 100
Operators by Priority... 102
More About INNERJOIN..105

Exalead Low-Level Query Language (ELLQL)..107
Why Use ELLQL?...107
ELLQL vs UQL...107
ELLQL Syntax... 107
Filtering Search Results in ELLQL..108

Defining Query Templates..108
Query Template Syntax..108
Reserved Named Queries... 109
Use Case..109

Using Prefix Handlers..109
The Different Types of Prefix Handlers...110
Specify a Tokenization Configuration for Prefix Handlers.. 112

Configuring Query Expansion... 113
Query Tree and Query Expansion..114
Query Expansion Features..116
Enable query expansion...117
Stemming...119
Lemmatization.. 120
Phonetization.. 122
Approximation...123
Normalization Exceptions... 126
Synonyms.. 126
Japanese Synonyms.. 129

Configuring Dictionaries...129
About Dictionaries... 130
Setting Up a Dictionary... 131
Compacting and Building Dictionaries.. 132
Clearing Dictionaries..133

Adding 'Did You Mean?' Spell-Check... 134
About Spell-Check...134
Setting Up Spell-Check.. 136

Adding Search Suggestions..138
About Search Suggestions..139
Create a Suggest Dictionary...142
Enable the Suggest in the Mashup UI... 146
Use the Suggest Via the Search API... 146
Export Suggest Dictionary Content to an XML File.. 147
Dispatch a Query to Several Suggest Dictionaries...148
Performance Considerations and Options for Search Suggest..152

Adding Related Terms... 153
About Related Terms... 153
Configure Related Terms and Similar Documents Detection.. 155

Configuring and Using Similarity Measures.. 159

Table of Contents - 3

Table of Contents

Configure the Index for Similarity Queries... 159
Use the #attrsimilar Function in the Search API... 161
Code Samples to Create Similarity Query Prefix Handlers.. 164

Configuring Geographic Search.. 168
About Geographic Points.. 168
Create a Geographic Point..169
Search a Geographic Point... 170
Calculate Distances in Virtual Fields.. 171
Use Geolocation Based on Place Detection... 171

Adding a Query Cache.. 173
About Query Cache... 174
Create and Manage a Query Cache...174

Configuring Search Results... 176
Defining Search Results Content.. 176

Configure the Search Result Summary.. 176
Configure Value Selection for Metas.. 177
Configuring the Highlighting of Search Terms... 178

Creating Facets to Refine Search Results...181
About facets... 182
Create Facets... 184
Numerical Range facets... 185
Date Facets.. 187
Configure Date Facets... 190
Multidimension Facets..193
Geographic Facets... 195
Create Value Facets for Nonhierarchical Metas..198
Create Aggregations for Facets... 198
Exclusive vs. Disjunctive Refinements..200

Calculating Results On-The-Fly with Virtual Fields...201
When to Use Virtual Fields...201
Performance Considerations..201
Virtual Field Syntax...202

Specifying a Timezone for Date Time Metas.. 202
Specify a Timezone in the Output Format..202
Convert Date Time Values to a Specific Timezone...202
Specify a Timezone at Search Time.. 203

Ranking and Sorting Search Results... 204
About Ranking.. 204
Sorting...210

Collapsing/ Grouping Search Results...211
About Grouping...212
Setting Up Grouping..215

Setting the Limits of Search Results... 216

Managing Saved Configurations... 217
About Saved Configurations... 217

How Applying Configuration Works..217
Apply Configuration Process... 217

Comparing Configuration Versions.. 218

Rolling Back to a Previous Configuration... 218

Editing the Configuration Manually... 219
Edit a File in the API Console...219
Edit the Configuration Files Directly.. 220
Apply Changes in the Command Line.. 220

Apply changes when Exalead CloudView has stopped..220

Troubleshooting... 222
Troubleshooting Document Analysis.. 222

Identify the Cause of the Index Crash...222
Unexpected Search Behavior.. 223

Analyzing User Queries with Reporters..226
About Reporters..227
Output Reporting Data to CSV Files.. 228

4 - Table of Contents

Table of Contents

Output Reporting Data to a JDBC Database... 230
Output Reporting Data to the Internal SQLite Database...231
Index Reporting Data as a Data Source...232
Available Fields for the Reporting Publishers...232

Performance Considerations.. 239
About Exalead CloudView Sizing...239

How Project Requirements Impact Sizing...239
Disk Requirements.. 240
RAM Sizing Formula.. 240

The Impact of the Data Model on Performance.. 241
How Property Options Impact Performance.. 241
How Classes Impact Performance... 245

Dealing with Hierarchical Dimensions.. 245

Appendix - Configure Document Processors.. 247
Chunk Operations... 247

Copy Context Chunks.. 247
Multi-Context Encoder..247
New Chunk...248
Remove Contexts.. 248
Rename Context for Chunks...248
Rename Unmapped Contexts..248
Replace Values..248
Value Selector.. 248

Normalization... 249
Date Formatter... 249
Numerical Formatter..250
Public URL Processor... 250
Units of Measurement Normalizer... 250

Numerical Operations..251
Double to Long...251
Fixed Range Numerical Partitioning... 251
Forced Range Numerical Partitioning... 251
Math Document Processor..252
Text to Num... 252

Text Extraction... 252
HTML Relevant Content Extractor..252
MIME Detector.. 253
Mime Type Setter..254
Semantic Web Document Processor...254
Standard Parts Merger...254
Text Extractor (All Mime Types).. 254
Text Extractor (text, html, exalead).. 255
Xpath Extractor...255
Xpath Fragment Extractor.. 256

Text Operations.. 256
Concatenate Values... 256
Content Cleanup... 256
Language Detector.. 256
Language Setter... 257
Print Values..257
Replace Regexp.. 257
Split Values.. 258
String Hash.. 258
String Transform... 258

Custom..258
Custom Document Processor.. 258
Java Document Processor...258
Remote HTTP Transformer..259

Other.. 259
Debug Processor... 259
Discard Document Processor.. 259
Document Processor Group.. 259
Format Checker Date...259
Infer File Extension... 260
Insert Current Date...260
Precomputed Thumbnails Document Processor... 260

Table of Contents - 5

Table of Contents

Random DocumentChunks Generator (Uniform Distribution)...260
Random DocumentChunks Generator (Zipf Distribution).. 260
Real-Time Alerting...260
Semantic Pipe...260
Similar String to Part Converter..261
Storage Service Document Processor...261
UTF8 Checker... 261

Appendix - Configure Semantic Processors..262
About Semantic Processors..262

Acronym Detector...263

Chunker...263

Compound Words Splitter.. 264
Example...264
When to Use.. 264
Dependencies... 265

Fast Rules Matcher (Rule-Based).. 265
When to Use.. 265
Dependencies... 266
Rule Nodes...266
Sample Fast Rules XML Files.. 266
Supported Queries.. 267
Rule Syntax..267
Create the Fast Rules Resource File.. 269
Map the Annotation to a Category Facet..269

Lemmatizer..270
When to Use.. 270
Configure Lemmatization Manually.. 270

Named Entities Matcher.. 270
When to Use.. 271
Which Entities are extracted?... 271
Filtering Options..271
Named Entities Classes and Subclasses... 272
Extract Your Own Named Entities... 277
Set Block Lists and Allow Lists for Named Entities Extraction... 278

NGram Extractor.. 279

Normalizer... 280

Ontology Matcher (Resource-Based)... 280
Dependencies... 281
Rules for Ontology Matching...281
Sample Ontology Matcher XML File... 281
Ontology Rules Syntax...282
Multilevel Ontology Example...283
Create the Ontology Matcher Resource File.. 284
Map an Annotation to a Category Facet...285

Phonetizer..285
When to Use.. 285
Phonetize a Field Created from a Data Model Property.. 286
Configure Phonetization Manually..286

Proximity... 287
How Is the Best Match Selected?..287
Configure the Proximity Processor...287

Related Terms.. 288
Required Settings..289
Optional Settings.. 289
Search-Time Configuration... 290

Rules Matcher (Rule-Based)...290
Dependencies... 290
Basics of Creating Rules.. 291
Sample Rules Matcher XML File.. 291
Rules Syntax.. 294
Rules Best Practices.. 298
Caveats..298
Limitations..299
Create a Rules Matcher Resource File..299
Map the Annotation to a Category Facet..300

6 - Table of Contents

Table of Contents

Semantic Extractor... 300
Entities and Attributes... 301
Rule Attributes..303
Dependencies... 303
Sample Semantic Extractor XML File... 304
Entities Syntax... 305
Rules Syntax.. 307
Macros... 309
Create the Semantic Extractor Resource File.. 310
Map the Annotation to a Category Facet..311

Semantic Query Analysis... 311
Configure Semantic Query Analysis... 311
Example 1: Define "Cheap" for an E-Commerce Site...312
Example 2: Define "Cheap" for Different Products...314

Snowball Stemmer..315
When to Use.. 315
Configure Stemming Manually.. 315

Part of Speech Tagger...315
How to use.. 315
When to use...315

Appendix - Semantic Resources Reference..316
Ontology..316

OInclude..316

Pkg... 317

Entry...317

Form... 318

FastRulesDefinition..319

Category..319

Rule.. 320

DateFormat..320

LemmaDictionary..321

Lemma..321

Inflected.. 322

NormalizationOverwrites.. 322

NormalizationOverwrite... 322

NormalizationAlternatives...323

NormalizationAlternative.. 323

NormalizationExceptions.. 324

NormalizationException..324

RegexpMatches...324

RegexpMatch..325

SemanticExtractorConfig..326

Entity.. 327

TextEntity.. 327

BooleanEntity... 329

IntegerEntity..330

FloatingPointEntity.. 332

RangeEntity... 333

RegexpEntity..334

Define... 336

Include..336

Table of Contents - 7

Table of Contents

Rule.. 336

Synonyms..337

SynonymSet...339

Synonym... 339

TRules... 340

Seq...341

Iter... 342

Star.. 344

Plus.. 346

Opt... 347

Sub...349

Or...351

Near..353

Noblank...354

PatternRef..356

And...358

Not... 359

Nor... 361

TokenKind..363

Paragraph.. 364

Sentence... 366

Dash... 368

Punct.. 369

Digits.. 371

Alnum... 372

Alpha.. 374

TokenLanguage...376

AnyToken...377

TokenRegexp..379

Word... 381

Annotation... 382

Ctx... 384

AnnotationRegexp...386

TRule.. 388

MatchAnnotation...390

TInclude.. 390

TImport...392

Remove... 394

Copy... 394

KeepLongestLeftMost...394

AnnotationProcessed... 395

KeepLeftMostLongest...396

KeepFirst... 396

SelectMostFrequentValue... 397

SelectMostFrequentAnnotation..397

8 - Table of Contents

Table of Contents

SelectByContexts.. 398

StringValue.. 398

Appendix - ELLQL Language..401
ELLQL Language Features..401

Structure of the Language... 401
Options.. 401

Simple Operators..402
Fields Search..402
Specials... 410
Delimiters...410

Compound Operators.. 410
Unary Operators... 411
Binary Operators...412
Nary Operators... 414
Proximity Operators...415

Appendix - Search API Parameters.. 417
The search Command... 417

Global Parameters... 417
Sorting and Grouping Parameters... 420
User Query...425
UQL Interpretation.. 427
Limits Parameters... 428
Hit Meta Parameters..429
Faceting Parameters.. 434
Dynamic Search Target..444
Textual Relevance Parameters...445
Unranked search mode.. 446
Search Logic Editing..446

Misc.. 449

The fetch, preview and thumbnail Commands..450
About Thumbnails... 451
Global Parameters... 451
Fetch Parameters.. 452
Preview Parameters...452
Thumbnail Parameters... 452

The Search Results...453

The spellcheck Command.. 454

The suggest Command..454

The security Command... 455

The expansion Command.. 456

The introspection Command.. 456

Appendix - Virtual Field Expression Syntax... 457
What Is a Virtual Field Expression..457

Expression Types.. 457

Numerical Operators... 458

Built-ins...459
General Functions... 459
Mathematic Functions.. 459
Geographic Functions...460
Category Functions..461
Time Manipulation Functions...461
String Functions..464
Multivalued fields Manipulation Functions... 464
Dynamic Fields Manipulation Functions.. 465
Type Casting...465
Special Functions.. 466
Ranking Elements..466

Table of Contents - 9

Configuration

Configuration

This guide provides detailed explanations of core Exalead CloudView features, such as the data
model and the analysis pipeline. It also introduces advanced functionalities such as virtual fields,
dynamic facet, and geographic search.

Audience

The purpose of this guide is to help consultants, developers, or system Administrator who
have previous experience setting up Exalead CloudView, or have already followed the Exalead
CloudView Getting Started Guide.

Further Reading

You might need to refer to the following guides:

Guide for more details on

Installation & Administration installing the product and administrative tasks
typically performed on production systems.

Mashup Builder building the front-end of your search application.

XML Configuration Reference very specific product options.

10 - Configuration

What's New?

What's New?

There are no enhancements in this release.

Configuration - 11

Workflow and Concepts

Workflow and Concepts

This chapter describes the global product workflow and how indexing and search work.

To develop a search application in Exalead CloudView, you must define what data to include in the
index schema. Then you must configure one or more search logics to control how to present the
documents as search results.

About Index Schemas and Search Logics

The Indexing and Search Processes

About Index Schemas and Search Logics

What is an Index Schema?

Index schemas define the structure of the Exalead CloudView index, which constitutes of index
fields and categories.

Index Fields

Index Fields help searching and displaying data in the hit content of the search results.

The following index field types are available:

• Alphanumerical: stores words or text chunks.

• Numerical: stores both integer and decimal numbers. Decimal fields are stored with a fixed
precision, which you can specify.

Numerical fields support the following operations:

◦ Equality

◦ Inequality

◦ Larger than, smaller than

◦ Range search ("from X to Y")

• Point: stores location data. For more information, see Configuring Geographic Search.

• Date

12 - Configuration

What is a Search Logic?

Categories

Categories store static facet values. These values display in the Refinements panel of the search
results as well as in hit content. Static facet allow users to narrow their search results by focusing
on a certain aspect of the results, such as a particular country or product line.

In the categories field, category values are stored in a tree. The root of the tree is called Top.

For example, for a given document, the categories field could contain the following categories:

Top/
Top/Source
Top/Source/files
Top/Language
Top/Language/fr
Top/Detected Entities/People/Mr. Jones
Top/Detected Entities/People/Mrs. Singh

You can use categories for navigation over static categories. To enable this navigation, Exalead
CloudView stores the retrievable part of the category in RAM.

What is a Search Logic?

Search logics enable you to define:

• Which index fields or category facets to use for queries, using prefix handlers.

• What types of semantic interpretation to perform on queries, using semantic expansion
modules.

• Which index fields or facets to return in the search results, using hit meta and facets.

You can create multiple search logics, which enables you to provide querying options and hit
content specific for the destination search application.

Modifying the Index Schema and Search Logics

The simplest way to modify both the index schema and the search logic is to create classes and
properties in the data model. For more information, see Using Properties to Configure Document
Metas.

For advanced configurations, you can directly modify the analysis pipeline and search logic. See
the following:

• Controlling the Data Model Expansion

• More About Semantic Analysis

• Configuring Query Expansion

Configuration - 13

When do I need to Re-Index Documents?

When do I need to Re-Index Documents?

The table below indicates when to re-index according to the sections modified in the
Administration Console:

Modifications made on... Needs re-indexing?

Index

Connectors Yes

Data Processing Yes

Data Model Yes

Note: when you add a property to the data model, you only need to
re-index to search or retrieve this new property.

Linguistics Yes

Tuning No

Changes made in Analyze and Commit require a restart of Exalead
CloudView, or at least the indexing server process, to be taken into
account.

Changes made in Compact, do not require re-indexing, a full
compact is enough to clean index slots.

Search

Search Logics No

Security Sources No

Search API No

Suggest No

Reporting No

Deployment

Roles No

Build Groups Yes

Plug-ins No

Resources No

14 - Configuration

The Indexing and Search Processes

The Indexing and Search Processes

The Exalead CloudView index is generational. When indexing documents, they are divided into
batches known as jobs.

Each time you index a job, it creates a new generation of the index. Exalead CloudView stores
this new generation of the index in a data structure called a slot. Each new slot is appended to the
original index.

Once you commit the latest generation (slot) to the index, the index replicas are updated.

At search time, Exalead CloudView searches in all these slots of all the index replicas, and merges
the results to return the final result set.

From time to time, slots are compacted to create an index with fewer slots, for more efficient
searching.

About the Indexing Process

Indexing is the process of scanning a document to create an index and to store its metas (content
such as fields) into a collection.

The following diagram explains the process to update an index and its replicas.

Indexing Process

Configuration - 15

About the Indexing Process

Phase 1: Push

The connectors retrieve documents from data sources, convert them into PAPI documents, and
send these documents to the Indexing Server process.

For each document, the Indexing Server assigns:

• a Document Identifier (DID)

• an index slice

Important: You can add the Consolidation Phase between Phase 1 and Phase 2. It allows
you to transform and aggregate documents coming from different sources before pushing
them to the Indexing Server. For more details on consolidation, see the Exalead CloudView
Consolidation Server Guide.

Phase 2: Analysis

Analysis is the process of formatting content and extracting information from documents pushed
by connectors before storing them in the index.

In Exalead CloudView, an indexing job starts as soon as it receives a document. The analysis
pipeline processes it immediately, using several threads for better performance.

16 - Configuration

About the Search Process

Processors play an important role during the analysis phase. The document and semantic
processors parse each document in the job to perform text extraction, semantic processing,
custom operations, and mapping.

Commit Triggers define the conditions that prompts the saving of the analysis to the index.

When you commit, the results of the analysis create:

• An import to the index, which merges the data computed during the analysis with the data
present in the index. This results in a new generation of the index. The new data resides in a
new, separate slot in the index.

• Semantic annotations (linguistic statistical data) about the corpus to the dictionary builder of the
indexing server process. This data can be used for query expansion and index-time semantic
processing.

The index is now committed to disk.

Phase 3: Replicate

After the new index data is committed, the new index generation is replicated on all index slices in
the deployment. Once fully replicated, the new documents are available for searching.

Once the dictionary builder has received new semantic annotations, it updates the dictionary (or
dictionaries, if you configured multiple ones) on the search server.

About the Search Process

Search is triggered when end users (or a third-party application) submit a query to Exalead
CloudView.

The following diagram shows how Exalead CloudView parses and expands queries before
searching for matches on the index replicas.

Search Process

Configuration - 17

About the Search Process

The user enters a query in UQL (User Query Language). The Mashup UI (or a custom search API
application) forwards the query to the Search API. If you configured security, the query includes
the security tokens.

Query Parsing

Parsing involves checking whether the query includes words and operators. If there are no
operators in the original query, this step inserts the default operator (AND) between multiple
words, unless the words are enclosed in quotations.

Query Expansion

To linguistically expand this query, Exalead CloudView consults the dictionary to check for words
available in the corpus, then sends a fully expanded query to the index slices.

The fully expanded query breaks down into a more granular query language known as ELLQL
(Exalead Lower-level Query Language) so the index slices can understand it. During the step, the
ELLQL query includes the security tokens so that the index slices can verify whether you have
access to the matching documents.

Query Execution

Query execution constitutes of:

• Searching for the most relevant matches in all index slices.

• Generating the navigation data (facets).

18 - Configuration

About the Search Process

All slices receive the query because each slice only contains a portion of the corpus. The hits from
each slice are merged in the search server before returning all the matching hits to the user.

Configuration - 19

Configuring CloudView with the Data Model

Configuring CloudView with the Data Model

This chapter describes Data Model properties and expansion.

About the Data Model

What is the Data Model Expansion

Working with Data Model Classes

Using Properties to Configure Document Metas

Creating Dynamic Properties

Creating Multivalued Properties

Tools to Create a Data Model from Your Corpus

About the Data Model

The Data Model defines how documents are stored in the Exalead CloudView index. It provides a
way to map the relevant document metas available in your corpus to specific properties grouped
by classes. The data model defines how to store data in the index, and how to use it at search
time.

Classes allow you to group lists of properties to clearly structure your data model, according to the
types of documents present in your corpus. They are similar to Business Logic views.

Note: A document can only belong to one class.

Properties define the configuration of the document metas you want to index. During indexing,
Exalead CloudView converts properties into dedicated index fields, and optionally hit display fields
or facets, depending on your configuration.

Transformation of Document Metas into Index Fields via the Data Model

20 - Configuration

What is the Data Model Expansion

Exalead CloudView is installed with a default_model data model containing a default document
class but you can create your own data models and classes.

For example, when indexing an information system for a bookstore, we could have source system
data for authors and for books. To separate these, we could create a book class and an author
class, and each consists of a specific set of properties.

• The book class could have properties for document metas like: title, author, year
publication, ISBN, etc.

• The Author class could have properties for document metas like: last name, first name,
date of birth, biography, etc.

Important: All changes made to the data model require clearing the index and re-indexing data
to avoid inconsistencies.

What is the Data Model Expansion

Data model expansion is the automatic generation of index schema elements (index fields,
categories, processing, and mappings) as well as search logic elements (prefix handlers, hit meta,
and facets) when defining a property in a data model class.

What is generated by the Data Model Expansion

Configuration - 21

What is generated by the Data Model Expansion

Controlling the Data Model Expansion

Taking Control over Generated Index Fields

What is generated by the Data Model Expansion

When you apply a configuration, the high-level view provided by the Data Model is expanded into
the multiple index and search elements.

The properties that you define generate:

• Normalization and semantic processing instructions (for alphanumeric fields or facets only).
These instructions are contained in semantic processors that are automatically configured and
added to the analysis pipeline.

• New dedicated index fields and category facets mapping document metas in the index
schema.

• Storage settings of index fields in the index schema.

• Instructions saying whether to allow full-text search on index fields and search with prefix
handlers. For example, the query title: Recipes with the title: prefix handler search
for documents having Recipes in their titles).

• The corresponding hit meta and hit facets to display in the search results, and prefix handlers
in the search logic.

Typical Data Model Expansion

For example, creating an alphanumeric property called name in a customer class expands into
the following:

22 - Configuration

Controlling the Data Model Expansion

Phase generates... in...

Data Processing A customer_name output context that
you can manage to transform/normalize
your data before indexation.

Data Processing > Document
Processors/ Semantic Processors

Mapping A mapping from the customer_name
output context to the customer_name
field.

If sales is not the default class, the
output context name would instead be
customer_name.

If the customer_name property is to be
both an index field and a facet, the data
model creates two customer_nameoutput
contexts, with one mapped to the category,
the other mapped to the index field.

Data Processing > Mappings

Index schema An index field of type text called
customer_name.

Data model > Advanced Schema

Search Query A prefix handler called customer_name
that targets the customer_name index
field.

Search Logics > Query Language

A facet named customer_name. Search Logics > FacetsSearch Results

A hit meta named customer_name. At
search time, this meta is automatically
renamed to name so the class name
(customer) does not appear in the hit
content.

Search Logics > Hit Content

Controlling the Data Model Expansion

The Data Model simplifies the setup of the most common features for index fields and category
facets. But you may need to control the default behavior of the Data Model expansion, or
customize specific elements only.

Controlling the Overall Data Model Expansion

1. In the Administration Console, go to Index > Data Model.
2. Expand Default expansion control.

Configuration - 23

Controlling the Data Model Expansion

Default Expansion Control Options

Option Description

Generate analysis config Creates the required mappings and document processors for each
property.

Only clear this option to take complete control over analysis
expansion.

Generate index schema Creates the required dedicated index fields for each property set as
Dedicated field.

Only clear this option to take complete control over index schema
expansion.

Generate facet Creates a category facet in the search logics for each property set as
Category facet.

Only clear this option to take complete control over facet config
expansion.

Generate hit meta Creates the required hit metas in the search logics for each property
set as retrievable.

Only clear this option to take complete control over meta expansion.

Generate prefix Creates the required prefix handlers in the search logics for each
property set as searchable with prefix.

Only clear this option to take complete control over query prefix
handler expansion.

Analysis pipelines Specifies the analysis pipelines (as a comma-separated list) for
which mappings and documents processors are generated. If empty,
they are generated for all pipelines.

Search logics Specifies the search logics (as a comma-separated list) for which
prefix handlers, facets, and hit metas are generated. If empty, they
are generated for all search logics.

Customize a Specific Data Model Property

1. In the Administration Console, go to Index > Data Model.
2. Select the class for which you want to customize properties.

3. Click the property name to display its configuration details and expand the Expansion control
section.

24 - Configuration

Taking Control over Generated Index Fields

a. To make options available, select Customize default expansion.

b. You can now modify the configuration options for the selected property only. For more
information, see Controlling the Data Model Expansion.

Note: These options depend on the property configuration.

4. Click Apply.

Fully Override the Data Model Expansion for a Property

In some cases, you actually want to fully remove the generated elements. For example, you may
want to remove a generated facet, because you want to store it but not display it at a given time.

1. In the Administration Console, go to Index > Data Model.
2. Select a property, then expand Expansion control.
3. Clear the appropriate Generate... option.

Customize a Specific Search Logic Element

1. In the Administration Console, go to Search > Search Logics tab that stores the element to
customize.

2. Click an element name to display its configuration details.

◦ The options are unavailable.

◦ Generated by Data Model displays Yes.

3. To make these options available, click Customize.

◦ The configuration options can now be modified.

◦ To undo your changes, click Restore.

4. Click Apply.

Taking Control over Generated Index Fields

Sometimes, you may want to take control over index fields generated from data model properties
or add new fields to store specific elements of your corpus.

This can be done by editing or adding fields in the Data Model > Advanced Schema tab.

For example, you can add binary retrievable fields to store binary data in the index. This can be
useful if you want a dedicated thumbnail or preview generation and make it available directly
inside the document. This also allows you to optimize the index storage.

1. In the Administration Console, go to Data Model > Advanced schema.

2. Click Add field.

Configuration - 25

Working with Data Model Classes

a. For Name, enter a descriptive name, for example, thumbnails

b. For Type, select Binary.

3. Click Apply.

Working with Data Model Classes

Can I Delete the Default Document Class?

For production deployments, it is best to delete the default Document class if you do not use it.
See How Classes Impact Performance.

Working with Multiple Classes

You can define multiple classes in the Data Model. You can also alter this by custom analysis
code.

Classes can be independent, or hierarchized. In a hierarchy, a class inherits all of its parent’s
properties.

For example:

class A
 foo
 bar
class B: parentClass=A
 gizmo

This means you can search for B_gizmo, B_foo, B_bar, A_foo, or A_bar.

You can specify which class in the Data Model is the default class. When searching for properties
from this class, you do not need to prefix the search by the class name. For example, if B was the
default class, searching for gizmo returns the same result as searching for B_gizmo.

Impact of Multiple Classes on Performance

Adding multiple classes presents some limitations and has an impact on resource consumption.
See How Classes Impact Performance.

Using Properties to Configure Document Metas

A property helps to configure a document meta. It defines how to process it and store it as a
dedicated index field. It is a functional layer over the technical configuration.

26 - Configuration

Data Types and Semantic Types for Properties

For example, if you want to search for the content of a specific meta, the property is going to store
the meta as a dedicated index field and configure the search to enable you to do so.

Data Types and Semantic Types for Properties

Properties in a data model class have a Data type, such as alphanumeric, numeric, or geographic.
The type, as well as other settings, determines what kind of elements you automatically create
from the property when you scan your data sources.

Semantic types are assigned to all alphanumeric properties in a data model class, to determine
the type of semantic processing applied to these properties at index time.

You can create the following types of properties:

• Alphanumeric

• Numerical: integer, unsigned integer, and double

• Date: date only and date-time

• Geographic: GPS point and XY point

• Measure

Indexing Options for All Properties

When creating a data model property, you can choose one of the following field types:

• a dedicated field only

• a category facet only (as opposed to virtual facets. For more information, see Creating Facets
to Refine Search Results.)

• both dedicated field and category facet

• none

This section explains the options available depending on the property type. The following schema
represents it.

Indexing Options for Data Model Properties

Configuration - 27

Indexing Options for All Properties

Note: For an example explaining what is exactly created in the index schema and search logic,
see What is the Data Model Expansion.

Indexing Options for Index Fields

The most common indexing method is to assign a dedicated index field to the property. The
property can then be:

• Searchable which means that user queries can be applied to this field. If the property is
searchable with a prefix:

◦ If this class is the default class, you can search for the property with a prefix format of
property:value.

◦ Otherwise, you can search for the property with a prefix format of
classname_property:value.

• Retrievable, which means that the field can display in the search results. A hit meta with the
property name and value appears in hit content.

Indexing Option for Facets

The property can also be stored as a Category facet.

• A category is created with the value of the property.

• Faceted navigation is automatically created for this property. In that case, it is possible to
search for the value of the property.

◦ If the property belongs to the default class, you can search for the property with a prefix
format of property:value.

28 - Configuration

Indexing Options for Alphanumeric Properties

◦ Otherwise, you can search for the property with a prefix format of
classname_property:value.

Note: If the property is both in a facet and in a dedicated field, search is handled through
the field. The facet is then only used for faceted navigation.

Indexing Options for Dedicated Fields and Facets

The property can be made searchable without prefix, which means in addition to the indexing
determined by other options, the property is indexed as searchable in the field called text.

This allows users to search this property without specifying a prefix in the query.

When this option is selected, the Relevance class select box displays, to let you adjust the
ranking level of the index field. The value can be a standard ranking key from -1 to 8 (8 being the
highest rank) or a custom value with a positive integer higher than 8.

Note: You can modify the ranking of search results afterward. For more information, see Ranking
and Sorting Search Results.

Not in a Dedicated Field or Facet

If the property is not in a dedicated index field or in a facet, or searchable in text, it can still be
stored and retrieved, but not searched for.

Advanced Options

All properties have advanced parameters. For more details, see "AdvancedParams" in the
Exalead CloudView XML Configuration Reference Guide.

Indexing Options for Alphanumeric Properties

When adding a new alphanumeric property, you must assign it a semantic type. It defines the
global semantic processing to be applied when indexing document metas. You can then customize
this semantic processing at the Analysis pipeline level (Index > Data Processing > Semantic
Processors).

Exalead CloudView includes default semantic types, but you can modify them or create additional
ones in Data Model > Semantic Types.

Default Semantic Types

Configuration - 29

Indexing Options for Numerical Properties

Semantic type Description

text Apply this semantic type to document metas containing several words or
sentences.

For example, you can apply this semantic type for a meta with a value
like:

"Deep Blue was a chess-playing computer. It is known
for being the first piece of artificial intelligence

to win both a chess game and a chess match against a

reigning world champion under regular time controls."

You must do it if you want to perform extra processing treatment in the
analysis pipeline.

metadata Apply this semantic type to document metas containing a few words that
do not require language detection and spell-checking.

For example, if we have the meta value Deep Blue

Searching for deep blue in lowercase would work, as well as searching
for deep only or for blue only.

identifier Apply this semantic type to document metas containing IDs.

With this semantic type, document metas are searched in their
normalized forms, but they cannot be tokenized and the language cannot
be detected.

For example, if we have the meta value Deep Blue

Searching for "deep blue" (with quotes) would work, but searching for
deep only or blue only would not work.

url Apply this semantic type to document metas containing web addresses.

Indexing Options for Numerical Properties

When storing a numerical property as a facet, only equality search is possible. Range search is
only possible in a dedicated index field. For more information, see Numerical Range facets.

When storing a numerical property as a dedicated index field, searchable with prefix includes
searching using the range operators.

Indexing Options for Date Properties

30 - Configuration

Indexing Options for Date Properties

When adding a date property, you must define the input format that triggers the indexing of dates.
You can leave the field empty for an automatic detection of standard formats or specify the date
format to detect in the document corpus.

Exalead CloudView uses the UNIX date syntax to specify date and time formats for date fields in
the data model. The same syntax is also used in the search logic for date metas displayed in the
hit content, and dynamic date facets.

Note: There is also a time output format which can be set for each meta to display in the search
results hits. Its default value is %m/%d/%Y %H:%M:%S. See Search Logics > Hit Content >
Metas and expand, for example, the lastmodifieddate meta Time format operation.

Note: If a timezone is detected inside the date time value, it allows you to convert and store this
value in UTC format. For more information, see Specifying a Timezone for Date Time Metas.

UNIX Date Syntax

Specifier Description Values/Example

Day

%a weekday, abbreviated Mon

%A weekday, full Monday

%d day of the month (dd), zero filled 08

%e day of the month (dd) 8

%j day of year, zero filled 001-366

%u day of week starting with Monday (1), that is,
mtwtfss

7 (for Sunday)

%w day of week starting with Sunday (0), that is,
smtwtfs

0 (for Sunday)

Week

%U week number Sunday as first day of week 00–53

%W week number Monday as first day of week 01–53

%V week of the year 01–53

Month

%m mm month 08

Configuration - 31

Indexing Options for Date Properties

Specifier Description Values/Example

%h Mon Aug

%b Mon, locale's abbreviated Aug

%B locale's full month, variable length August

Year

%y yy two-digit year 00–99

%Y ccyy year 2014

%g 2-digit year corresponding to the %V week
number

%G 4-digit year corresponding to the %V week
number

Century

%C cc century 00–99

Date

%D mm/dd/yy 08/20/14

%x locale's date representation (mm/dd/yy) 08/20/2014

%F %Y-%m-%d 2014-08-20

Hours

%l hour (12 hour) 5

%I hour (12 hour) zero filled 05

%k hour (24 hour) 17

%H hour (24 hour) zero padded 17

%p locale's capitalize AM or PM (blank in many
locales)

PM

%P locale's lowercase am or pm pm

Minutes

%M MM minutes 18

Seconds

32 - Configuration

Indexing Options for Geographical Properties

Specifier Description Values/Example

%s seconds since 00:00:00 1970-01-01 UTC
(UNIX epoch)

1345483096

%S SS second 00–60 (The 60 is required to
accommodate a leap second)

Time

%r hours, minutes, seconds (12-hour clock) 05:18:16 PM

%R hours, minutes (24-hour clock) 17:18

%T hours, minutes, seconds (24-hour clock) 17:18:16

%X locale's time representation 11:07:26 AM

Date and Time

%c locale's date and time Sat Nov 04 12:02:33 EST 1989

Indexing Options for Geographical Properties

Exalead CloudView supports two types of geographic coordinates:

• GPS fields, also called WGS84, store pairs of latitudes and longitudes separated by commas.
They are expressed in decimal format, with an accuracy of 6 decimal places. Example:
37.818667,-122.478383 is a valid meta for GPS fields.

• XY fields, also called Meter, store pairs of integers separated by commas. As no unit is
defined, you can consider the unit as meters, miles, or whatever unit you need. Example: 125,
8215 is a valid meta for XY fields.

You can select Use separate metas for each coordinate if latitude/ X and Longitude/ Y
come from two different metas in your data source. Exalead CloudView concatenates the two
coordinates to store them in a single index field.

Indexing Options for Measure Properties

To handle a meta-data that contains a measure, add a property in your data model with a Measure
data type. Then specify the unit symbol of your measure; this works as indexing unit and also as
default input unit.

By default, the expansion control configuration automatically specifies all required elements for the
good indexing & search of this new property:

Configuration - 33

Creating Dynamic Properties

• a Units of Measurement Normalizer document processor in the Data Processing >
MODEL_NAME > Document Processors.

• a measurement prefix handler with the name of your measure property in Search Logics >
SEARCH_LOGIC > Query Language.

Creating Dynamic Properties

A dynamic property allows you to map one or several metas to the same index field, based on the
meta name.

This is useful when you do not know all the metas available in your data source. It also reduces
the number of fields you need in the index.

For example, use dynamic properties to:

• Map all meta names that start with the word item to an item field, when indexing a corpus of
store inventory.

• Map any meta name that includes the word price to a price facet, when indexing sales data.

Note: Dynamic properties can generate alphanumeric fields, numerical fields, date/time fields,
or category facets. When using date/time dynamic properties, the validation of the date/time
format is performed according to the format specified for this dynamic property.

Add a Dynamic Property

About Storing and Displaying Dynamic Property Fields

Store Properties in a Parent Class Dynamic Property

Search Dynamic Property Fields

Add a Dynamic Property

The following procedure describes how to configure a dynamic property for a data model class.

1. In the Administration Console, go to Index > Data Model.
2. Under Classes, select the class (if the property is not part of the default class).

3. Under Dynamic properties for the <Classname> class (below), click Add dynamic
property.

a. Select a Name and Data type.

b. Select a Semantic type. This defines the type of semantic processing for the property.

c. Select a Field type.

4. Define Matching rules:

34 - Configuration

About Storing and Displaying Dynamic Property Fields

For Mode, select a matching method:

◦ Exact: includes the specified meta name only.

◦ Prefix: includes meta names that begin with this string.

Note: You can select the Unprefix check box if you want to remove the prefix from search
queries.

◦ Suffix: includes meta names that end with this string.

◦ Substring: includes meta names that contain this string.

◦ Pattern: includes meta names that match this regular expression.

For Pattern, specify the string or regular expression.

5. Click Accept.
6. (Optional) To display meta values under their meta name in hit results or the Refinements

panel, select Store meta names.

Note: Selecting this option impacts how you search with dynamic property prefix handlers. See
Search When Storing Meta Names.

7. (Optional) Select or clear the remaining options as required.

8. Click Apply.

9. Go to Home > Indexing, click Clear, and then select the build groups that are modified by this
property.

10. Scan your documents.

About Storing and Displaying Dynamic Property Fields

The way in which index fields and category facets are stored is determined by the Store meta
names option, which also determines how these fields can be retrieved and searched.

For details on searching, see Search Dynamic Property Fields.

If Store Meta Names is not Selected

If Store meta names is not selected for a dynamic property, the resulting dedicated index field (or
category facet or output context) is the same as any other alphanumeric or numerical field created
with standard properties. It contains only meta values.

Without Stored Meta Names

Note: The Store index field includes both the store_city and store_country metas, and
displays the values for both together.

Configuration - 35

About Storing and Displaying Dynamic Property Fields

If Store Meta Names is Selected

If Store meta names is selected, by contrast, the resulting index field (or category facet or output
context) is indeed different from standard fields: for each value, it also stores the associated meta
name. This allows you to search and retrieve specific metas within the field.

With Stored Meta Names

Note: The Store index field displays the store_city and store_country metas separately.

Calculate Facets for Dynamic Property Fields

Dynamic properties, are not stored in the Categories index field with a /top/foo/bar tree
structure like standard facets. To calculate their values, use virtual expressions, with the following
syntax:

#extract(dynamicField, "<meta name>") to return the value of "meta name" in the
dynamic field.

36 - Configuration

Store Properties in a Parent Class Dynamic Property

Store Properties in a Parent Class Dynamic Property

For big projects with a lot of fields, you can mutualize dynamic fields if they can be used by
different classes.

The idea is to store the properties of child classes into a single dynamic property specified for a
parent class. For example, we could configure our data model to have:

parent_class with:

• dynprop_num_ram

• dynprop_alpha_search

• ...

• common_prop1

• common_prop2

and child_class1 with:

• prop1 --> in dynprop_num_ram (parent_class)

• prop2 --> in dynprop_alpha_search (parent_class)

• ...

• prop3 (dedicated to this class)

1. In the Administration Console, go to Index > Data Model.
2. Select a property, then expand Other advanced options.

3. In Store in dynamic property, enter the name of the dynamic property in which you want to
store the current property.

4. To avoid getting duplicate values for your children meta at search time:

a. Expand Expansion control.
b. Select Customize default expansion.

c. Clear Generate hit meta.

5. Click Apply.

Search Dynamic Property Fields

The Store meta names option also determines how you search the resulting index field or
category facet using prefixes.

Search When Storing Meta Names

1. Include the meta name in the prefix handler, in this format:

Configuration - 37

Creating Multivalued Properties

◦ If the property belongs to the default class:
<property_name>:<meta_name>:<query>.

◦ If the property does not belong to the default class:
<classname_property_name>:<meta_name>:<query>.

For example: item:item_description:skirt

Searches for skirt in the item_description meta of the item index field.

Search When not Storing Meta Names

1. Use only the property name for the prefix handler, in this format:

◦ If the property belongs to the default class: <property_name>:<query>.

◦ If the property does not belong to the default class:
<classname_property_name>:<query>.

For example: item:skirt

Searches for skirt in the item index field, which includes the metas item_description,
item_name, and item_details.

Search When the Dynamic Property is in a Parent Class

1. To target a property stored in a dynamic property of a parent class, you
must specify the parent class and the child class in your prefix handler:
<parentclassname_dynamic_property_name>:<childclassname_meta_name>:<query>.

The following syntax does not work:
<parentclassname_dynamic_property_name>:<meta_name>:<query>.

Creating Multivalued Properties

You can set all types of data model properties as multivalued. This is useful when you need to
index several values in a single index field.

For example, you want to store several email addresses in and email_address field or phone
numbers in a phone_numbers field for persons:

1. In the Administration Console, go to Index > Data Model.
2. Expand a property to view its configuration options and expand Other advanced options.

3. Select Multivalued and click Apply.

38 - Configuration

Tools to Create a Data Model from Your Corpus

Tools to Create a Data Model from Your Corpus

A common challenge when creating a Data Model is to know which metas are in your corpus.
There are several ways you can explore your available metas using the Exalead CloudView Data
Model.

Create a Data Model from Sample Documents

To save time when creating properties, you can use the Trace all metas option.

Important: Every time you scan your sources, this option saves all these metas to an internal
database.

Recommendation: Disable Trace all metas after you have generated the properties you need.

1. In the Administration Console, go to Index > Data Model.
2. Under Data model options, select Trace all metas
3. Click Apply.

4. Go to the Home page, click Scan for the connector.

This saves all scanned metas to an internal database.

5. Go back to Index > Data Model > Classes, click Add properties from traced metas.

This enables you to select multiple metas to save as properties and optionally, index fields or
category facets.

For an example of creating properties from traced metas, see "Create a new class in the data
model" in the Exalead CloudView Getting Started Guide.

6. Click Generate properties.

7. Click Apply.

8. As you have changed the Index Schema by adding new properties, you need to clear the
documents in the build group and re-index your data:

a. On the Home page, under Indexing, click Clear. Wait for the index to clear its documents.

b. Under Connectors, click Scan next to your connector.

Store Unprocessed metas

You can save unanalyzed metas to a single csv-encoded output context called metas, and then
display them in hit content.

Configuration - 39

Store Unprocessed metas

Important: This is a legacy option. Save unanalyzed metas using a dynamic property to store
them in a dedicated index field (see Creating Dynamic Properties).

Recommendation: It is more convenient to search for each meta individually.

1. In the Administration Console, go to Index > Data Model.
2. Under Data model options, select Store all unprocessed metas.

3. Click Apply.

These metas are retrievable only. You cannot search them. To search on one of these metas, you
must create a Data Model property for it.

40 - Configuration

Configuring Data Processing

Configuring Data Processing

Data Processing refers to the processing performed on documents, starting from the pushing of
documents in the Push API to the storing of the resulting output as fields and categories into the
index.

In most situations, you can use the data model to create index fields and handle data processing.
For more complex processing needs, however, you may need to create fields or customize
processing by directly modifying the document analysis pipeline and index schema (see Taking
Control over Generated Index Fields).

Understanding and Using the Analysis Pipeline

Testing your Analysis Pipeline Behavior

More About Semantic Analysis

Tokenizing Text

Creating and Deploying Semantic Resources

Managing Semantic Annotations

Configuring Form Indexing

Understanding and Using the Analysis Pipeline

This section describes the main phases involved for data processing in the analysis pipeline, how
to use pipeline conditions and how to configure the pipeline manually.

About Data Processing

The Analysis Pipeline Sequence of Processors

Use Multiple Pipelines with Conditions

Use a Single Pipeline with Groups of Processors

Multiple Pipelines vs. Single Pipeline with Groups

Configuring the Analysis Pipeline Manually

About Data Processing

About the Overall Document Lifecycle

This section explains the document lifecycle through the various components of the Indexing
Server.

Configuration - 41

About Data Processing

In the Push API Server

When connectors send documents to the Indexing Server, they first arrive into the Push API server
(PAPI server) of the Indexing Server.

When you push a document to the Push API Server, it contains:

• document URI

• document stamp to indicate the version

• meta data

• parts containing the bytes from the document

• directives for data extraction

In the Analysis Pipeline

Documents are then pushed to the analysis pipeline of the Indexing server.

The first step is to transform the content of the document parts and the metadata items into
internal items that the document and semantic analysis processors can process. These internal
items are called document chunks.

Note:

• Each document chunk is tagged as a context which name is case-sensitive.

• Created contexts depend on the extraction process. By default, it creates the text
and title contexts for each part, and a context for each metadata item.

The following example shows the mapping of a document with one part and metadata items to
several contexts.

Document and Metadata Mapped to Contexts

42 - Configuration

About Data Processing

Once the document is represented as contexts with one or more document chunks, the analysis
processors can process it. The processors can perform one of the following:

• create new contexts

• transform existing contexts

If you want to perform semantic analysis, you must tokenize the context. The semantic processor
can create annotations for the tokens. The following example shows a possible representation of
the document after analysis.

Contexts and Annotations after Document and Semantic Processing

Configuration - 43

About Data Processing

In the Index

The final phase is the mapping of the contexts and the annotations to index fields so that the
document may be used for search.

When a document matches a query the results contain hit fields, metadata (that can be different
from the Push API metadata), categories, and related terms.

Document Mapped to Index Fields

44 - Configuration

The Analysis Pipeline Sequence of Processors

Focus on Data Processing Phases in the Analysis Pipeline

Data processing involves the following phases in the Exalead CloudView analysis pipeline.

Phase

1 Document Processing provides a set of analysis filters that are able to modify the content
of the documents for indexing. For example, the document's language and MIME type are
automatically detected, and it is possible to use the result of this detection as a document
category.

2 Contexts appear at the end of the document processing phase. You can find new or
transformed content that can be mapped in the final phase to fields in the index.

3 Semantic Processing provides a set of semantic processors to detect related terms, perform
semantic query processing, categorization thesaurus, extractions, and ontology matching.

4 Annotations provide additional information about a piece of text in the form of names, attributes,
descriptions, and so on. They are attached to documents by semantic processors during
analysis. To search on an annotation, map to an index field. To use for a facet, map to a
category.

5 Use Content and Annotation Mapping to send data from multiple metas of the documents to
the same field, or to send a given part of the document to multiple index fields, with multiple
options. You can find in the index fields the heterogeneous content and annotations gathered
from the connectors and created during the document analysis

The Analysis Pipeline Sequence of Processors

The Analysis pipeline defines a sequence of processors executed on a document before it is
added to the index. These processors are:

• document processors, used for transforming document meta and content,

• and semantic processors, used for extracting structured information from unstructured
document content.

The analysis pipeline processes documents one by one in a specified sequence determined by the
order of the document and semantic processors. For each input document, the pipeline outputs
exactly one document.

You can access the analysis pipeline in the Administration Console by going to Index > Data
processing > Analysis pipelines, and selecting the pipeline name.

The following figure shows the typical analysis pipeline workflow.

Configuration - 45

Use Multiple Pipelines with Conditions

Use Multiple Pipelines with Conditions

In the data processing configuration, you can have several analysis pipelines. Multiple pipelines
allow for different processing depending on the document. Each pipeline has an associated
condition, to determine which pipeline processes the document.

The order of document pipelines in the data processing configuration is important. As soon as
a document pipeline is found with a valid accept condition, the document is dispatched to this
pipeline.

1. Go to Index > Data processing > Analysis pipelines.
2. Expand the Condition section of an analysis pipeline, for example ap0.

3. Click Add condition.

4. Set the analysis pipeline condition.

Condition applies to... If...

Metadata The document metadata name equals of matches the specified name,
and if its value:

• Exists

• Equals the specified value

• Contains the specified value

• Matches the specified value

• Does not exist

• Is not equal to the specified value

46 - Configuration

Use a Single Pipeline with Groups of Processors

Condition applies to... If...

• Does not contain the specified value

• Does not match the specified value

Custom Directive The document contains the specified custom directive set to the
specified value.

Data model class The document belongs to the data model class specified in your
connector. This is controlled by the Connector > Configuration
> Store documents in data model class parameter set on your
connector.

If your connector does not specify a default data model class, this
condition does not work.

Document source The document comes from the specified connector source.

URL match The document URL does or does not match the specified regular
expression.

5. Test that your condition works as expected. See Testing your Analysis Pipeline Behavior.

6. Add as many conditions as required.

7. Click Save.

Use a Single Pipeline with Groups of Processors

To avoid multiplying pipelines and therefore simplify the administration of the data processing
configuration, you can also choose to group processors sharing a same trigger condition (typically
on document source) within a same pipeline.

Using a single pipeline with collapsible groups of processors and sets of conditions is much easier
to control and maintain.

Important: Some processors have dependencies, so be careful to make consistent groups
including these dependencies. For example, the html relevant content extractor depends
on the native text extractor, and both must therefore be included in the group to get a correct
processing.

1. Go to Index > Data processing > Pipeline Name > Document Processors.
2. Drag the Other > Document Processor Group processor to the pipeline.

This processor acts as a container for other document processors.

3. Drag other document processors into the Document Processor Group processor.

Configuration - 47

Multiple Pipelines vs. Single Pipeline with Groups

You can sort these processors as required using the up and down arrows.

Note: To create subgroups, drag a Document Processor Group processor within the
Document Processor Group container.

4. Optionally, you can add triggering condition on the:

◦ Document Processor Group processor so that its list of processors is executed when the
specified condition is met (if any).

◦ Processors contained in the Document Processor Group processor.

Note: Icons flag processors with conditions.

Important: Document processing performance is linear depending on the number of conditions
used in the pipeline. Use Equals conditions instead of Matches conditions in the Add
condition dialog box.

5. Click Save.

Multiple Pipelines vs. Single Pipeline with Groups

Use a single pipeline when you have several document sources sharing common document
processing and mappings.

For example, several filesystem sources with the same data model classes (title, text, Author,
etc.).

Use multiple pipelines when indexing document sources that do not share the same data model
classes.

Note: Each analysis pipeline has a fixed memory consumption regardless the number of
processors. Having 2 pipelines with 10 processors each, uses therefore more memory than having
1 pipeline with 20 processors.

Configuring the Analysis Pipeline Manually

This section outlines the high-level procedure to configure an analysis pipeline with both document
and semantic processors, and to display the output in the search logic.

To map data to index fields and categories, you must define:

1. The document processors to generate output contexts, or metas, based on the name specified
in the Output to box.

2. The semantic processors to generate annotations.

48 - Configuration

Configuring the Analysis Pipeline Manually

3. Map all contexts and annotations to index fields or categories.

Before performing the mapping, you must create the target index fields under Index > Data Model
> Advanced Schema.

You can then configure in Index > Data Processing > Mappings, a list of:

◦ metas and parts mapping document contexts to index fields

◦ annotations mapping document annotations to index fields

Important: All changes made to the analysis pipeline require clearing the index and reindexing
data to avoid inconsistencies.

Map Document Processors Manually

1. Add document processors to the list of current processors, and define the output contexts (or
metas) for them.

a. Go to Index > Data processing > pipeline name > Document Processors.

b. Drag the appropriate processor to the list.

c. Configure the processor.

2. Create index fields to store the contexts.

a. Go to Index > Data Model > Advanced Schema.

b. Click Add Field.

3. Define mappings for the new context generated by the document processors.

a. Go to Index > Data processing > pipeline name > Document Processors.

b. Select the Mappings subtab.

c. Click Add mapping source and create a mapping with the same name as the output
context.

d. Click Add mapping target and select either Index field or Category field (for facet).

e. Under Details, configure indexing options for the index field or category field. The following
table describes the most important ones.

Option Description

Searchable Preindexes the data for efficient lookup. This allows users to search for
documents based on the available values in this index field.

Retrievable Displays the content of the field in the hit content of the search results.

Indexing options For each target field, you can configure the form of words to be indexed.
Choose one of these:

• index exact form

Configuration - 49

Configuring the Analysis Pipeline Manually

Option Description

• index lowercase form

• index normalized form (this removes accents and specifies the contents to
lowercase)

You can also choose to index the position of separators to enable search
within a string. Select this option for use with a "split" type prefix handler.

Map Semantic Processors Manually

1. Drag semantic processors to the list of current processors

a. Go to Index > Data processing > pipeline name > Semantic Processors.

b. Drag the appropriate processor to the list.

c. Configure the processor.

2. Define mappings for the new annotations generated by the semantic processors.

a. On the Mappings subtab, select Add mapping source.

b. To create annotation mappings, follow Map Document Processors Manually > Step 3.

3. To display category or index fields in the search results:

◦ To display categories as facet in the search results, add a facet to your search logic.

◦ To display index fields in the hit content of the search results, create a hit meta (or add the
field to an existing hit meta) in the search logic.

4. Click Apply.

5. Clear the index and reindex your data.

Set Mapping Limits for Index Fields

You can configure a list of field retrieval limits to define the size limits for the index fields.

1. Go to Index > Data Processing > Mapping Limits.

2. In Max indexed words, specify the maximum number of words that are searchable for the
field.

For example, if you index 500 words in this field, but set a limit to 100, then only the first 100
words are searchable.

3. In Max size stored for display, specify the maximum number of bytes that are retrieved for
the field.

50 - Configuration

Testing your Analysis Pipeline Behavior

Testing your Analysis Pipeline Behavior

To reduce index configuration time or for debugging purposes, you can submit a document to the
analysis pipeline and see how it is modified.

You can track changes for:

• an indexed document by creating a connector and running a full scan.

• a new custom document pushed to the index.

For each document, you can display specific document processing information.

Test the Analysis Pipeline with an Indexed Document

Test the Analysis Pipeline with a New Custom Document

Display Document Processing Information

Test the Semantic Processing of your Analysis Pipeline

Test the Analysis Pipeline with an Indexed Document

In this example, we index the PDF guides of the Exalead CloudView documentation. We change
the Author name displayed in the hit content of search results. Instead of ‘EXALEAD R&D’, we
want to display ‘EXALEAD’.

Add a Files Connector and Index the Documentation

You can add a new connector that includes the Exalead CloudView functional and reference
product documentation. For this example, we keep most of the default parameters.

1. Open the Administration Console: http://<HOSTNAME>:<BASEPORT+1>/admin

2. Go to Index > Connectors and click Add connector.
3. Complete the fields as follows:

a. For Name, type Functional_guides

b. For Creation mode, select new.

c. For Type, select Files.

d. Click Accept.

The Functional_guides connector page is created.

Note: When creating connectors, always use intuitive names as by default, they appear as
navigation facet in the Mashup UI.

Configuration - 51

Test the Analysis Pipeline with an Indexed Document

4. On this connector Configuration page, go to the Filesystem paths section and enter the path:

◦ for UNIX platforms, /<INSTALLDIR>/docs/pdf

◦ for Windows platforms, <INSTALLDIR>\docs\pdf

5. Click Apply.

6. Go to the Home page and under the connectors list, click Scan next to the Functional_guides
connector.

This triggers the indexing.

7. Go to the Mashup UI: http://<HOSTNAME>:<BASEPORT>/mashup-ui and enter #all in the
search field.

Search results are displayed.

Note: for each hit the Author meta displays Exalead R&D.

Hit with Author Meta Displaying Exalead R&D

52 - Configuration

Test the Analysis Pipeline with an Indexed Document

Define the New Author Name

Once PDFs are indexed, the first thing you need to define is the new Author name to be displayed.

1. In the Administration Console, go to Index > Data Processing > Edit > Pipeline name (e.g.
ap0) > Document Processors.

2. In Processor types, search for the Replace Values processor and add it above the
rename_extracted_author processor.

3. Click the icon and rename this new processor: rename_exalead.

4. Define the following parameters:

a. Input from: extracted_author

b. String to replace: EXALEAD R&D

c. Replacement string: EXALEAD

5. Click Apply.

Test the Document Meta Processing

You can process a document to see how the modification is taken into account.

1. In the Administration Console, go to Index > Data Processing > Test.
2. In Select an indexed document, choose:

a. your connector’s name in Source: Functional_guides

b. the document to be processed in Document URI:
CloudView_GetStartedGuide_EN_R2015x.pdf

3. Select your analysis pipeline (by default ap0).

4. Click Process.

The list of generated metas and annotations is displayed on the right. You can see that the
Author has been properly renamed ‘EXALEAD’. Metas have all been newly generated, that is
why they are displayed in green.

Configuration - 53

Test the Analysis Pipeline with an Indexed Document

Now you can take a closer look at what happened in the analysis pipeline.

Display the Analysis Pipeline Details

1. Look for the extracted_author meta using the Filter metas search filter on the right.

2. Select the analysis pipeline name (for example ap0) to expand it.

Only document and semantic processors using the extracted_author meta are active. You
can see the two processors involved when renaming and extracting the Author.

54 - Configuration

Test the Analysis Pipeline with an Indexed Document

Notice the green icon before the rename_extracted_author processor. It means that the
condition defined for this processor is met.

3. Select the rename_exalead processor.

You can see that the extracted_author meta is ‘EXALEAD’. This meta has been modified,
that is why it is displayed in blue.

4. Select the rename_extracted_author processor.

You can see that the extracted_author meta has been removed. The final name is still
‘EXALEAD’.

Configuration - 55

Test the Analysis Pipeline with a New Custom Document

5. Go to the Home page and click Clear documents from the Functional_guides connector.

6. Click Scan.

7. Once the scan is complete, go back to the Mashup UI page and refresh the view.

The Author meta now displays EXALEAD.

Test the Analysis Pipeline with a New Custom Document

You can push new test documents to the index.

1. In the Administration Console, go to Index > Data Processing > Test.
2. Select Create a custom document and click Edit document.

56 - Configuration

Display Document Processing Information

The Edit dialog box is displayed.

3. Enter the unique document identifier in URI and the time stamp (optional).

For example, myuri and 2015/03/28-08:00:00.

4. In the Metas section, set the meta details for the document in meta name and value.

For example, enter department as meta name and marketing as value.

5. Click Add meta to create new metas.

6. Click Upload file to select your document.

Your document is displayed with the name master. Click this name to display:

◦ the filename. For example, doc.

◦ the encoding type. For example, UTF-8.

◦ the mimeHint. For example, text/richtext.

7. Click Close.

8. Click Process.

You can now test the analysis pipeline using the displayed document processing information.

Display Document Processing Information

Display Meta Processing

The following elements are displayed for each document processor and semantic processor:

• Meta operation statuses: Added, Modified, Removed.

• Processor conditions:

◦ met

◦ not met

• Metas excluded from the index (Index mappings)

Configuration - 57

Display Document Processing Information

Display Annotation Processing

When clicking a meta name for a semantic processor, you can display:

• Annotations

• Tags, including

◦ Available forms

◦ Count

Display Internal Properties

You can also display parts and directives.

Details of the master part related to the mime_detector document processor:

58 - Configuration

Test the Semantic Processing of your Analysis Pipeline

Disable Processors and Options

You can change document and semantic processors anytime in the Edit tab. For example, you
may need to disable processors or disable the document cache.

Disable a Processor

1. In the Edit tab, select your processor.

2. Select the Disable processor check box.

3. Display the Test tab.

4. The processor is grayed and indicated as (disabled).

Disable the Document Cache

If document cache is enabled for your build group in Deployment > Build groups, the Use
document cache option is automatically enabled when testing your analysis pipeline. You can
disable it to test the latest modified version of your document.

For more information, see "Document cache" in the Exalead CloudView Administration Guide.

Test the Semantic Processing of your Analysis Pipeline

When you add document or semantic processors to your pipeline, you may want to see its output.

To do so, you can use the semantic annotate function of the cvdebug command-line tool,
located in the <DATADIR>/bin directory.

cvconsole cvdebug > semantic annotate [args]

Where possible arguments [args] are:

• [buildGroup] – Build group name (default: bg0)

• [context] – Context of the chunk (type: STRING)

• [language] – ISO code of the language (type: ISO_CODE)

• [pipeline] – Analysis pipeline to use (default: ap0)

• [value] – (Required) Text to process, standard input if missing (type: STRING)

Example:

Consider that our analysis configuration contains only one pipeline. This pipeline contains a
single semantic processor, the Named Entities Matcher. This processor provides Named Entities
annotations.

We start the semantic annotate function to test the Named Entities Matcher with the following
textual input.

Configuration - 59

Test the Semantic Processing of your Analysis Pipeline

cvconsole cvdebug > semantic annotate value="Bill Keller and Barack Obama" language=en

Applying this command gives the following XML output for the first three tokens.

<AnnotatedToken token="Bill" kind="ALPHA" lang="en" offset="0">
 <Annotation displayForm="bill" displayKind="lowercase" tag="LOWERCASE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="bill" displayKind="normalized" tag="NORMALIZE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="" displayKind="exact" tag="exalead.nlp.firstnames" nbTokens="1"
trustLevel="0" />
 <Annotation displayForm="BILL" displayKind="exact" tag="exalead.loose.nlp.firstnames" nbTokens="1"
 trustLevel="0" />
 <Annotation displayForm="person" displayKind="exact" tag="NE" nbTokens="3" trustLevel="100" />
 <Annotation displayForm="2" displayKind="exact" tag="sub" nbTokens="1" trustLevel="100" />
 <Annotation displayForm="Bill Keller" displayKind="exact" tag="NE.person" nbTokens="3" trustLevel="100" />
</AnnotatedToken><AnnotatedToken token=" " kind="SEP_SPACE" lang="en" offset="4">
</AnnotatedToken><AnnotatedToken token="Keller" kind="ALPHA" lang="en" offset="5">
 <Annotation displayForm="keller" displayKind="lowercase" tag="LOWERCASE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="keller" displayKind="normalized" tag="NORMALIZE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="" displayKind="exact" tag="exalead.nlp.firstnames" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="KELLER" displayKind="exact" tag="exalead.loose.nlp.firstnames" nbTokens="1"
trustLevel="0" />
 <Annotation displayForm="3" displayKind="exact" tag="sub" nbTokens="1" trustLevel="100" />
</AnnotatedToken><AnnotatedToken token="and" kind="ALPHA" lang="en" offset="12">
 <Annotation displayForm="and" displayKind="lowercase" tag="LOWERCASE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="and" displayKind="normalized" tag="NORMALIZE" nbTokens="1" trustLevel="0" />
</AnnotatedToken><AnnotatedToken token=" " kind="SEP_SPACE" lang="en" offset="15">
</AnnotatedToken><AnnotatedToken token="B" kind="ALPHA" lang="en" offset="16">
 <Annotation displayForm="b" displayKind="lowercase" tag="LOWERCASE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="b" displayKind="normalized" tag="NORMALIZE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="Barack Obama" displayKind="exact" tag="exalead.people" nbTokens="4"
trustLevel="100" />
 <Annotation displayForm="famousperson" displayKind="exact" tag="NE" nbTokens="4" trustLevel="100" />
 <Annotation displayForm="1" displayKind="exact" tag="sub" nbTokens="4" trustLevel="100" />
 <Annotation displayForm="Barack Obama" displayKind="exact" tag="NE.famousperson" nbTokens="4"
 trustLevel="100" />
</AnnotatedToken><AnnotatedToken token="." kind="PUNCT" lang="en" offset="17">
 <Annotation displayForm="PUNCT" displayKind="exact" tag="tagger" nbTokens="1" trustLevel="100" />
</AnnotatedToken><AnnotatedToken token=" " kind="SEP_SPACE" lang="en" offset="18">
</AnnotatedToken><AnnotatedToken token="Obama" kind="ALPHA" lang="en" offset="19">
 <Annotation displayForm="obama" displayKind="lowercase" tag="LOWERCASE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="obama" displayKind="normalized" tag="NORMALIZE" nbTokens="1" trustLevel="0" />
 <Annotation displayForm="Obama" displayKind="exact" tag="exalead.loose.world" nbTokens="1"
trustLevel="0" />
 <Annotation displayForm="Obama" displayKind="exact" tag="exalead.loose.world.subnational_entities"
 nbTokens="1" trustLevel="0" />
 <Annotation displayForm="Obama" displayKind="exact" tag="exalead.loose.world.subnational_entities.cities"
 nbTokens="1" trustLevel="0" />
</AnnotatedToken>

60 - Configuration

More About Semantic Analysis

Note: For details about the XML tags, see Appendix - Semantic Resources Reference. Keep in
mind that this XML output is a serialization of the underlying JAVA objects manipulated by the
semantic pipeline.

This is how the XML processes the textual input:

• The pipeline processes each token ("Bill", " ", "Keller", " ", "B", ".", " ", "Obama")
separately. We then obtain as many AnnotatedToken nodes as the number of tokens
contained in the textual input.

• Each token goes through the pipeline and each processor generates one or many Annotation
java objects that are appended to the AnnotatedToken object.

Focus on the two main attributes of an Annotation, tag and displayForm, which you can
consider as (a key, value) describing the content of the Annotation.

◦ tag – the name of the annotation. For example, "Bill" is labeled as a first name using
the tag "exalead.nlp.firstnames"

◦ displayForm – the value of the annotation (may be empty). This attribute is very
useful for normalization purposes. For example, in a sentence containing "Barack
Obama", "B. Obama", "Obama Barack", all these 3 N-grams may be annotated as
"exalead.people" and with the same displayForm "Barack Obama".

• The Named Entities Matcher processor matches the "Bill" token since "Bill Keller"
(the display form) is tagged by NE.person. We notice here that the Annotation object has an
nbToken attribute set to 3. This reveals the way processors work:

◦ When treating a token (here "Bill"), the processor checks in its resources if the token
matches with the beginning of a displayForm. If it is the case, the generated Annotation
includes information about the number of tokens involved, for example, 3 for "Bill
Keller".

Note: That processors work forward and never backward. They consider the tokens
following the current one but not the previous ones.

Once the pipeline has produced these annotations, they may be mapped to produce as many
index fields or categories as required.

More About Semantic Analysis

To be able to provide relevant search results when the user's query is incomplete, misspelled, or
imprecise, Exalead CloudView performs a semantic analysis of documents as well as the queries
themselves. This generates word matching operators and fuzzy matching options.

Configuration - 61

When does Semantic Analysis take Place?

For example:

• Did you mean? Spell check: "exalaed" prompts "Did you mean: exalead?"

• Approximation: "exalaed" matches "exalead"

• Phonetic spelling: "exaleed" matches "exalead"

• Word truncations: "exal*" matches "Exalead", "exalid" and "exalted"

• Regular expressions: "/exa.ead/" matches "exalead" and "exahead"

When does Semantic Analysis take Place?

Depending on the semantic feature, the analysis takes place either at indexing-time, or at search-
time.

• Index-time: analyzes documents before indexing, using semantic processors. Anytime you
modify semantic processors, you must always reindex your documents before the change
appears in your application.

• Search-time: analyzes the user’s search request, known as Query Expansion, which
essentially adds additional search terms to the user’s original query. For example, if phonetic
query expansion is enabled, the query "exaleed" would be expanded to "exaleed" OR
"exalead".

This section explains how to perform index-time semantic analysis by configuring semantic
processors.

For information on search-time semantic analysis, see Configuring Query Expansion.

Set Up Semantic Analysis?

Begin your semantic configuration using the semantic types delivereindexd in the default Data
model. With semantic types, you can configure index-time options such as:

• language detection

• tokenization

• basic indexing form or kind (normalized, exact, or lowercase)

• extractions of phonetized forms and spell-check ngrams

These are examples of the basic building blocks of semantic analysis that allow you to set up more
advanced semantics. For example, using the Rules Matcher processor or the Semantic Extractor
processor.

For more information on semantic types, see Indexing Options for Alphanumeric Properties.

62 - Configuration

Index-Time Semantic Analysis

Index-Time Semantic Analysis

A semantic processor adds semantic information to text during analysis. These are annotations
that you can map to fields and categories (index-time facet) in the index.

The annotations are named based on the type of semantic processor and its configuration.

Note: Because this analysis occurs at index-time, you must reindex your documents after enabling
or modifying these features.

These are the main semantic processors available in Exalead CloudView:

• Related terms flag-related concepts in your corpus. Related terms typically display as
navigation facet in your search application.

• Named entities flag people, places, organizations, or events in your corpus. Named entities
typically display as navigation facet in your search application.

• Phonetizers creates a phonetic version for each word in your corpus and stores them in the
dictionary. Phonetic processing significantly improves the effectiveness of spell check and
enables phonetic search (soundslike: exaleed). This processing is language-dependant.

• Rules-based matching and annotations are provided through semantic processors such as
the Rules Matcher, Fast Rules, the Ontology Matcher, and Semantic Extraction.

• Ngram Extractors calculate probability of word occurrences or phrases within the corpus. This
significantly improves the effectiveness of spell-check at search-time.

Other Documentation about Semantic Analysis

• For a detailed reference of the processor parameters, see the semantic processors
descriptions in the "Search" section of the CloudView XML Configuration Reference Guide.

• For a detailed reference of the format of a semantic processor’s resource file, see Appendix -
Semantic Resources Reference.

Tokenizing Text

Tokenization is the process of splitting up a segment of text into smaller pieces, or tokens. Tokens
can be broadly described as words, but it is more accurate to say that a token is a sequence of
characters grouped together for useful semantic processing.

Since tokenization is a required processing step for all searchable alphanumeric text, it is set up
automatically as part of the Exalead CloudView installation. This setup is known as the default
tokenization config, tok0.

Configuration - 63

Using Native Tokenizers

A tokenization configuration specifies which tokenizers to use when Exalead CloudView analyzes
incoming documents at index-time. It also specifies how to tokenize queries at search-time.

Note: You can test the result of the tokenization process in Index > Data Processing > Test.

Using Native Tokenizers

Using Basis Tech Tokenizer

About Creating Additional Tokenization Configurations

Customizing the Tokenization Config

About Decompounding

Using Native Tokenizers

Cloudview tokenizes many languages natively. This is the Standard support.

Standard tokenizer

This tokenizer is set up by default when you install Exalead CloudView. It breaks down text into
tokens whenever it encounters a space or a punctuation mark. It recognizes all known punctuation
marks for all languages.

You can have either:

• One Standard tokenizer, to process all languages without a dedicated tokenizer (this is the
default setup).

• Multiple Standard tokenizers to process one or several specified languages for which you want
to guarantee a certain tokenization behavior.

Character Overrides

When Exalead CloudView tokenizes text, it examines each character and checks the character
override rules for any special processing instructions for this particular character.

Type Description

token (default) Processes the specified character as a normal alphanumeric character.

ignore Does not process the specified character during indexing, and does not include it
when building the query tree at search time.

punct Processes the specified character as a punctuation mark.

Important: The underscore character is not considered as a punctuation mark
by default. For example, john_doe is considered as a single token. To consider

64 - Configuration

Using Native Tokenizers

Type Description
the underscore as a punctuation mark, specify it in the characters to override (_).
For example, john_doe is sliced into three tokens.

sentence The specified character denotes the end of a sentence.

separator Processes the specified character as a separator.

Pattern Overrides

WhenExalead CloudView tokenizes text, it searches for any patterns between the current location
to the end of the document, based on the pattern override rules. For each matching pattern, it
applies the corresponding processing instruction to this particular pattern.

Specify patterns using PERL 5 regular expressions.

Type Description

token (default) Processes the specified pattern as a normal alphanumeric pattern.

The following override patterns are used for standard tokenization:

[[:alnum:]][&][[:alnum:]] – for example, M&M or 3&c are considered as
one token.

[[:alnum:]]*[.](?i:net) – none, one or several alphanumeric characters
followed by .net or .Net or .NET or .nEt or .nET or .neT is considered as a
single token, for example, .Net, ASP.NET

[[:alnum:]]+[+]+ – for example, C++ is considered as one token.

[[:alnum:]]+# – one or several alphanumeric characters followed by a sharp
sign are considered as a single token, for example, M#, free#, 2u#

Example: to avoid slicing compound words separated by hyphens into 3 tokens
and get only one token, you can set the following pattern:

[[:alnum:]]+[-][[:alnum:]]+

ignore Does not process the specified pattern during indexing, and does not include it
when building the query tree at search time.

punct Processes the specified pattern as a punctuation mark.

sentence The specified pattern denotes the end of a sentence.

separator Processes the specified pattern as a separator.

Configuration - 65

Using Native Tokenizers

Disagglutination Options

Selecting these options for German, Norwegian, or Dutch means once the tokenizer has produced
a token during indexing, it checks if the token is a compound word. If it is, it adds annotations for
each part of the compound word. This way, searching for one part of the compound word can
match the whole word.

Fore more details on decompounding, see About Decompounding.

Concatenation Options

Selecting these options ensures words that include numbers are processed as a single token. For
example:

• Windows7 is processed as a single token if concatAlphaNum is true. Otherwise, it is
processed as two tokens.

• 9Mile is tokenized as a single token if concateNumAlpha is true. Otherwise, it is processed as
two tokens.

Normal separator rules for tokenization still apply: if there is a separator between numbers and
other letters, the numbers and letters are processed as two separate tokens.

Transliteration Option

You can activate the transliteration option in the Exalead CloudView XML configuration
(it is not available in the Administration Console), for transliterating Unicode Latin Extended B
characters. Several characters are converted to their closest Latin equivalent to facilitate query
typing. This is useful when you want to match documents in another charset from the one you use
for searching.

For example, you may want to search for words containing "Ł" using the closest Latin character "L"
even though it does not match phonetically.

As for now, the supported transliterations are the following:

• 00D0 = Ð -> 'd'

• 0110 = Đ -> 'd'

• 00F0 = ð -> 'd'

• 0111 = đ -> 'd'

• 00D8 = Ø -> 'o'

• 00F8 = ø -> 'o'

• 0126 = Ħ -> 'h'

• 0127 = ħ -> 'h'

66 - Configuration

Using Native Tokenizers

• 0131 = ı -> 'i'

• 0141 = Ł -> 'l'

• 0142 = ł -> 'l'

• 0166 = Ŧ -> 't'

• 0167 = ŧ -> 't'

• 0192 = ƒ -> 'f'

Japanese Tokenizer

This tokenizer is set up by default. You can have only one Japanese tokenizer per tokenization
config.

The 4 alphabets used in Japanese texts (kanji, hiragana, katakana, romaji) are implemented by
this tokenizer.

Japanese Text Normalization

The text normalization process for Japanese is more complex than for European languages:

• normalization of half-width katakana to full-width, applying NFKC (Normalization Form
Compatibility Composition)

• normalization of full-width roman characters to standard latin alphabet

• in addition to each normalized token, indexing of the corresponding hiragana form. At query
time, the same processing is applied. It allows to match this normal form with the alphabet
used in the documents and the query.

• over-indexing of the okurigana-free forms of kanji

This processor supports the following transcriptions:

The default configuration uses only tokens and their hiragana transcriptions. You can use any
processor in the semantic pipe to exploit other transcriptions produced for linguistic purposes.
To annotate text with parts of speech to flag nouns, verbs, and adjectives, select the option Add
morphology in Linguistics > Tokenizations > your tokenization > Japanese.

Configuration - 67

Using Native Tokenizers

Use of Recall

Since tokenizing japanese text is a difficult task, the processor may produce different outputs for
the same input. Some of them may contain errors.

For example, in the following cases, queries may fail and skip documents (thus increasing
silence):

• the context is different.

A text may be tokenized in the context of a document in a different way than it is in a query
because the context is missing.

• the alphabet is different.

For example, tokenizing kanji may produce a different output than tokenizing the equivalent
hiragana.

• the document has been processed by a nonjapanese tokenizer at indexing time.

For example, the tokenizer for european languages produces single-character tokens from
japanese texts, which do not match correct japanese tokenization.

To maximize recall and avoid errors, a character-based over-indexing is enabled by default. This
over-indexing reduces search silence by trying to match character sequences independently of
tokenization, in addition to the tokenized query. However, to avoid an unreasonable amount of
noise in top search results, this character-based query expansion has a much lower contribution to
the document score than the tokenized part.

If too many results are displayed, you can disable this recall by changing the value of the favor
option from recall to precision in the Japanese tokenizer configuration (in <DATADIR>/
config/Linguistic.xml).

Japanese Spell-Check Settings

To compute spell-check suggestions for Japanese, you need to change default settings in Search
> Search logics > Your search logic > Query Expansion. See Set Up Spell-Check for CJK
(Chinese-Japanese-Korean) for more details.

If you have purchased Extended Languages, you can remove this tokenizer and instead set up a
Basis Tech tokenizer for Japanese tokenization.

The main differences are:

• Exalead tokenizer is based on the open-source JUMAN Japanese processor. BasisTech
is based on proprietary technology. You may find differences in tokenization results when
switching from one system to another.

• Exalead tokenizer shows better processing performances on average.

68 - Configuration

Using Basis Tech Tokenizer

• BasisTech tokenizer shows a higher coverage when extracting named entities.

Chinese Tokenizer

This tokenizer is specified by default. You can only have one Chinese tokenizer per tokenization
config.

It includes the option to annotate the text with simplified Chinese transliterations.

The Chinese tokenizer retrieves first (and with a higher score) the sets of ideograms that
correspond to real words. It also tokenizes ideogram by ideogram to support arbitrary ideogram
combination, but this is less relevant in terms of meaning.

Note: If you have purchased Extended Languages, you can remove this tokenizer and instead set
up a Basis Tech tokenizer for Chinese tokenization.

Using Basis Tech Tokenizer

Exalead CloudView also offers Extended Languages, provided by a third-party linguistic platform,
Basis Technology’s Rosette. Basis Tech is only available if you have installed the Extended
Languages add-on.

You can define a Basis Tech tokenizer for a specific language only. Basis Tech tokenizers
generally offer richer semantic processing for Asian, Middle-eastern, and African languages than
the native Exalead CloudView tokenizers.

Note: For the complete list of supported languages, see the "CloudView Supported Languages"
datasheet.

Install the Extended Languages Add-On

This gives you access to the Basis Tech tokenizer. This add-on is available as a separate license.

1. See "Install add-ons" in the Exalead CloudView Administration Guide.

a. From the Administration Console, go to Help > License.

b. Check that the Extended Languages feature is available.

Enable Extended Languages

Create one Basis Tech tokenizer for each language to be tokenized.

Important: There are additional steps for setting up Basis Tech tokenizers for Chinese, Japanese,
German, Dutch, or Norwegian. See steps 5 and 6.

Before enabling Extended Languages, keep in mind the following:

Configuration - 69

Using Basis Tech Tokenizer

• While providing more in-depth text analysis for certain languages, Basis Technology’s analysis
typically requires more RAM.

• Named Entities extraction for languages with Extended Languages enabled are determined by
Basis Technology’s tokenization rules instead of Exalead CloudView’s:

Basis Technology uses a tokenization based on the Unicode standard word boundaries
definition () with a few customizations.
The main difference with Exalead CloudView's tokenization is that Basis Tech tokenization
does not split text on certain punctuation when they are not preceded and followed by blank
spaces.

◦ colons: Basis Tech keeps together 12:30pm. Standard tokenization produces three tokens
12 + : + 30pm

◦ periods: I.B.M. or 12.33 both produce a single token

◦ apostrophes: a single token for can't or 1970's

This may affect your downstream processing in the semantic pipeline. For example, when an
ontology has been compiled with Exalead CloudView's default tokenization, terms made of
those characters do not match.

1. In the Administration Console, go to Index > Linguistics > Tokenizations.

2. Click your tokenization config (for example, tok0).

3. In Tokenizers, click Add tokenizer.
a. For Type, select Basis Tech, and then click Accept.
b. For Language, select the language to tokenize.

4. Repeat the previous step for each language you want to tokenize.

5. If adding Basis Tech tokenizers for Japanese or Chinese, delete the default Exalead Japanese
and Chinese tokenizers

6. If adding Basic Tech tokenizers for German, Dutch, or Norwegian:

a. Click the Standard tokenizer.

70 - Configuration

Using Basis Tech Tokenizer

b. Clear the German, Dutch, or Norwegian disagglutiner option.

7. Click Apply.

8. Reindex.

Enable Lemmatization with Basis Tech

With Exalead CloudView’s native tokenization, we only index the original words. At query time this
adds an OR expansion for lemmatization.

For example: q=alsacien is expanded to q=alsacien OR alsacienne OR alsaciens OR
alsaciennes.

When using BasisTech to tokenize a language, you must index the lemmatized form of the word
in addition to the original form. Indeed, Basis Tech does not include the resource that associates a
form to all its expansions.

1. In Data Processing > Semantic Processors, add a Lemmatizer semantic processor to your
analysis pipeline.

For more information, see Configure Lemmatization Manually.

2. Go to Index > Linguistics > Tokenizations.

3. Click your tokenization config (for example, tok0).

4. On the Advanced tab, add the following tag and matching mode:

a. Tag: lemma

b. Matching Mode: 2

5. Click Apply.

6. Reindex.

All lemma semantic annotations, which store the lemmatized form of the token, are indexed with a
kind=2, meaning they are indexed in the same way as the original normalized form.

Configuration - 71

About Creating Additional Tokenization Configurations

About Creating Additional Tokenization Configurations

A tokenization configuration specifies which tokenizers to use when Exalead CloudView analyzes
incoming documents at index-time. It also specifies how to tokenize queries at search-time.

By default, Exalead CloudView uses tok0 as the tokenization configuration for converting text into
tokens. However, if you create additional tokenization configs, you must specify them explicitly in
Data Model > Semantic Types and Data Processing.

When do you Need to Create a New Tokenization

You may want to create a new tokenization config to define:

• A certain character as a separator, or a character as NOT being a separator. See Character
Overrides.

• A specific pattern to be a word only, instead of a word with separators. For example, to make
sure C++ is always indexed as the token C++. See Pattern Overrides.

Specify a tokenization config for a specific index mapping or semantic type, when you know that
a certain meta contains characters that need to be interpreted differently than other alphanumeric
metas. Typical examples are identifiers like user IDs, model numbers and product codes.

Index-Time and Search-Time Tokenization

When you specify a new tokenization config for document analysis at index-time, you must also
specify this same tokenization config for interpreting queries at search-time.

You can specify a default tokenization config for a search logic, as well as an "exception"
tokenization config for specific prefix handlers. For more information, see Specify a Tokenization
Configuration for Prefix Handlers.

Indexing is both morphological and ngram-based. This gives Exalead CloudView a kind of
fallback mechanism. For example, "cjk" (that is, Chinese Japanese Korean) in Linguistics >
Tokenizations > Advanced > Form indexing triggers the indexing of isolated characters but we
still index words made of several characters output by tokenizers. This way, in case of different
tokenizations between indexing and querying for the same text (either because of a different
context or because of a tokenization error), we can still find documents containing the sequence of
characters.

Which Tokenization Config takes Precedence?

A tokenization config that is defined for a specific:

• semantic type overrides the one defined for its corresponding analysis pipeline.

72 - Configuration

Customizing the Tokenization Config

• meta mapping overrides the one defined for its corresponding semantic type.

For example:

• The analysis pipeline ap0 uses the default tok0 tokenization config. Any text that is processed
by processors added directly to this analysis pipeline is tokenized with tok0.

• The text semantic type uses tok1, and the text, location, and product_name metas in
the data model are set up to use this semantic type. In other words, tok1 overrides tok0 for
these three metas.

• However, the product_name meta has special tokenization requirements, so its index
mapping only uses a third config, tok2, which overrides tok1.

Customizing the Tokenization Config

You can modify the default tokenization config, or create additional ones.

Create or Edit a Tokenization Config

1. In the Administration Console, go to Index > Linguistics > Tokenizations.

◦ Click an existing tokenization config to edit.

◦ Click Add tokenization config to create a new one.

2. Set up the tokenizers as described in Using Native Tokenizers.

3. When finished, click Apply.

4. Reindex your data.

Specify Another Tokenization Config for an Analysis Pipeline

1. In the Administration Console, go to Index > Analysis, then select your analysis pipeline (for
example, ap0).

2. From the Tokenization config list, select a different configuration.

3. Click Apply.

4. Reindex your data.

This tokenization config is only used on metas processed by document or semantic processors
that were manually configured in the analysis pipeline.

Specify Another Tokenization Config in the Data Model

1. In the Administration Console, go to Index > Data Model > Semantic Types tab.

2. Expand the semantic type you want to modify, or create a new one.

3. In the semantic type:

Configuration - 73

About Decompounding

a. Make sure that the Tokenize option is selected.

b. From the Tokenization config list, select a different configuration.

4. Click Apply.

5. Reindex your data.

All properties using this semantic type tokenize the corresponding meta using this tokenization
configuration, regardless of the tokenization config specified for its associated analysis meta.

Specify Another Tokenization Config for an Index Mapping

1. In the Administration Console, go to Index > Data processing, then select your analysis
pipeline (for example, ap0).

2. Select the Mappings tab.

3. Under the Mapping sources list, click the mapping you want to modify.

4. From the Tokenization config list, select a different configuration.

Note: If this mapping was produced by a data model, you need to click Customize before you
can modify any mapping settings.

5. Click Apply.

6. Reindex your data.

The meta for this mapping is always be tokenized using the tokenization config specified here,
regardless of the tokenization config specified for its analysis pipeline or for its semantic type (if
any).

About Decompounding

Decompounding is splitting up a word into components so that when searching for one of these
components, the whole compound is found. For instance, we want "Lastwagen" or "Fahrer" to
match "Lastwagenfahrer".

To achieve this, Exalead CloudView splits compound words into at most two components using a
dictionary. Three issues may occur during the process:

• Since the dictionary cannot cover the integrality of a language (very specific/technical words
may not be known from the algorithm), the compound may not be split because its components
are not found in the dictionary.

• When there are more than one way to split the word, the most likely one is selected but this
may not be the expected one.

74 - Configuration

About Decompounding

• Some compound words should not be decompounded. The algorithm uses statistics to
figure it out but some words may end up decompounded though it doesn't make much sense
("Handschu", "Volkswagen").

In these cases, the user can enrich the dictionary with his own rules by defining a list of words
which should not be decompounded and a list of explicit decompoundings taking precedence over
the Exalead CloudView-provided resource.

Custom Resource Creation

The user dictionary is a UTF-8 text file (user.txt) in the directory KITDIR/resource/all-
arch/subtokenizer/ID where KITDIR is the root of CloudView unzipped kit directory and ID is
one of following language identifiers: de (german), nl (dutch), no (norwegian).

The file format must be as follows (lines failing to match this format are ignored):

• Lines starting with # are comments (ignored)

• Lines containing one word define uncompoundable words

• Lines containing three words explicitly define how the 1st word of the line must be
decompounded into the 2nd and the 3rd words

Note that words are matched case-insensitively but accents matter ("Kuchen" is not "Küchen").

this is an ignored comment
this line states that Volkswagen shouldn't be split:
volkswagen
this line forces decompounding of Lastwagenfahrer into Lastwagen+Fahrer:
lastwagenfahrer lastwagen fahrer

Applying Changes

When you specify a new tokenization config for document analysis at index-time, you must also
specify the same tokenization config for interpreting queries at search-time.

After editing the user dictionary:

• the indexingserver and the searchserver must be restarted for the modifications to be taken
into account

• documents have to be reindexed

If issues should appear, turn the logging level of the indexingserver to debug and restart it. Search
for [subtokenizer] in the logs to filter relevant lines.

Configuration - 75

Creating and Deploying Semantic Resources

Creating and Deploying Semantic Resources

Semantic processing often requires resources such as thesauruses, synonyms or block lists, at
both index and search time.

You can distribute semantic resource files either by:

• Creating the resource in the Administration Console.

• Using the resource manager through the cvadmin command. The following resources must be
complied and published using cvadmin: XML-compliant, CSV-compliant, and custom.

Create a Resource File from the Administration Console

Manage Resources in cvadmin

Create a Resource File from the Administration Console

You can create resource files directly from the Administration Console. Once created, the resource
is automatically added in the background to the Resource Manager, which automatically compiles
and deploys the resources across all hosts.

This workflow uses an Ontology Matcher as an example, however the process is similar for other
semantic resources.

1. In the Administration Console, go to Index > Data processing > Pipeline name > Semantic
Processors.

2. Add an Ontology Matcher processor to the pipeline.

3. In the Resource directory of the processor, click Create new.

Once the resource is added the Resource directory path is set to resourcemanager://
indexing/<RESOURCE_NAME>

4. Click Apply. Apply changes before you can edit the resource file in the Business Console.

5. Click Edit to edit the resource file in the Business Console.

See "Adding Ontology Resources" in the Business Console.

Manage Resources in cvadmin

The Resource Manager allows you to edit linguistic and semantic resources without having to
manually compile or publish them.

The resource manager publishes semantic resource files to specified roles, which are organized
into groups to update interrelated resource files in unison.

76 - Configuration

Manage Resources in cvadmin

The Resource Manager:

• compiles resources

• assigns versions to resources

• publishes resources, including to multiple hosts

• converts resource formats, such as from XLS to XML

This section explains how to use the Resource Manager by taking the Ontology Matcher semantic
processor as an example. The procedure is the same, however, for all resource types.

Edit ResourceManager.xml

The first step is to edit <DATADIR>/config/ResourceManager.xml. In this file, you define
groups of resources and which roles to publish these resources to.

Grouping resource files enables you to keep dependant resources together (for example, if a
Rules Matcher depends on the Ontology Matcher’s results). This ensures consistent updates since
the group is published as a unit.

The default configuration includes the following resource groups:

• indexing, which targets the analyzers

• search, which targets the searcher

Let us assume you want to include an OntologyMatcher in our semantic pipeline. We would
then include an ontology resource in the indexing ResourceGroup as shown in the following
ResourceManager.xml example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<res:ResourceManagerConfig resourceDir="data:///build/resources" version="0"
xmlns:res="exa:com.exalead.mercury.mami.resources.v10" xmlns="exa:exa.bee"
xmlns:config="exa:exa.bee.config">
 <res:ResourceGroup waitOnSync="false" roles="Analyzer,Searcher,Dictionary" name="content-filtering">
 <res:Resource type="rt-blacklist" name="rt-blacklist"/>
 <res:Resource type="rt-whitelist" name="rt-whitelist"/>
 <res:Resource type="categories-blacklist" name="synthesis-blacklist"/>
 <res:Resource type="facets-blacklist" name="facets-blacklist"/>
 <res:Resource type="stopwords" name="stopwords"/>
 <res:Resource type="spellcheck-blacklist" name="spellcheck-blacklist"/>
 <res:Resource type="spellcheck-whitelist" name="spellcheck-whitelist"/>
 </res:ResourceGroup>
 <res:ResourceGroup waitOnSync="false" roles="Analyzer" name="indexing">
 <res:SemanticResource type="ontology" name="onto" tokenizationConfig="tok0"/>
 <res:SemanticResource type="rules" name="rules" tokenizationConfig="tok0"/>
 </res:ResourceGroup>
 <res:ResourceGroup waitOnSync="false" roles="Searcher" name="search" />

Configuration - 77

Manage Resources in cvadmin

</res:ResourceManagerConfig>

Once you have edited your ResourceManager.xml file, we need to apply the configuration by
using the API Console (select Manage, then search for the applyConfiguration method and
click Send).

Upload, Compile, and Publish the Ontology

We now have a new configuration and we have created our own resource file called
ontology.xml.

We now need to upload this file to the Resource Manager. To do so, we use the cvadmin
command-line tool. First check that the resources have been properly added:

cvconsole cvadmin> resources list-resources group=group_name_of_your_resource

We can see our resource in the list. We can now upload our resource file:

cvconsole cvadmin> resources upload path=<path/to/your/file/ontology.xml> resource=<name_of_your_resource>
 [publish=true]

The name of our resource is the one we defined in the ResourceManager.xml file.

Note: By using the optional argument publish=true, the file is uploaded, compiled (if required)
and published in one command. If we wanted to separate these actions, after uploading our file,
we would use:

cvconsole cvadmin> resources publish group=<name_of_the_group>

Note: .

This publishes all the resources in the specified group. If the last upload date is later than the last
compile date, then this also proceeds to a compilation.

Errors may come up because the resource file (here ontology.xml) is not correct. Since the
Resource Manager is part of the gateway, we can check the gateway's log file for causes of a
compilation failure.

The resources published are available under resourcemanager://group_name/
resource_name

Supported Resource Types

Resource Type value RESOURCE_NAME (for samples)

Annotation Manager type=”annotation-manager” n/a

Ontology Matcher type=”ontology” n/a

Sentiment Analyzer type=”sentiment” n/a

78 - Configuration

Manage Resources in cvadmin

Resource Type value RESOURCE_NAME (for samples)

Rules Matcher type=”rules” n/a

Fast Rules type=”fastrules” n/a

Semantic Extractor type=”semantic-extractor” n/a

Lemmatizer type=”lemmas” n/a

Synonyms expansion
module

type=”synonyms” n/a

Related terms blacklist type=”rt-blacklist” rt-bl0

Suggest allow list type=”suggest-whitelist” suggest-wl0

Suggest block list type=”suggest-blacklist” suggest-bl0

Query block list type=”query-blacklist” query-bl0

Spellcheck block list

(See Setting Up
Spellcheck Resources in
dictionary.xml)

type=”spellcheck-

blacklist”

spellcheck-bl0

Spellcheck allow list

(See Setting Up
Spellcheck Resources in
dictionary.xml)

type=”spellcheck-

whitelist”

spellcheck-wl0

CSV-compliant type=”csvraw”

(no compilation, no validation)

n/a

Custom type=”raw “

(no compilation, no validation)

n/a

XML-compliant type=”xmlraw”

(no compilation, no validation)

n/a

Setting Up Spellcheck Resources in dictionary.xml

For spellcheck block list and allow list resources, you need to perform an extra step. After
declaring the resources, you must also edit the dictionary.xml.

1. Declare the two resources handling the allow and block listing. In this example, we add them to
the "content-filtering" group of the Resource Manager.

Configuration - 79

Manage Resources in cvadmin

<res:ResourceManagerConfig resourceDir="data:///build/resources" version="1338967974000"

xmlns:res="exa:com.exalead.mercury.mami.resources.v10" xmlns="exa:exa.bee"

xmlns:config="exa:exa.bee.config">

 <res:ResourceGroup waitOnSync="false" roles="Analyzer,Searcher,Dictionary" name="content-filtering">

 <res:Resource type="spellcheck-blacklist" name="spellcheck-bl0"/>

 <res:Resource type="spellcheck-whitelist" name="spellcheck-wl0"/>

 </res:ResourceGroup>

</res:ResourceManagerConfig>

2. Since the global dictionary is in charge of spell checking, you need to edit the
dictionary.xml configuration file to bind the resources.
<DictionaryConfig xmlns="exa:com.exalead.mercury.mami.linguistic.v10" version="1338967974673"

maxWords="126000000" maxRelatedTerms="10000000"

minNbDocsForRelatedTerm="10" maxWordCooccurrencesForSpellcheck="1260000000" automaticLanguagesRatio="true"

 maxInputsBeforeBuild="0"

tokenizationConfig="tok0" preAllocatedInterpretationPipelines="2" preAllocatedSpellCheckPipelines="2"

<!-- specify resource names declared for the "content-filtering" group -->

spellCheckBlacklistResource="spellcheck-bl0" spellCheckWhitelistResource="spellcheck-wl0">

<!-- [...] -->

</DictionaryConfig>

3. Apply the configuration.

4. Create the allow list and block list CSV files. For sample formats, see Access Sample Block
List and Allow List Formats.

5. Upload, compile, and publish your resources to the Resource Manager using the
publish=true option.
cvconsole cvadmin> resources upload path=/path/to/spellcheck_blacklist.csv resource=spellcheck-bl0

 publish=true

cvconsole cvadmin> resources upload path=/path/to/spellcheck_whitelist.csv resource=spellcheck-wl0

 publish=true

Access Sample Block List and Allow List Formats

These resource formats are available using the resources get-sample command of
cvadmin, where RESOURCE_NAME is the name of the sample. In cvadmin, enter:

cvconsole cvadmin> resources get-sample resource=RESOURCE_NAME

See Supported Resource Types for RESOURCE_NAMES. For example:

cvconsole cvadmin> resources get-sample resource=spellcheck-bl0

Returns:

language, level, expression "en", "normalized", "exalead"

80 - Configuration

Manage Resources in cvadmin

Convert Semantic Resources to Other Formats

Several cvadmin and cvdebug commands are available to convert resources to different formats.
You can go to <DATADIR>/bin/ to start them.

To output/convert Start the command...

a compiled ontology
resource to XML

cvconsole cvdebug > linguistic dump-ontology

path=”<PATH TO COMPILED ONTOLOGY>”

an ontology resource from
XML to XLS

cvconsole cvadmin > linguistic convert-ontology-

from-xml-to-xls input=/tmp/onto.xml output=/tmp/

out.xls

For example, the following ontology:

<Ontology

xmlns="exa:com.exalead.mot.components.ontology">

<Pkg path="top.custom"> <Entry display="Mickey

Mouse"> <Form value="Mickey M." level="normalized"/>

<Form value="Mouse M." level="exact" /> </Entry> </

Pkg> </Ontology>

generates an out.XLS file with a single sheet, named "
top.custom" that contains:

• Display: Mickey Mouse, Form: Mickey M., Lang: xx, Level:
normalized

• Display: Mickey Mouse, Form: Mouse M., Lang: xx, Level:
exact

an ontology resource from
XLS to XML

cvconsole cvadmin> linguistic convert-ontology-from-

xls-to-xml input=/tmp/out.xls output=/tmp/out.xml

an ontology resource from
SKOS to XML

cvconsole cvadmin> linguistic convert-ontology-from-

skos-to-xml input=/tmp/out.xls output=/tmp/out.xml

a suggest resource from
SKOS to XML

cvconsole cvadmin> linguistic convert-suggest-from-

skos-to-xml input=/tmp/out.xls output=/tmp/out.xml

a synonym resource from
SKOS to XML

cvconsole cvadmin> linguistic convert-synonyms-from-

skos-to-xml input=/tmp/out.xls output=/tmp/out.xml

Configuration - 81

Managing Semantic Annotations

Managing Semantic Annotations

This section explains how to manage semantic annotation with the Annotation Manager or with
custom code.

Manage Annotations with the Annotation Manager

The Annotation Manager allows you to perform several operations on annotations under the right
conditions. You can use it to copy, select, and remove annotations.

The Annotation Manager configuration consists of a list of operations.

Important: There is no define order of the execution of operations. If you really care about
operation ordering, you must add several annotation managers to the semantic pipe.

Copy Annotation

You can copy a source annotation along with its display form, display kind, and trust level to a
target annotation.

Option Example

Copy without
condition

For example, to ignore the distinction between famous and nonfamous
people.

<Copy annotation="NE.famousperson" target="NE.person"/>

Copy with a condition For example, to copy famous people to the nonfamous people annotation,
unless they are block listed.

<Copy annotation="NE.famouspeople" target="NE.people"

unless="blocklisted"/>

Remove Annotation

You can remove the occurrences of an annotation under the right conditions.

Option Example

Remove without
condition

For example, to remove all end-of-sentences:

<Remove annotation="sbreak" />

Remove an
annotation if it

For example, to remove a person's name annotation when it spreads over
two sentences:

<Remove annotation="NE.person" ifOverlapWith="sbreak" />

82 - Configuration

Manage Annotations with the Annotation Manager

Option Example
overlaps with another
one

Remove an
annotation if the
annotated text span
matches that of
another one

For example, to remove a person's name annotation when the text is block
listed:

<Remove annotation="NE.person"

ifMatchWith="blocklist.person" />

An ontology matcher upstream or any other semantic processor can set
the annotation blocklist.person. Both annotations must start and end
exactly on the same tokens.

Remove an
annotation if the
annotated text span
and display form
match those of
another one

For example, we want to implement a block list with a fine granularity:

<Remove annotation="title.approx"

ifMatchWith="blocklist.title"

displayFormsMustMatch="true"/>

If an ontology containing a title package matches professor on the text
processor using approximation

<pkg path="title"> <Entry> <Form value="professor" /> </

Entry> </pkg>

... the annotation is removed if the annotation (blocklist.title,
"professor") occurs at the very same place, thus block listing the specific
approximation.

Keep the first
occurrence of an
annotation and
remove all others

For example, to keep only the first organization occurrence in title and text:

<KeepFirst annotation="NE.organization"

contexts="title,text"/>

Keep the longest
leftmost of a set
of overlapping
annotations and
remove all others

<KeepLongestLeftMost

annotations="NE.person,NE.place,NE.organization"

interTags="false"/>

With interTags set to false, one annotation per tag is kept.

Select Annotation

You can select the most frequent annotations and store the results as document annotations.

Configuration - 83

Manage Annotations with the Annotation Manager

Option Example

Select the most
frequent values in a
document for a given
annotation

For example, we want to select the 5 places that occur the most in a
document and store them in selectedPlaces document annotations.

<SelectMostFrequentValue annotation="NE.place"

documentAnnotation="selectedPlace" howMany="5"

truncate="true"/>

If there are more than 5 most frequent places, the resulting list is arbitrarily
truncated since truncate="true" guarantees that no more than 5
annotations are ever reported.

Select the most
frequent annotation in
a document among a
list

<SelectMostFrequentAnnotation

annotations="NE.organization,NE.place,NE.person"

documentAnnotation="selectedAnnotation"/>

The most frequent annotation is used to output a selectedAnnotation
document annotation whose value is one of the annotations from the list.

Select annotations
depending on an
index field (context)
priority

For example, we want to select an annotation from the "title, text"
contexts, by first looking within the title context and then, if the annotation
is not found, looking within the text context:

<SelectByContexts annotation="NE.person"

contexts="title,text"

documentAnnotation="selectedAnnotation"

firstOnly="false"/>

With firstOnly set to false, all occurrences of NE.person annotations
in the specified contexts are reported.

Use Regular Expressions

You can use regular expressions for all annotation parameters.

Set enableRegexp to true in the <AnnotationManager> object (default is false).

Example of Annotation Manager XML Configuration File

<AnnotationManager xmlns="exa:com.exalead.linguistic.v10">
 <Copy annotation="NE.famousperson" target="NE.person"/>
 <Copy annotation="NE.famousperson" target="NE.person" unless="blocklist"/>
 <Remove annotation="NE.famousperson" ifOverlapWith="sbreak" />
 <Remove annotation="NE.person" ifOverlapWith="sbreak" />
 <Remove annotation="NE.person" ifMatchWith="blocklist.person" />
 <Remove annotation="title.approx" ifMatchWith="blocklist.title" displayFormsMustMatch="true"/>
</AnnotationManager>

84 - Configuration

Manage Annotations with Custom Code

Manage Annotations with Custom Code

In most semantic-oriented projects, you need to manipulate (filter, combine, replace, etc.) the
semantic annotations set by your semantic processors before sending them to the index.

The easiest way to do this is to add semantic processors into the Document Processor pipeline,
transforming the annotations into metas (also known as chunks). Then you can manipulate them
using either:

• custom java code via the JavaDocumentProcessor

• standard document processors such ReplaceValues or ConcatenateValues.

Example: Index Term Occurrences in a Document

Let us say you want to send to the index the number of times a term is matched in the document
from an existing list of terms.

Recommendation: Use the OntologyMatcher to detect all terms. Go through it using a
SemanticPipeDocumentProcessor. Convert the semantic annotations into metas (or chunks)
and use custom java code to count them.

Create a List of Terms

This ontology annotates each term of the list with the "myterms" annotation.

<Ontology xmlns="exa:com.exalead.mot.components.ontology">
 <Pkg path="myterms">
 <Entry display="Term 1">
 <Form level="normalized" />
 </Entry>
 <Entry display="Term 2">
 <Form level="normalized" />
 </Entry>
 <Entry display="Term 3">
 <Form level="normalized" />
 </Entry>
 <!-- [...] -->
 </Pkg>
</Ontology>

Modify the Analysis Pipeline

Add the following configuration to the end of your document processor Analysis Pipeline.

Configuration - 85

Manage Annotations with Custom Code

Each "myterms" semantic annotation is converted into a meta (or chunk), that the Document
Processors can manipulate.

The XML representation of the SemanticPipeDocumentProcessor configuration looks like:

<SemanticPipeDocumentProcessor

 annotations="myterms" // Comma-separated semantic annotations that will be converted into metas
 topLevelAnnotationsOnly="false" // only convert document annotations?
 disabled="false" name="SemanticPipeDocumentProcessor.0">
 <OntologyMatcher resourceDir="/path/to/myterms.bin" disabled="false" name="OntologyMatcher.0"/>
</SemanticPipeDocumentProcessor>

In the JavaDocumentProcessor, count the number of metas (or chunks) named "myterms".
Add the count to a new "nbTerms" meta (the mapping of this "nbTerms" meta to the index is not
detailed here).

import com.exalead.pdoc.ProcessableDocument;
import com.exalead.pdoc.analysis.DocumentProcessingContext;
import com.exalead.pdoc.analysis.StandardDocumentProcessor;
import com.exalead.pdoc.Meta;
public class JavaDocumentProcessorTemplate extends StandardDocumentProcessor {
 @Override
 public void process(DocumentProcessingContext context, ProcessableDocument document)
 throws Exception {
 int count = 0;
 for (Meta m : document.getMetas("myterms")) {
 ++count;
 }
 document.addMeta("nbTerms", String.valueOf(count));
 }
}

86 - Configuration

Configuring Form Indexing

Configuring Form Indexing

Form indexing configuration defines pairs of semantic annotations and matching modes (or
index levels). Here, semantic annotation values are indexed at the defined matching mode. The
matching mode is an arbitrary integer required to access inverted lists (word, level), which gives
access to the word positions in all the documents.

Three matching modes have a predefined meaning: 0 is exact, 1 is lowercase, 2 is normalized.
The rest is up to the user.

For example, there is a hidden form indexing configuration (NORMALIZE, 2) that defines that
the normalizer's NORMALIZE annotations must be indexed at level 2. Then at query time, if
normalized is the prefix handler matching mode, these annotations permit access to the index
and to look for the requested words.

Use Form indexing for Over-Indexing Acronyms

The form indexing customization helps over-indexing. For example, we want that the query NASA
matches occurrences of NASA and N.A.S.A.. That is to say, each time N.A.S.A. appears in a
document, we want to over-index it with NASA.

1. Add an acronym detector in the analysis pipe.

a. Go to Data Processing > Semantic Processors.

b. Drag the Acronym Detector in the analysis pipeline.

2. Add a form indexing (acronym, 2) so that the acronym detector's annotations are indexed at
level 2.

a. Go to Index > Linguistics > Tokenizations > Advanced.

b. Click Add form.

c. For Tag, enter acronym and for Matching Mode, enter 2 (normalized).

Since our prefix handler targets matching mode 2, any query word can match any over-indexed
value coming from the acronym detector.

Set Weight

To set a distance (or weight) in Form indexing configuration, you may specify an additional Trust
level in Index > Linguistics > Tokenizations > Advanced. This attribute ranges from 1 to 100,
100 being the highest and default weight. The query expander uses it to compute a weight for
expansion.

Configuration - 87

Set Weight

1. Let us say that in the Linguistic.xml file, the trustLevel parameter corresponds to a
weight of 50.
<ling:LinguisticConfig version="0" xmlns:bee="exa:exa.bee" xmlns="exa:com.exalead.linguistic.v10"

xmlns:config="exa:exa.bee.config">

 <ling:TokenizationConfig name="tok0">

 <ling:StandardTokenizer concatNumAlpha="true" concatAlphaNum="true">

 <ling:BasisTechTokenizationCompatibility languages="en,de,fr,sv,es,it,nl,pt,no,fi,da,bg,ca,cs,el,hr,

hu,pl,sk,sl,sr"/>

 <ling:GermanDisagglutiner/>

 <ling:DutchDisagglutiner/>

 <ling:NorwegianDisagglutiner/>

 <ling:charOverrides/>

 <ling:patternOverrides>

 <ling:StandardTokenizerOverride toOverride="[[:alnum:]][&][[:alnum:]]" type="token"/>

 <ling:StandardTokenizerOverride toOverride="[[:alnum:]]*[.](?i:net)" type="token"/>

 <ling:StandardTokenizerOverride toOverride="[[:alnum:]]+[+]+" type="token"/>

 <ling:StandardTokenizerOverride toOverride="[[:alnum:]]+#" type="token"/>

 </ling:patternOverrides>

 </ling:StandardTokenizer>

 <ling:JapaneseTokenizer addMorphology="false" addRomanji="true"/>

 <ling:ChineseTokenizer addSimplified="false"/>

 <ling:BasisTechTokenizer language="ko"/>

 <ling:FormIndexingConfig>

 <ling:Form tag="SubTokenizerLowercase" indexKind="1"/>

 <ling:Form tag="SubTokenizerNormalize" indexKind="2"/>

 <ling:Form tag="SubTokenizerConcatLowercase" indexKind="1"/>

 <ling:Form tag="SubTokenizerConcatNormalize" indexKind="2"/>

 <ling:Form tag="cjk" indexKind="2"/>

 <ling:Form tag="lemma" indexKind="3"/>

 <ling:Form tag="jafactorized" indexKind="42"/>

 <ling:Form tag="jaexpanded" indexKind="43"/>

 <ling:Form tag="jaromanji" indexKind="44"/>

 <ling:Form tag="jaradicalfactor" indexKind="45"/>

 <ling:Form tag="jaradicalexpand" indexKind="46"/>

 <ling:Form tag="compound" indexKind="2" trustLevel="50"/>

 </ling:FormIndexingConfig>

 <ling:NormalizerConfig useGermanExceptions="false" disableBasisTechNormalizerForLanguages="ko,zh"

useNormalizationExceptions="true" transliteration="true"/>

 </ling:TokenizationConfig>

</ling:LinguisticConfig>

2. In the resulting expansion, decompounding has a weight of 0.5 using BasisTech Korean
tokenizer:
http://localhost:10010/search-api/search?q=###&l=ko

#query{nbdocs=0, text_relevance.expr="@term.score * @proximity + @b", proximity.maxDistance=1000,

term.score=RANK_TFIDF}

(#or{*.policy=MAX}

88 - Configuration

Set Weight

(#alphanum{source="MOT",seqid=0,groupid=0,k=2}(text,"###")

 #alphanum{w=0.5,source="MOT",seqid=0,groupid=0,k=2}(text,"##")

 #alphanum{w=0.5,source="MOT",seqid=0,groupid=0,k=2}(text,"#")))"

Configuration - 89

Configuring Search Queries

Configuring Search Queries

Describes how to configure the behavior of the search fields.

This chapter explains how to specify all the elements impacting the behavior of your application
search fields. It covers the UQL and ELLQL query languages used to make user queries, search-
time semantic analysis, query expansion, search assistance tools like search suggestions, related
terms, etc.

User Query Language (UQL)

Exalead Low-Level Query Language (ELLQL)

Defining Query Templates

Using Prefix Handlers

Configuring Query Expansion

Configuring Dictionaries

Adding 'Did You Mean?' Spell-Check

Adding Search Suggestions

Adding Related Terms

Configuring and Using Similarity Measures

Configuring Geographic Search

Adding a Query Cache

User Query Language (UQL)

User Query Language (UQL) serves for real user queries.

It allows you to make simple or rich queries using various query operators, such as Boolean
operators (AND, OR, NOT), word sequence operators (NEAR, NEXT, BEFORE, AFTER), score
operators (MAX, MIN), etc., and also prefix handlers to focus on specific metas.

The Different Types of Search in UQL

Reserved Characters in UQL

Operands

Operators by Priority

More About INNERJOIN

90 - Configuration

The Different Types of Search in UQL

The Different Types of Search in UQL

This section describes the different types of search that you can make through UQL.

Important: Errors occur when you make queries using a single word in capital letters that is
also an UQL operator or an operand. For example, if you search for AND you get an error like
[code=360142] Error while processing CloudView SearchAPI request... as
AND is an UQL operator. It works if you search for and in lowercase.

List of UQL operators that you cannot search alone in capital letters: AFTER, AND, BEFORE, BOR,
BUTNOT, FUZZYAND, NEAR, NEXT, NOT, OPT, OR, SPLIT, TO, XOR.

Search by Exact Phrase

Operator "" (quotation marks)

Purpose You can get more results than expected is you enter a search phrase (that is, two or
more search terms meant to appear together), but do not enclose the phrase with
quotation marks.

To search for documents on 2018 sales, typically people would enter: 2018 sales

In this case, the search results would include any document that contains both 2015 and
sales, but not necessarily next to each other.

Example To search for documents containing the exact phrase 2018 sales, use quotation
marks: "2018 sales"

Search by Exact Words

Operator +

Purpose You can override the matching behavior using the + (plus) operator to search for exact
words only. It is typically useful to search for:

• link words (the, a, of, or, and) that are ignored by default,

• the plural of a word.

This operator is useful for building very specific queries.

You can also prepend words by + in your query to search for the exact forms of these
words only. For example, with the query foo +bar, foo has the standard semantic
expansion (like lemmatization if activated) but not bar, which returns the exact form only
(that is, bar).

Configuration - 91

The Different Types of Search in UQL

Search with Logical Expressions

Operators OR, AND, NOT, XOR, BOR

Purpose Searches for documents containing:

• OR: either one search term OR another

• AND: one search term AND another search term

• NOT: one search term BUT NOT another search term

• XOR: either one search term OR another BUT NOT both

• BOR: either one search term OR another. Only use it for a fast OR on many
documents (no expansion, no ranking).

Example Use OR to specify a list of similar terms that may occur in the document you are looking
for. (movie star) OR (celebrities) searches for documents containing either
movie star or celebrities.

Search with Excluded Words

Operators NOT, -XX, BUTNOT

Purpose Excludes documents containing a specific word or phrase from the search with a -
(minus sign) or a NOT operator before the word to exclude.

Example new -york OR new NOT york searches for documents containing new but not york.

Note: NOT and - are unary operators and depend on the implicit default operator AND.
The expressions new -york OR new NOT york are therefore interpreted as new
AND NOT york.

You can also use the BUTNOT operator:

"Martin Luther" BUTNOT "Martin Luther King" matches if there is at least an
instance of Martin Luther not followed by King.

Search with Prefix Handlers

Operators Use prefix handlers: see the list of prefix handlers defined in Search logics > Query
Language.

Purpose Refine your queries by targeting specific index fields with default prefix handlers like
text:, title:, etc.

92 - Configuration

The Different Types of Search in UQL

You can also

• specify aliases for these prefix handlers. For a list of aliases, see that prefix handlerâ
€™s Alias field, in Search logics > Query Language.

• search by category values

• search numerical fields by a range of values

• define custom prefix handlers to go further than the index field level, and trigger very
specific search.

For more details, see Using Prefix Handlers.

Example Search with a default prefix handler: title:foo searches for foo in document titles.

Search with an alias: for the prefix handler document_file_size, you
have the following aliases by default: file_size, imap_mail_file_size,
nntp_post_file_size, ldap_record_file_size

Search by category values: categories:fileattributes/extension/PDF

Search a numerical range of values: NumericalPrefixHandler:[100 TO 200]

Custom prefix handler: for a similarity search, we could enter a query like: similar:
(ID1, ID2, ID3) where ID1, ID2, ID3 are the IDs of related terms, to search for all
the documents having a part or all of these related terms.

Phonetic Search

Operators Prefix handler soundslike:

You must create this prefix handler beforehand. For more details, see Using Prefix
Handlers.

Purpose Finds documents using the phonetic spelling of search terms.

Important: The language used for the query is important and must match the language
specified in your Mashup UI configuration. If none is specified, Exalead CloudView uses
the web browserâ€™s preferred language.

Example To find a coworker with a name that sounds like Brona, enter: soundslike:brona to
return results such as Bronagh and Branagh.

Search with Approximate Spelling

Operators Prefix handler spellslike:

Configuration - 93

The Different Types of Search in UQL

Purpose Finds documents that do not exactly match the search terms. This is useful if uncertain
of the correct spelling, or there are several accepted spellings for a search term.

Example Searching for spellslike:organise also returns documents containing organize.

Search by Date

Operators Prefix handlers date:, document_lastmodifieddate:, document_before:,
document_after:

Purpose Retrieves documents based on a given date, or date range.

By default, the input format is detected automatically. If you need to define a custom
format, update the Input format field for your prefix handler in Search Logics > Query
Language.

What you must know:

• We support the date formats: RFC 822, RFC 850, asctime, ISO 8601, and date
format YYYY/MM/DD-HH:MM:SS (DD/MM/YYYY is NOT supported)

• Operators are =, ==, <=, <, >=, >, != and :

• The default timezone is GMT.

• Quotes are required in search queries when there is at least a blank space in the
date. For example, myDatePrefixHandler="12/15/2018 15:23:22 GMT+02"

Supported
formats

• Sun, 06 Nov 1994 08:49:37 GMT

RFC 850:

• Sunday, 06-Nov-94 08:49:37 GMT

• Fri Nov 21 11:18:47 CET 2014

asctime:

• Sun Nov 6 08:49:37 1994

RFC 822:

• Fri, 21 Nov 2014 16:59:27 MET DST

• Fri, 21 Nov 2014 17:59:14 EET

• Fri, 21 Nov 2014 15:59:16 +0000 (UTC)

• Fri, 21 Nov 2014 16:59:42 MET

• Fri, 21 Nov 2014 15:58:04 +0000 (UTC)

• Fri, 21 Nov 2014 07:58:28 -0800

94 - Configuration

The Different Types of Search in UQL

American date format:

• 12/23/2014 15:23:22

• 12/23/2014 15:23:22 GMT+02

• 09/23/2014 08:52:59 [+00:00]

• 2014/12/23 15:23:22

• 2014/01/23-22:11:37

• 2014/12/23

• 2014/12

ISO 8601 samples (ISO works with / or - separators):

• 2014-03-12 15:23:22

• 2014-03-12

• 2014-03

• 2014

• 2014-12-06T15:31Z

• 2014-12-06T15:31:17+00:00

• Week numbers like 2016-W18-1T09:49:38Z are NOT supported

Example Letâ€™s say that we give the modidied alias to the document_lastmodifieddate
prefix handler. We could have:

• modified="11/23/2018 10:18:02 GMT+01" for a fully explicit date query

• modified="2018/11/23 10:18:02+00:00" for a fully explicit date query

• modified="2018/11/23 10:18:02" for a date query with the default GMT time
zone interpreted implicitly.

• modified="11/23/2018 10:18" for a query with an implicit range of 1 minute.

• modified=2018/11/23 for a query with an implicit range of one day.

• modified=2018/11 for a query with an implicit range of 1 month.

• modified=2018 for a query with an implicit range of 1 year.

• modified<"11/23/2018 10:18:02 GMT+01" for all documents before the explicit
date.

• modified<"2018/11/23T10:18:02+01:00" for all documents before the explicit
date.

Configuration - 95

The Different Types of Search in UQL

• modified<=11/23/2018 for all documents until the end of the 11/23/2014 day.

• modified<=2018 for all documents until the end of the 31/12/2018 day.

• modified:[2014/12/23 TO "2018/01/21-22:11:37 GMT+01"] to search
documents in a specific date range. This range notation is inclusive, and works with
numerical values too.

We can also restrict a search query according to a documentâ€™s last modification or
creation date:

• "movie star" AND date >= 2018/05/21 finds documents containing movie
star modified after May 21, 2014.

• and "movie star" AND date <= 2018/05/21 finds documents on movie star
modified before May 21, 2018.

Search by Size

Operator Prefix handler file_size:

Purpose Searches based on file size in bytes.

Example • file_size:1024 returns documents with a file size of 1 KB.

• file_size>=1024 returns documents with a file size larger than 1 KB.

Search by Language

Operator Prefix handler language:XX

Purpose Limits your search to the documents of a specific language using the language:XX
prefix handler (where XX can be EN, FR, DE, etc.).

This is useful when you need to search using a term that you can find in many
languages, but has different meanings from one language to another.

Example "Tour de France" language:en searches for English-language documents about
the Tour de France.

Search in URL

Operator Prefix handler inurl:

Purpose Includes all web pages with URLs containing the search keywords. Unlike site:, this is
a full text search of the URL text.

96 - Configuration

The Different Types of Search in UQL

Example inurl:example returns:

• http://www.example.com/

• http://www.exalead.com/blog/another_cloudview_example/

Search for URL

Operator Prefix handler url:

Purpose Searches for pages with the same normalized URLs.

You do not need to include the leading http://, https://, www., and trailing slashes
in the query.

Example url:example returns:

• http://www.example.com/

• http://www.exalead.com/blog/another_cloudview_example/

Search Site Content

Operator Prefix handler site:

Purpose Returns all documents on a site. Only expect results for documents with a publicurl
meta, such as those pushed by the Crawler and the Feed Fetcher connectors.

The leading "http://" or "https://" and "www.", and trailing slashes are optional in the
query.

Example site:example.com always returns the same documents as site:http://
www.example.com/

Search with Optional Terms

Operator OPT

Purpose Specifies an optional word to include in the search. Use it to specify several terms
without limiting the scope of the search.

Example cow OPT mad searches for documents containing cow that preferably also include
mad.

Search by Word Proximity

Operators NEAR, NEXT, AFTER, BEFORE

Configuration - 97

The Different Types of Search in UQL

Purpose Find documents where search terms are in proximity of one another. By default the
maximum distance between terms is 16 words.

Edit this value using the Search > Search Logics > Query Language > Default
distance for proximity operators property.

Example "movie star" AFTER hollywood searches for documents where movie star
appears soon after hollywood.

Note: "movie star" is equivalent to movie NEXT star, the NEXT operator having a
distance of 1 with the following word.

You can also specify the maximum distance of the words by using NEAR/x, AFTER/x,
and BEFORE/x. For example:

• "movie star" NEAR/5 hollywood searches for documents where movie star
appears within 5 words of hollywood,

• and "movie star" BEFORE/5 hollywood searches for documents where movie
star appears within 5 words before hollywood.

Important:

• You cannot use proximity operators with expressions whose "position"
cannot be computed. For example, the query music NEAR (Madonna AND
mp3) does not work, because the expression Madonna AND mp3 cannot be
associated with a single word position value.

• Some queries using proximity operators may fail with a No occurrence
for query message when you want to open the preview of Office
documents. This issue is linked to a format conversion limitation.

Prefix Search

Operator *

Purpose Searches using the beginning of a word to find a proper noun using its short form, or its
linguistic root.

Example Jenn* searches for documents containing words starting with Jenn, such as
Jennifer, Jennie, Jenni, and Jenna.

Pattern Search

Operator Regular expression patterns based on Perl 5.

You must open and close patterns with a / (slash) character.

98 - Configuration

Reserved Characters in UQL

Purpose Searches using the beginning of a word to find a proper noun using its short form, or its
linguistic root.

Example • /s.ren..pi.y/ searches for documents with words that match the pattern S . R
EN .. PI . Y and would find documents with the word serendipity.

• /mpg(1|2|3)?/ searches for documents containing any of the following: mpg,
mpg1, mpg2, or mpg3.

Geographic Search

Operator Prefix handler geo:

Purpose See Configuring Geographic Search.

Example To search within a radius or polygon using UQL, see Search with a Radius or Polygon
(UQL).

Search with INNERJOIN

Operator INNERJOIN

Purpose Combine records from two documents whenever there are matching values in a common
field.

See More About INNERJOIN.

Search by Document Sections

Operator SPLIT

Purpose Searches for words in specific sections of a document.

Reserved Characters in UQL

This section gives a list of reserved characters in UQL and describes how to escape their
interpretation.

List of Reserved Characters in UQL

If you need to use them as words in your query, you must enclose them in quotes.

Name Character

Slash /

Use it for:

Configuration - 99

Operands

Name Character

• passing options, for example,
NEAR/12

• pattern search as a regexp
operator, for example, text:/
bug.*/

Tab \t

Line feed \n

Carriage return \r

Round brackets (or)

Square brackets [or]

Curly brackets { or }

Colon :

Equal sign =

Greater than or less than < or >

Comma ,

Note: % is not a reserved character.

Escaping UQL Operators Interpretation

You can add a backslash (\) to disable the interpretation of UQL operators (parentheses, =, {, },
etc.).

Note: If any tokenization takes place afterward, the tokenizer still decides how to enter the
character. For example, \= is interpreted as a simple = but the default tokenization considers
this character as punctuation. It is therefore removed from the query as any other punctuation
character.

Operands

This section describes the operands that you can use in UQL queries.

100 - Configuration

Operands

Standard Operands

Operand Description Predicate value

(e1) Parenthesized sub expression, used
to modify priority.

For example:

((fast OR speed) AND NOT

light)

e1

"e1" Quoted expression, used to escape
all special characters. Inside a
double quoted group, words are
handled in a tight (NEXT) sequence.
All operators are ignored.

e1

"word1 word2" Quoted expression. word1 NEXT word2

"word1 OR word2" Quoted expression word1 NEXT "OR" NEXT word2

Regexp and Wildcard Operands

You can use wildcards and regular expressions in UQL queries. The following table illustrates
some examples.

Kind Syntax Example

Regular expressions [field:]/pattern/{options} title:/desi.*/

{w=10000,#=100}

Wildcard [field:]word*{options}

[field:]*word{options}

desi* title:*faces

Score Modifier Operands

Operand Description Predicate value

s=N Replace the predicate's score by an
explicit value.

price<500{s=1000}

s+=N Increase the predicate's score by a
given value.

GUI{s+=100000}

s-=N Decrease the predicate's score by a
given value.

corporate/tree:"Top/

Attributes/XXX" {s-=100000}

Configuration - 101

Operators by Priority

Operand Description Predicate value

Note: The score of a given predicate
can be negative, but the final score
of the document can never be lower
than 0.

w=N Replace the predicate's weight by an
explicit value.

design{w=10000}

w*=N Multiply the predicate's weight by a
given value.

design{w*=2}

Note:

• The score modifiers are applied in the same order as they appear. In the case of
two conflicting modifiers, for example, {s=1000,s=2000}, the last one is applied.

• In the case when an explicit score (s=) is specified, the predicate's weight is
ignored so the 'w' options have no effect.

• The explicit score (s=) can only be used for nontextual predicates (numeric values
and categories) since this modifier completely ignores the ranking score class set
when the document was indexed.

Word Matching Options

Word matching options are specified inside {} and directly appended to search words. They must
be comma-separated.

Option Description Example

k=number Set explicit matching level. k=1 is the lowercase matching mode

k=2 is the normalized matching
mode.

hl=0 Deactivates search result highlighting
and summary for a specific node of
the query only.

word1 word2{hl=0} word3

Operators by Priority

The query expansion modules rewrite the query based on the operators. To correctly expand the
query, each operator has a priority.

Operators by Processing Priority, where e1 and e2 are Expressions

102 - Configuration

Operators by Priority

PriorityOperator Explanation Example

1 prefix handlers Prefix handlers are always
processed first.

Obama before:2009/01/01,
searches for all documents
relating to Obama before
January 2009.

2 FUZZYAND/option

(expression)

Search for documents that
match at least N queries,
where N is determined by the
fuzzyand option.

This option can be either:

• minimum success: at least
N queries must match. N is a
positive integer.

• or maximum failures: up
to N queries can fail. N is a
negative integer.

For a document that contains:

The quick brown fox.

If min. success=2: FUZZYAND/2
(the quick brown foxes)

matches, but FUZZYAND/2 (a
brown foxx) does not.

If max. failure=-1:
FUZZYAND/-1 (a quick

brown fox) matches, but
FUZZYAND/-1 (a quick

foxx) does not.

3 OPT e1 Optional operator OPT graphical

4 NOT e1 Negation operator NOT myword

5 e1 NEXT e2 Explicit sequence operator for
adjacency match.

user NEXT interface

6 e1 AFTER e2 Proximity (mono-directional)
match

interface AFTER user

6 e1 AFTER/distance

e2

AFTER with explicit word
distance

interface AFTER/4 user

6 e1 BEFORE e2 Proximity with mono-directional
match

user BEFORE interface

6 e1 BEFORE/distance

e2

BEFORE with explicit word
distance

interface BEFORE/4 user

7 e1 NEAR e2 Proximity operator with
bidirectional match

user NEAR interface

7 e1 NEAR/distance e2 NEAR with explicit word distance user NEAR/4 interface

8 e1 SPLIT e2 A document is returned if e1
appears in at least one of the

user interface SPLIT

Chapter

Configuration - 103

Operators by Priority

PriorityOperator Explanation Example
document sections delimited by
the e2 delimiter.

If the e2 delimiter is not present
in a document, then the
document is returned if e1 is
valid at the document level.

Matches if user interface
appears between two
"Chapters"

9 e1 e2 Implicit match operator on a
sequence of words. It uses the
implicit operator, which is AND by
default.

search engine

10 (e1) INNERJOIN/key
(e2)

Search for documents matching
e1 where e2 appears in child
documents. The relation
between documents is
contained in a key index field,
which must be an unsigned
integer.

For performance reasons, it is
best to enable the Stored in
Memory option.

subject:exalead

INNERJOIN/msgId

fulltext:france

We first select documents
whose subject is exalead, then
the join is made with documents
containing the word france.

11 e1 BUTNOT e2 The search matches if there is
at least an instance of e1 is not
also an instance of e2 at the
same position.

York BUTNOT "New York"

12 e1 AND e2 Explicit conjunction match. user AND interface

13 e1 XOR e2 Exclusive OR operation. It can
be either e1 OR e2, but not e1
AND e2

design XOR conception

14 e1 OR e2 Disjunction match design OR conception

15 e1 BOR e2 Disjunction match

To use only for a fast OR on
many documents

design BOR conception

104 - Configuration

More About INNERJOIN

More About INNERJOIN

You can use the INNERJOIN operator to join "left" and "right" documents based on a common
numerical field. INNERJOIN only returns matching documents from the "left side" of the query.

For example, if you have order and customer documents that both contain a customer_id
join key field, you can perform queries such as:

order_price>42 INNERJOIN/customer_id (customer_name:john AND customer_firstname:doe)

This returns all orders (the left-side documents) for John Doe that had an order price greater than
42.

Important: INNERJOIN queries have a significant impact on search performance.

When and How to Use INNERJOIN

Only use INNERJOIN for complex multicriteria search on the right-side document. In the above
example, this is the customer.

Ideally, for better search performance, aim instead to inline the right-side document information in
the left-side document. However, INNERJOIN is mandatory for certain multicriteria queries.

Requirements

• The field must be an integer, a date or a value, retrievable and RAM-based.

• For a value field, the innerjoin does not support two different join key fields for left and right
side. For details about value fields, see Create Value Facets for Nonhierarchical Metas.

Perform an INNERJOIN Query

When the join field name is the same for both left and right documents

• UQL: (left-side query) INNERJOIN/field (right-side query)

• ELLQL: #innerjoin(field, left-side query, right-side query)

When the join field name is different for the left and right documents (not applicable to value fields)

• UQL: (left-side query) INNERJOIN/field1=field2 right-side query)

• ELLQL: #innerjoin(field1,field2, left-side query, right-side query)

Important: When using a join field that was generated by a Data Model property, always specify
the full field name, prefixed by the declaring class name, even in UQL.

Configuration - 105

More About INNERJOIN

Hide INNERJOIN from Users

To avoid exposing the INNERJOIN operator to the user, you can use query templates to combine
ELLQL and UQL to perform the join from the user query. For details, see Defining Query
Templates.

Handling Documents in Multiple Slices

The INNERJOIN operator is intra-slice only: you cannot join a left-side document (LD) from one
slice to a right-side document (RD) in another slice.

There are two main ways of handling this, depending on the use case.

Use Case 1: LD and RD are shardable in the Same Way

For example, when indexing customers and orders, we can shard the index by customer ID, and
make sure that all orders go to the same slice as the customer.

To do that, we must override the automatic slice balancing algorithm, using a PAPI directive called
forcedSlice.

Note: A PAPI directive is a small value associated to a document, which is not part of the textual
content, that gives processing instructions or hints to the processing chain.

Set a PAPI Directive

document.setCustomDirective(name, value);document.setCustomDirective("forcedSlice", "2");

You then must correctly balance all slices.

Use Case 2: LD and RD are not shardable in the Same Way

In this case, the only solution is to fully duplicate the right-side documents (RD) in each slice. As
the RD is never retrieved by the INNERJOIN query, there is no risk of duplication.

This works best when the set of RDs is relatively small, so duplicating them does not dramatically
impact the slices.

You need to push each RD N times (where N=number of slices), each time with a different URI, for
example /myoriginaluri/slice3.

For each document, you need to set the forcedSlice directive as described in the Use Case 1:
LD and RD are shardable in the Same Way.

You do not need to do anything special for your LD, since the automatic slice allocator keeps
dispatching them.

106 - Configuration

Exalead Low-Level Query Language (ELLQL)

Exalead Low-Level Query Language (ELLQL)

You can use EXALEAD Low-Level Query Language (ELLQL) for programmatic generation of
queries, similar to SQL. ELLQL is typically used by custom programs to enrich user queries and to
add additional features. Internally, all user-entered UQL queries are transformed into ELLQL.

Why Use ELLQL?

You can use ELLQL to handle complex queries that would either be too difficult or not supported in
UQL, which is the case for:

• Geographic search using Point fields. For more details on Point search, see Search a
Geographic Point.

• Advanced Inner Joins, where you can specify which join type to use, are not possible in UQL.
To do so, query the search API directly using ELLQL.

• Search for words that have a certain position in an index field. For example, if
you want to search for a specific value only, such as all documents that have a
title that starts with a particular word. If this word is “Rambo"; you would enter
(#at(1,#alphanum(title,"rambo"))).

ELLQL vs UQL

You can pass ELLQL queries via the Search API using the eq parameter instead of q for UQL
queries.

ELLQL operators work the same as UQL. Basic leaf nodes, however, work differently in ELLQL:
they are index-level operators, not user-level operators. For example:

• In UQL, the query "a b" is tokenized and Exalead CloudView searches for two words. Using
query expansion and prefix handling, Exalead CloudView can interpret this query to mean that
we want to search in the text field.

• In ELLQL, you must write #and(#alphanum(text, "a") #alphanum(text, "b")).

To build a complex query containing some user parts written in UQL, and some advanced parts in
ELLQL, you can insert UQL within an ELLQL query with the #uql ELLQL operator. For example,

#or(#alphanum(text, "c") #uql("a OR b"))

ELLQL Syntax

For a complete list of ELLQL syntax, see the Appendix - ELLQL Language.

Configuration - 107

Filtering Search Results in ELLQL

Filtering Search Results in ELLQL

Using ELLQL, you can pass a parameter that filters which hits to include in the search results for
a query. The filtering criteria is defined as a virtual expression. If the virtual expression returns
a 0 (false) value for the hit, the hit is excluded from the search results. The query pattern is: ?
eq=#filter("virtual expression", ELLQL query).

For example,

?eq=#filter("document_file_size>100000",#alphanum(title,"CloudView"))

returns all documents with Exalead CloudView in the title, where the document file size is greater
than 100,000 bytes.

Defining Query Templates

Exalead CloudView supports combining multiple chunks of queries, that we call "named queries",
to build the final query. The combination of all named queries is specified by the query template
defined in Search > Search Logics > Your search logic > Query Template.

Query Template Syntax

The default query template string is:

#and(#query(relevance_tuning) #and(#query(_default_) #query(refine) #query(security) #query(restriction)
#query(date_restriction) #query(geo_restriction)))

The parameters following #query are replaced by named queries, whose names are specified
between parentheses. For example, relevance_tuning is the name of the first named query.
You can reference the default query (q in UQL or eq in ELLQL) in the query template with
#query(_default_).

The query template is itself an ELLQL query that you can set dynamically using the qt parameter.
For example, with a query template of qt=#and(#query(a) #query(b))

• passing in q.a=word1 OR word2 and q.b=word3 OR word4

• results in a final query of (word1 OR word2) AND (word3 OR word4)

Note: Through the API, you can pass additional queries using the q.NAME parameter family.
You can pass additional queries as ELLQL, using the eq.NAME parameter family.

Options can be passed to the named queries specified after #query in the query template and
forwarded to top nodes. The options forwarded from the query template always override the

108 - Configuration

Reserved Named Queries

options that might be already present on the top nodes. For example, qt=#and(#query{w=0.5}
(a) #query(b))

• passing in q.a=word1{w=2} and q.b=word2

• results in a final query of word1{w=0.5} AND word2

Note: The query template and the named queries are parsed (and expanded) separately. Then,
the query template and the named queries are merged into a single query, with the options of the
query template forwarded to the top nodes of the named queries. Remind that no query expansion
is performed on the query template itself, which is only parsed. Query expansion is performed in
detached expanded queries.

For example:

• If the query template is: #and(#query{foo=bar}(_example_) #false)

• and the _example_ named query in the search field is: #fuzzyand(#or(#true))

• the expanded query is: #and(#fuzzyand{foo=bar}(#or(#true)) #false)

Reserved Named Queries

• refine: all refinement parameters (r, cr, zr) are interpreted by the query parser, generating
a named query called refine.

• security: all security tokens are interpreted and combined as a large OR query, generating a
named query called security.

• restriction: generated by the content restriction specified in the search logic.

Use Case

It could be useful to add a restriction to user queries coming from a specific Mashup page of your
front-end search application. Rather than modifying the user query, you could pass a named query
and specify how you want queries to be combined to handle this restriction.

For example, we could add the named query confidential_doc to the query template to
exclude confidential documents from the search results. This is already managed in the default
query template by #query(security) checks user security tokens if any.

Using Prefix Handlers

Prefix Handlers allow you to refine queries by targeting specific index fields or change the behavior
of the query expansion.

For example, the title: prefix handler allows you to refine the search on document titles.

Configuration - 109

The Different Types of Prefix Handlers

You use prefix handlers in UQL by prefixing your query with a given prefix, followed by colon (:) or
a numerical comparison operator like >. For example, the 'title' prefix handler allows you to narrow
the search on document titles, by looking only for matches within the 'title' index field.

Important: There must be a default prefix handler in your configuration. In the default
configuration, this prefix handler is text. It is used as fallback when no prefix handler is specified
in your UQL queries.

The Different Types of Prefix Handlers

Specify a Tokenization Configuration for Prefix Handlers

The Different Types of Prefix Handlers

This section describes the default types of prefix handlers available in Exalead CloudView. When
adding prefix handlers, you have to select one of these types.

You can add prefix handlers of several types:

Type Description

Text Searches in alphanumeric fields (both static and dynamic ones).

There are several prefix handlers of Text type in the default configuration:
text, trustedqueries, title, rawurl, document_pageurl_inurl

Numeric Searches for numerical values in a numerical field (integer or double).

In the default configuration, the document_file_size prefix handler is of
Numeric type.

Date Searches for dates and times in a date field.

There are several prefix handlers of Date type in the default
configuration: date, document_after, document_before,
document_lastmodifieddate

By default, the input format is detected automatically. If you need to define
a custom format, update the Input format field for your prefix handler in
Search Logics > Query Language.

Category Searches for paths in a category field.

There are several prefix handlers of Category type in the default
configuration: datamodel_class, datamodel_class_hierarchy,
corporate/tree, corporate/leaf, categories, source,
language, etc.

110 - Configuration

The Different Types of Prefix Handlers

Type Description

Numeric (dynamic
fields)

Searches for numerical values in a dynamic field.

Date (dynamic fields) Searches for dates and times in a dynamic field.

Geographic Defines the geographic field for WITHIN and DISTANCE searches.

Units of measurement Searches for documents by resolving and converting values in the required
unit of measurement.

For example, if volume is a Measure index field with a unit symbol set to
ml, queries would look like:

• volume>25cl AND volume<16oz

• volume>250 (unit symbol is the default one, ml in our example)

The prefix handler detects the unit symbol if specified in the query,
operates a conversion when required and then looks for properties
according to the normalized numerical expression.

Linguistic options Specifies a query expansion config on the prefix handler content, but does
not perform search.

In the default configuration, the spellslike prefix handler is of Linguistic
options type. You can also create a soundslike prefix handler if your
want to find documents using the phonetic spelling of search terms.

Position Searches in an alphanumeric field using the anchoring position (that is,
restricting the match to be at a specific position).

Split Searches for expressions, within the bounds of separators. For example,
with a Split prefix handler named mypage with separator INPAGE,
mypage:(a AND b) only matches if a and b appear on the same page
in the document.

Site Searches for parts of URLs.

There are several prefix handlers of Site type in the default configuration:
document_pageurl_site, document_pageurl_url,

Similarity Manually looks up similar values in documents.

Template Template prefix handlers are used to rewrite the user original query
(represented by the __QUERY__ variable) so that it targets dedicated index
fields with a specific logic if required (typically OR/ AND operators, etc.).

For example, with a template set to:

Configuration - 111

Specify a Tokenization Configuration for Prefix Handlers

Type Description

<meta1>:__QUERY__ <OPERATOR> <meta2>:__QUERY__

we could have something like:

airport_name:__QUERY__ OR airport_city:__QUERY__

Important: You must consider __QUERY__ as a full UQL query string.
Therefore, you cannot protect or encapsulat it with double quotes (") or
single quotes (') characters, otherwise the variable will not be substituted.
These UQL reserved words block the query expansion and make the query
fail.

Important: If the original UQL query contains a prefix handler, it might
lead to invalid UQL query interpretation. For example, if myTph template
prefix handler is meta1:__QUERY__ OR meta2:__QUERY__ and the
query input is myTph:date>30. Then the query template prefix handler
interprets the query as meta1:date>30 OR meta2:date>30, which
is not a valid UQL query and is rejected. A valid query input would be
myTph:(foo or bar).

Important: There is a "default" prefix handler, which is used for query
chunks, which have no explicit prefix handler. If this default prefix handler
is a template prefix handler, then it is its duty to ensure that every single
chunk of the query has an actual (that is, nontemplate) prefix handler
after template expansion. Otherwise, you end up with meaningless
query chunks. You cannot have DEF_TPH: (file:__QUERY__ OR
__QUERY__)

Custom Prefix handler implemented using custom Java code.

For more information, see "Add custom query processors or prefix
handlers" in the Exalead CloudView Programmer's Guide.

Specify a Tokenization Configuration for Prefix Handlers

Each search logic needs a default tokenization that determines how prefix handlers break down
user queries into tokens.

This section covers how to specify a specific tokenization configuration for search-time processing.
To learn how to create new tokenization configs and specify them at index-time, see Customizing
the Tokenization Config.

112 - Configuration

Configuring Query Expansion

Specify Another Tokenization Config for a Search Logic

1. In the Administration Console, create a new default tokenization config as described in
Customizing the Tokenization Config.

2. Specify this default tokenization config for:

◦ one or more semantic types, if using the Data Model to set up indexing. See Specify
Another Tokenization Config in the Data Model

◦ and the analysis pipeline, if manually configuring processors. See Specify Another
Tokenization Config for an Analysis Pipeline.

3. Go to Search > Search Logics > Your search logic > Query Language tab.

4. From the Default tokenization config list, select the new tokenization config.

5. Click Apply.

All prefix handlers use this tokenization config to tokenize queries.

Specify a Tokenization Config for a Prefix Handler

For metas that need to be tokenized differently than the default tokenization config, you can
specify a different tokenization config for the prefix handlers targeting those metas.

1. In the Administration Console, create a new "exception" tokenization config as described in
Customizing the Tokenization Config.

2. Specify this default tokenization config for the index mappings for metas that need to be
tokenized differently. See Specify Another Tokenization Config for an Index Mapping.

3. Go to Search > Search Logics > Your search logic > Query Language tab.

4. Select the prefix handler for the appropriate meta.

5. From the Default tokenization config list, select the "exception" tokenization config you
created in step 1.

6. Repeat for all the prefix handlers that need a different tokenization.

7. Click Apply.

Configuring Query Expansion

You can set up Exalead CloudView to broaden the scope of a user query, which is known as query
expansion.

For example, you can expand queries to include synonyms, so when a user searches for dba,
Exalead CloudView searches for dba OR "database administrator" OR "db admin".

Configuration - 113

Query Tree and Query Expansion

If phonetic query expansion is enabled, the query "exaleed" would expand to "exaleed" OR
"exalead".

Query expansion does the following:

• enriches the query, using synonyms and semantics

• interprets and normalizes the query, such as by recognizing city names or acronyms.

Query expansion is configured on prefix handlers as targeting specific index fields is useful to
make consistent query expansions. For example, while it makes sense to use synonyms when
searching the title index field with the title: prefix handler, it does not when searching on the
author index field with the author: prefix handler.

Query Tree and Query Expansion

Query Expansion Features

Enable query expansion

Stemming

Lemmatization

Phonetization

Approximation

Normalization Exceptions

Synonyms

Japanese Synonyms

Query Tree and Query Expansion

When Exalead CloudView parses a query written in UQL, it is represented as a structured query
tree, where the inner nodes are query operators and the leaves are Boolean predicates.

Query expansion generates a new, larger query tree by processing query expansion modules.
This is known as the query rewriting step.

Query expansion modules process the query tree to:

• enrich it, for example, by using synonyms and semantics,

• interpret and normalize it, for example, by recognizing city names or acronyms.

In the end, the query expansion generates a new query tree. This is the query rewriting step.

Note: After this step, all Leaf and Rex nodes in the tree have been converted to FinalLeaf
nodes.

114 - Configuration

Query Tree and Query Expansion

Query Expansion Example

The figure below shows the query tree for a user’s search for documents containing the words
"Red Sox" or "Chicago bulls", and modified after January 1, 2016:

((Red Sox) OR (Chicago Bulls)) AND lastmodified>=2016/01/01

The Default Operator between Two Text Predicates (like "Red" and "Sox") is a Boolean AND.

Character Interpretation

Leaf nodes can have different prefixes such as:

Character UQL interpretation

- Excludes terms if - is at the beginning of a leaf.

The leaf is interpreted as a NOT context.

For example, Sarbanes-Oxley is considered as a single leaf, while
Sarbanes -Oxley is considered as two leaves, one of which is negated.

Configuration - 115

Query Expansion Features

Character UQL interpretation

+ The leaf is treated as exact, which disables some expansion operations.

., &, -,

and other word
separators

interpreted as a NEXT operator instead of an AND, when used to separate
words without additional white spaces.

For example, ASP.NET is parsed as ASP NEXT NET instead of ASP AND
NET.

The query processor allows nonalphanumerical characters in words in a few special cases that
you can configure.

Leaves can also have options. You must specify the options in brackets and separated by quotes.

The following leaf options are available:

• query rewrite options, which modify the way the query processor works and expands the leaf.

• raw options, which are passed to the index.

Matching Modes

Each word can exist in the index at several matching modes (or index kinds). The matching
between word predicates and document words is defined by the matching mode of predicates.
The matching mode can be one of the following:

• Exact match: Matches only if the words match exactly. For example, The only matches with
The. This is known as kind 0 (or k=0).

• Case-insensitive or Lowercase match: Ignores case for matching. For example, the and The
match. This is known as kind 1 (or k=1). This level can be specified by the "i" option in
UQL.

• Normalized match: Ignores case and accents, for example the, thé and Thé match. This is
known as kind 2 (or k=2). This is the default matching mode but it can be changed using
predicate options.

Note: You can specify other matching modes in Linguistics > Advanced > Form indexing.

Query Expansion Features

Query expansion features are described below.

Query expansion modules allow you to define semantic query expansions to perform on prefix
handlers. For example, if lemmatization was configured on the title prefix handler, and the user
enters the query title:(mouse and man), the query expands to title:((mouse OR mice)
and (man OR men)).

116 - Configuration

Enable query expansion

Wildcard search is a pattern-matching feature enabled by default. It allows you to find documents
that include "test", "tests" and "tesselation" when searching on "tes*". Additional
configuration is available to fine-tune your results.

Wildcard search is expanded using a dictionary generated from the corpus. See Configuring
Dictionaries.

Spellcheck can be enabled to suggest alternate spellings for words in the query. Spell-check is
much more effective if you first extract spell-check ngrams at index-time.

For details, see Adding 'Did You Mean?' Spell-Check.

Enable query expansion

When you install Exalead CloudView, most query expansion modules are already activated, with
the exception of Synonyms, or the Custom query expansion module.

By default, these modules are set up for all supported languages. You can, however, choose to
add multiple instances of a query expansion module (for example, several lemmatization modules)
that are set up for different languages.

However, if you want a certain prefix handler to use a query expansion module, you still need to
configure that prefix handler’s query expansion accordingly.

To enable query expansion you need to do the following:

• Activate query expansion modules: these are global processing units that must be defined for
each search logic. They define the static parameters for the type of expansion. For example
with synonym expansion, you must create a synonym dictionary, known as a resource file, for
the synonym module.

• In the prefix handler, define which modules to use for query expansion: this is defined in the
Query expansion config for the prefix handler.

Activate a query expansion module

1. In the Administration Console, go to Search > Search Logics > Query Expansion.

2. Under Query expansion modules, click Add module if the module you want to activate does
not already appear on the list.

3. (Optional, except for Synonyms) Specify a resource file for the module. To define and compile
a synonym resource file, see Synonyms.

4. Click Save.

You must now associate this module with one or more prefix handlers as described in the following
procedure.

Configuration - 117

Enable query expansion

Set up a prefix handler to use a query expansion module

1. Go to the Query language tab and click the prefix handler that will use this module.

2. In the expanded view of this prefix handler, click Edit beside Query expansion config.

3. In the Query expansion config dialog, specify the semantic expansion for this prefix handler.

You can also dynamic parameters for the expansion. In the following example, the expansion
expression uses the approximate query expansion module, and includes specific options that
define the maximum number of matches and their relative importance.

118 - Configuration

Stemming

For descriptions of the options available for each query expansion module, see:

◦ Stemming

◦ Lemmatization

◦ Phonetization

◦ Approximation

◦ Normalization Exceptions

◦ Synonyms

◦ Japanese Synonyms

4. Click Apply.

Stemming

Stemming expansion allows you to search for words with a common root, or stem.

For example, searching on the word "Britannia" would expand the query to include words with the
stem "Britann", such as "Britannic" and "Britanny".

There is often some confusion in understanding the difference between stemming and
lemmatization. Both have an objective of finding a common base for query words with several
related derivations or inflected forms.

Dependencies

For stemming to work at search-time, you must first create stemmed forms at indexing time. For
details, see Snowball Stemmer.

Stemming vs Lemmatization

Stemming is the simpler method, as it seeks to find the root (the stem) of a word by cutting off
endings. For example:

• Searching on alsaciennes (women from the Alsace region of France) would also search for
words with the stem alsac.

• Searching on alsace would also search for words with the stem alsac.

By contrast, lemmatization uses a more complex morphological analysis to find the singular or
masculine form of nouns and adjectives.

• Searching on alsaciennes also searches for words with the lemma alsacien.

• Searching on alsace also searches for words with the lemma alsace.

• Moreover, searching on geese would also search for goose.

Configuration - 119

Lemmatization

Stemming Rules

Depending on the language, two kinds of rule dictionaries are used:

• Rules based on the "Snowball" library.

• Internal CloudView rules

For stemming to work, the words must have been extracted from text at indexing time (this is the
default configuration).

Stemming Options

When configuring a prefix handler’s query expansion, the following stemming options are
available.

Option Description

max_matches or m, or
matches

Searches no more than N stems for a word. If the number of available
stems exceeds this value, Exalead CloudView searches the N most
frequent stems in the corpus. The default value is 10.

weight or w Relative ranking weight of the stemmed forms. This controls the w
parameter of the standard term score formulas. The default value is
0.1.

For details on term score and weight, see Ranking and Sorting Search
Results.

Lemmatization

Lemmatization expansion allows you to search for the masculine or singular forms of feminine or
plural nouns and adjectives.

For example, searching for geese would also search for the lemma goose.

There is often some confusion in understanding the difference between lemmatization and
stemming. Both have an objective of finding a common base for query words with several related
derivations or inflected forms. See Stemming vs Lemmatization.

Dependencies

For lemmatization to work at search-time, you must first create lemmatized forms at indexing time.
For more information, see Lemmatizer

120 - Configuration

Lemmatization

Languages Lemmatized Natively

Lemmatization is available in the following languages:

• English (en)

• French (fr)

• German (de)

• Italian (it)

• Portuguese (pt)

• Russian (ru)

• Spanish (es)

Languages Lemmatized with Basis Tech Add-On

If you want to perform lemma query expansion for languages tokenized by the Basis Tech
(Extended Languages) tokenizer, you must configure the Lemmatizer semantic processor, as well
as follow some additional steps for tokenization.

For details, see Enable Lemmatization with Basis Tech.

Lemmatization Options

When configuring a prefix handler’s query expansion, the following lemmatization options are
available.

Option Description

weight or w Relative ranking weight of the lemmatized forms. This controls the "w"
parameter of the standard term score formulas. The default value is
0.1.

For details on term score and weight, see Ranking and Sorting Search
Results

masculinization Looks up for the masculine form of a word when a feminine form is
entered. For example, entering canadienne searches on canadien.

masculine_weight or mw When transcribing a word from the feminine to masculine form, the
resulting masculine form has this weight value instead of "w". The
default value is 0.01.

Configuration - 121

Phonetization

Phonetization

Phonetic expansion allows you to search for alternative forms that sound like the original query.
For example, searching for "exaleed" would also search for "exalead". This query expansion
module works by default with the soundslike linguistic prefix handler.

Dependencies

For phonetization to work at search-time, you must first extract phonetic forms at indexing time.
For more information, see Phonetizer.

Supported Languages

Phonetization is available natively for the following languages:

• Canadian (ca)

• Czech (cs)

• Danish (da)

• Dutch (nl)

• English (en)

• Estonian (et)

• Finnish (fi)

• French (fr)

• German (de)

• Italian (it)

• Norwegian (no)

• Portuguese (pt)

• Slovak (sk)

• Slovenian (sl)

• Spanish (es)

Phonetization Options

When configuring a prefix handler's query expansion, the following phonetization options are
available.

122 - Configuration

Approximation

Option Description

max_matches or m, or
matches

Searches no more than N phonetic forms for a word. If the number
of available phonetic forms exceeds this value, Exalead CloudView
searches the N most frequent forms in the corpus. The default value is
10.

weight or w Relative ranking weight of the phonetic forms. This controls the w
parameter of the standard term score formulas. The default value is
0.1.

For details on term score and weight, see Ranking and Sorting Search
Results.

Approximation

Approximation expansion finds words that are lexicographically similar to other words. This query
expansion module works by default with the spellslike linguistic prefix handler.

Approximation is useful for full-text search to correct user queries with typos. For example, if
the user enters croped, the search results displays hits with cropped, the correct spelling,
automatically.

Approximation is the search for a query word with a fuzzy match in the corpus. It is performed by
calculating the Damereau-Levenshtein distance between the query word and the corpus word.

Approximation Vs Spell Check

Approximation is similar to spell check. The difference is that approximation only applies to the
word that follows the prefix handler with which it is associated (myprefix: word). Meanwhile,
spell check applies to the entire user query and has more configuration options.

The approximation module considers both the word length and the number of transformations
allowed to expand the original query with additional words. Transformations mean that you replace
(substitute) a letter, add a letter, transpose a letter, or delete a letter.

The approximation module searches for words that are at transformation distance 1 or 2 of the
original word from the user’s query. Distances are hard-coded, so you can only control the word
length that triggers distance 1 or distance 2. In other words, depending on the word length, you set
either max_distance=0, 1 or 2.

See also Adding 'Did You Mean?' Spell-Check.

Configuration - 123

Approximation

Approximation Options

When configuring a prefix handler’s query expansion, the following approximation options are
available.

Note: The approximation module has default values for these options. To override them, you must
define them explicitly in the query expansion config expression.

Approximation Options

Option Description

flm Specifies an additional transformation distance (think of it as a
penalty) on any transformation on the first letter. This shows that in
most cases, people do not make typos on the first letter.

For example, "abc" and "zbc" are at:

• distance 1 if flm=false,

• distance 2 if flm=true.

The default value is true.

max_matches or m or
matches

Searches no more than N fuzzy matches for a word. If the number
of available fuzzy forms exceeds this value, Exalead CloudView
searches the N most frequent forms in the corpus.

The default value is 10.

min_chars_distance1 or
mcd1

Only searches for distance 1 fuzzy matches if the original word in the
query is at least N characters long.

This avoids too much approximation on very short words.

The default value is 5.

min_chars_distance2 or
mcd2

Only searches for distance 2 fuzzy matches if the original word in the
query is at least N characters long.

This avoids too much approximation on short words.

The default value is 10.

weight_distance1 or w1
or wd1

Relative ranking weight of the fuzzy matches at distance 1.

This controls the "w" parameter of the standard term score formula.

For details on term score and weight, see Ranking and Sorting
Search Results.

The default value is 0.1.

124 - Configuration

Approximation

Option Description

weight_distance2 or w2
or wd2

Relative ranking weight of the fuzzy matches at distance 2.

This controls the w parameter of the standard term score formula.

For details on term score and weight, see Ranking and Sorting
Search Results.

The default value is 0.01.

Example

Take the word "screwdriver".

If the query expansion config expression is set to approximate{min_chars_distance1=5}
only

• srewdriver => approximation works, there is 1 transformation (deletion of the "c" character).

• screwdrive => approximation works, there is 1 transformation (deletion of the last character
"r").

• screwqdriver => approximation works, there is 1 transformation (insertion of the "q"
character).

• scrwedriver => approximation works, there is 1 transformation (transposition of the "w" and
"e" characters).

• screqdriver => approximation works, there is 1 transformation (substitution of the "w"
character by the "q" character).

• sredriver => approximation does not work as there are 2 transformations (deletion of "c"
and "w").

If we set the query expansion config expression to
approximate{min_chars_distance1=,min_chars_distance2=10}

• sredriver => approximation still does not work because:

◦ there are 2 transformations (deletion of "c" and "w")

◦ and there are only 9 characters in the query word whereas the minimum number to get 2
transformations is set to 10.

If we set the query expansion config expression to
approximate{min_chars_distance1=,min_chars_distance2=9}

• sredriver => approximation works because:

◦ there are 2 transformations (deletion of "c" and "w")

◦ and there is the minimum number of 9 characters to make these 2 transformations.

Configuration - 125

Normalization Exceptions

Example: Approximation for an Error on the First Letter

Let us say that we have created a prefix handler called approxprefix using the approximation
module with its default option configuration.

We enter the query: approxprefix:correkt and get matches for documents containing the
word correct. However, if we search for approxprefix:vorrect, we do not get any matches.

This behavior is normal, since in most cases, people do not make typos on the first letter.
Therefore, there is an additional transformation distance by default for any transformation on the
first letter (flm=true).

Since vorrect is a short word (fewer than 10 characters) and substituting "c" for the first letter "v"
equals to a transformation distance of 2, the approximation module does not expand the search.

If we search for approxprefix:vorrection, the approximation module expands the search to
include correction, as the search term is 10 characters long.

To disable the additional transformation distance for first letters, edit the query expansion config
expression to include flm=false. In our example, we would have the following expression:
approximate{flm=false}

We could also tackle this kind of issue by reducing the minimum length to trigger distance 1 and
distance 2 (using the min_chars_distance1 and min_chars_distance2 options).

Normalization Exceptions

When the query includes a word that is subject to a normalization exception, it is not usually
normalized. If the normalization exceptions module is present, the query is performed on both the
normalized and the non-normalized form.

For example in French, "maïs" (corn) is subject to a normalization exception because it conflicts
with "mais" (but).

• Without this semantic processor, a search for mais only searches for mais, and does not find
maïs.

• With this semantic processor, a search for mais searches for (mais OR maïs).

Synonyms

The Synonym expansion module adds alternative forms to user queries. For example, if the
text prefix handler uses the synonyms module, the query: "db architect" expands to "db
architect" OR "data base architect" OR "database architect".

Unlike the other query expansion modules, you must first compile your own synonym dictionary,
also known as a resource file, that defines the possible synonyms for a particular expression.

126 - Configuration

Synonyms

1. Create a synonym XML file containing the following code:
<Synonyms xmlns="exa:com.exalead.mot.qrewrite.v10" equivalenceClass="false" matchOnSeparators="true"

stopwordsResource="resource:///stopwords/ontology.bin" permutations="false" addStopwordFreeForms="false">

 <SynonymSet originalExpr="db architect" lang="en">

 <Synonym alternativeExpr="database architect" />

 <Synonym alternativeExpr="data base architect" />

 </SynonymSet>

</Synonyms>

Where:

Attribute Description

matchOnSeparators Possible values:

• true (default): synonym matching is punctuation sensitive.

• false: punctuation is ignored during matching. For example, the
synonym "twenty-seven" matches "twenty seven".

stopwordsResource Path to the compiled ontology containing stop words used at build time
when generating permutations and stop word-free forms.

Default value is resource:///stopwords/ontology.bin.

Note: Exalead CloudView only provides French and English stop
words.

You can use your own stop word resource by building an ontology
containing a package exalead.stop and the list of forms for each
language you want to support:
<Ontology xmlns="exa:com.exalead.mot.components.ontology"
matchOnSeparators="true">
 <!-- this stopword list is used by the synonym compiler to generate
stopword-free forms and permutations for english and french synonyms -->
 <Pkg path="exalead.stop">
 <Entry lang="en">
 <Form value="of" level="lowercase"/>
 <Form value="the" level="lowercase"/>
 <Form value="a" level="lowercase"/>
 ...
 <Entry>
 <Entry lang="fr">
 <Form value="de" level="lowercase"/>
 <Form value="du" level="lowercase"/>
 <Form value="la" level="lowercase"/>
 ...
 <Entry>

Configuration - 127

Synonyms

Attribute Description
 </Pkg>
</Ontology>

permutations Possible values:

• true: For each synonym, extra forms made of word permutations
are added. Before computing permutations, stop words are
removed. For example, the synonym "lyrics of the song" matches
"song lyrics".

• false (default): Word permutations are not added.

addStopwordFreeFormsPossible values:

• true: For each synonym, an extra form (from which stop words
have been removed) is added.

• false (default): Extra forms are not added.

originalExpr expression specified by the user

alternativeExpr Expressions that are matched to the originalExpr.

equivalenceClass Possible values:

• true, synonym searching works in both directions: queries using
originalExpr return documents including alternativeExpr,
and vice versa.

• SynonymToSynonymSet, when you search for one of the
alternativeExpr expressions, the query also expands with the
originalExpr.

• SynonymSetToSynonym (or false, kept for backward
compatibility), when you search for the originalExpr, the query
is expanded respecting the alternativeExpr order.

level (optional) This attribute specifies which form must be matched. For
more information, see Available Matching Normalization Levels.

For example, if you use a lemmatizer and want your synonyms to
match lemmatized forms, set this attribute in your SynonymSet objects
to lemmaSingular.

Example with level attribute

<Synonyms xmlns="exa:com.exalead.mot.qrewrite.v10" equivalenceClass="false" matchOnSeparators="true"

stopwordsResource="resource:///stopwords/ontology.bin" permutations="false" addStopwordFreeForms="false" >

 <SynonymSet originalExpr="Dog" lang="en" level="lemmasingular">

128 - Configuration

Japanese Synonyms

 <Synonym alternativeExpr="cat" />

 <Synonym alternativeExpr="bird" />

 </SynonymSet>

</Synonyms>

Results when "dogs" is entered in the search box:

◦ The first result is the lemmatization of "dogs", that is to say "dog".

◦ As the lemma "dog" matches the SynonymSet original expression, the results are then
expanded to: "cat" and "bird".

Note: The display of synonyms follows the sort order specified in the SynonymSet node.

2. Go to <DATADIR>/bin and compile the XML file using the following cvadmin command:
cvconsole> cvadmin linguistic compile-synonyms input=<PATH TO SYNONYM.XML> output=<PATH TO SYNONYMS.BIN>

3. Check that the .BIN file is created in the specified directory.

4. Complete the steps in Activate a query expansion module.

Japanese Synonyms

You can activate the Japanese synonyms module to get a good support of synonyms in Japanese.

When configuring a prefix handler’s query expansion, the following Japanese synonym options are
available.

Option Description

max_distance or md Maximum distance allowed for synonyms expansion. This limits the query
expansion to synonyms within the specified distance.

max_expansions or
me

Maximum number of synonyms to expand for a query word. For example,
if you set this option to 5, only the first five synonyms serve for the query
expansion.

Configuring Dictionaries

Dictionary is a separate structure from the index that stores all the words from an indexed
document, plus their number of occurrences in the corpus. It serves for linguistic expansion
mechanisms such as spell-checking or regular expression matching.

About Dictionaries

Setting Up a Dictionary

Compacting and Building Dictionaries

Configuration - 129

About Dictionaries

Clearing Dictionaries

About Dictionaries

During installation, features requiring a dictionary are set up with the default dictionary, dict0. You
can change the configuration of dictionary resources in the default dictionary or create additional
dictionaries to suit your needs.

Dictionary Resources

All these resources are already configured for the default dictionary, dict0. Use this list to change
default settings or to build new dictionaries.

Resource Description

Words Stores words & their frequency to calculate relevance and term expansion.

If word occurrences are under the specified Min Frequency, they do not appear
in the dictionary.

Ngrams Used to improve spell check accuracy.

PREREQUISITE: Select the Extract spell check ngrams for the semantic
types associated with this dictionary.

Phonetic Forms Used to improve spell check accuracy, to calculate relevance and term
expansion. It is required for phonetic term expansion.

PREREQUISITE: a phonetic semantic processor must be defined in the
pipeline, or you must select the Extract phonetic forms option for the
semantic types associated with this dictionary.

Related Terms Required to provide related terms in this language.

PREREQUISITE: Define a related terms semantic processor in the pipeline.

Multiple Dictionaries

Exalead CloudView supports multiple dictionaries. Each dictionary is configured separately with its
own name, maximum size, and so forth.

• On the indexing side, you can configure a semantic type to use a specific dictionary. So when
you associate a data model property with a semantic type, it ensures that the generated index
field is associated to a specific dictionary. This dictionary can only contain words likely to
appear in that field.

130 - Configuration

Setting Up a Dictionary

• Symmetrically, each prefix-handler at search time can target a specific dictionary (for regexp
search, etc.).

Moreover, the dictionary allows you to define filtering rules for controlling which words are stored in
the dictionary. This allows you to store only words with a minimum number of characters, or words
matching a regular expression.

Setting Up a Dictionary

Create a New Dictionary

1. In the Administration Console, go to Index > Linguistics > Dictionaries.

2. Click Add Dictionary.

TIP: For Creation mode, select copy.

To determine which elements you need in this dictionary, see About Dictionaries.

3. Click Apply.

Associate a Dictionary to Metas via Semantic Types

1. In the Administration Console, go to Index > Data Model > Semantic Type.

2. Expand a semantic type, and in the Dictionary field, select the dictionary.

Note: If you do not want to store words in a dictionary, select None.

3. Select the prerequisite options, depending on which elements are in your dictionary. See About
Dictionaries.

4. Click Apply.

Associate a Dictionary to Metas via Mappings

1. In the Administration Console, go to Index > Data processing > pipeline name > Mappings.

2. Under the Mapping sources column, expand the meta you want to associate with a dictionary.

3. Under the Mapping targets column, select the dictionary name, and then under the Details
column, select the elements where you want this meta to be stored in the dictionary. See About
Dictionaries.

4. Repeat for all mappings you want to associate to dictionaries.

5. Click Apply.

Configuration - 131

Compacting and Building Dictionaries

Change the Default Dictionary

The first dictionary in your list of dictionaries is the default dictionary. Since a new Exalead
CloudView installation only includes one dictionary, dict0, it automatically becomes the default
dictionary.

1. To set another default dictionary, use the Default dictionary list under Dictionary.

Set Up a Dictionary Resource

This procedure shows how to set up the Words resource. You can configure other resources
similarly.

1. In the Administration Console, go to Index > Linguistics > Dictionaries.

2. Select (or add) your dictionary.

3. Expand Words.

4. Under Actions, click the edit tool next to the language you want to configure.

5. From the Edit language config dialog box, configure:

◦ Max No. terms: Set the maximum number of terms allowed for the selected language.

◦ Min frequency: How often the word needs to occur for it to be stored for that language in
the dictionary.

◦ Regexp filter: Define a pattern of words to exclude from the dictionary for this language.

6. Click Accept.

Compacting and Building Dictionaries

The dictionary capabilities include compact and building policies.

• Compact policies: Dictionary data is regularly compacted after N import operations and/ or N
seconds, to keep a single file per resource.

• Build policies: Dictionaries are regularly rebuilt after N compact operations and/ or N seconds
to be up-to-date.

The following procedures explain how to configure compact and build operations.

Compact Individual Dictionaries

1. In the Administration Console, go to Index > Linguistics > Dictionaries > Dictionary > dictn
> Configuration.

2. Select Enable compact and specify the compact policy.

132 - Configuration

Clearing Dictionaries

◦ Choose to compact when N import streams have been done since the last compact
operation.

◦ Choose to compact every N second.

3. Click Save and Apply.

Fine-Tune the Compact Size

1. Edit the <DATADIR>/config/Dictionary.xml file

2. Add a FrequencyCompactFilter to the CompactPolicies node, as shown in the
following example.
<dict:CompactPolicies disjunctives="true">

 <dict:ImportCountCompactPolicy countThreshold="1"/>

 <dict:FrequencyCompactFilter lang="fr" minFrequency="10"/>

</dict:CompactPolicies>

In this example, the compact file is lightened of all French terms that do not have at least 10
occurrences.

Build Individual Dictionaries

1. In the Administration Console, go to Index > Linguistics > Dictionaries > Dictionary > dictn
> Configuration.

2. Select Enable build and specify the build policy.

◦ Choose to build when N compact operations have been done since the last build operation.

◦ Choose to build every N second.

3. Click Save and Apply.

Force a Compact and a Build Operation

Sometimes, you do not want to wait for the end of a compact or a build operation, and start them
at once.

1. In the Administration Console, go to Index > Linguistics > Dictionaries.
2. In the Dictionary status panel, click Compact & Build for the dictionary you want to compact

and build immediately.

3. Click Save and Apply.

Clearing Dictionaries

You sometimes need to clear your dictionaries after you have edited:

Configuration - 133

Adding 'Did You Mean?' Spell-Check

• the configuration of dictionary resources in Linguistics > Dictionaries > dictN > Resources,
for example, related terms or ngrams parameters.

• the tokenization config associated to dictionary features in Linguistics > Dictionaries > dictN
> Features.

Recommendation: Clear your dictionaries when documents have been deleted from your corpus
to ensure their reliability.

Clear Individual Dictionaries

1. In the Administration Console, go to Index > Linguistics > Dictionaries.

2. From the Dictionary status section, click Clear for the dictionary you want to clear out.

Clear All Dictionaries

1. In the Administration Console, go to the Home page.

2. From the Indexing section, click Clear.
3. Select Dictionary data for ALL build groups and click Clear.

Clear All Dictionaries (Alternative Procedure)

1. Go to Index > Linguistics > Dictionaries.

2. Click Clear all dictionaries.

Adding 'Did You Mean?' Spell-Check

You can enable your search logic to include spell-check, which suggests alternate words or
expressions to replace the original user query.

About Spell-Check

Setting Up Spell-Check

About Spell-Check

A score determines spell-check suggestions. The score is calculated based on:

• First, the Damereau-Levenshtein transformation distance from the original word.

• Second, the frequency of terms in your corpus.

You can also force or prevent them using allow list and block list resources. In that case, the
transformation distance and the term frequency are bypassed.

134 - Configuration

About Spell-Check

How is the Transformation Distance Calculated

The transformation distance (Damereau-Levenshtein distance) is the number of changes (replace
a letter, add a letter, transpose a letter, delete a letter) required to transform word A to word B.
Each change represents a distance. The greater the transformation distance, the larger the
difference between two words.

Exalead CloudView performs distance 1 and distance 2 spell-checking. This means spell-check
suggests alternate words that have a distance of 1 (or 2, for longer words) from the original word.

For example, let us assume each transformation change (replace, add, transpose, delete) has the
same distance value of 1. If you index the Exalead CloudView documentation and enable spell
check, a search on "exaleed" would suggest "exalead”. "exalead" qualifies as a valid suggestion of
spell check because it is at distance 1 from the original search term (an "a" replaced the third "e”),
and occurs quite frequently in the documentation.

By contrast, "exaloda” (if this word really exists in the corpus) would not qualify because it is
at distance 2 from the original search team: it requires substituting the "o” with an "e”, plus
transposing the "d" and "a".

Improve Spell-Check with Ngram and Phonetic Extraction

Spell-check is far more effective when your corpus is indexed with phonetic and Ngram extraction.
You can configure this in the Data Model, as described in Set Up Ngram and Phonetic Extraction
in the Data Model (Optional) .

An ngram is a sequence of N words. Its sole purpose is to improve spell checking for multiword
expressions. At indexing time, 2-, 3-, and 4-word ngrams are extracted from your corpus and
stored in the dictionary. Exalead CloudView is then able to compare a user’s query with these
ngrams, calculate the probability that the user meant to use a different spelling, and then suggest
alternate expressions.

Important: These options improve quality but also impact performance. Extracting spell check
ngrams is CPU-intensive. Storing ngrams and phonetic forms significantly increases dictionary
size, since it stores the various phonetic forms for tokens in addition to the tokens themselves.

Force or Prevent Spell-Check Suggestions with Allow Lists and Block Lists

You can force or prevent certain spell-check suggestions through the use of allow lists and block
lists.

• Allow list: Always suggests X when a user queries for Y.

Configuration - 135

Setting Up Spell-Check

For example, people often enter "excede" instead of "exceed". To automatically suggest
"exceed" (regardless of which spelling occurs most frequently in your dictionary) when a user
types "excede", add this word pair to your allow list.

• Block list: This does not block specific spell check suggestions. Instead, it blocks specific query
words from correction.

Say that you want to search for documents containing brand names, and you do want the
spellcheck to suggest other names. For example, for "Informatica", by default, spellcheck
suggests "information". Solution: add "Informatica" to the spellcheck block list to ensure that
spellcheck never corrects this term.

Preferred Settings

Default settings have been chosen so that search performance is not impacted by the spell-
checker activation.

To get a more effective spell-check:

• Check that Extract spell check ngrams is clicked in Data Model > Semantic Types > text.

Note: The ngram dictionary is built from a sample of document texts. Only one document out of
5 takes part extraction. Therefore, you have to index a minimum number of documents to reach
a reasonable level of quality for spell-check. Being based on statistical algorithms, the more
documents you have in the index, the better the spell-checker works.

• Select Keep only most important suggestions in Search > Search Logics > your search
logic > Query Expansion to increase suggestions relevancy. It is assessed by querying the
index and checking the count of documents returned.

• If spell-check suggestions are displayed too often, set a value for Only check spelling
if query returns less than in Search > Search Logics > your search logic > Query
Expansion.

Setting Up Spell-Check

This section explains how to enable and configure the spell-check feature.

Enable Spell Check

1. In the Administration Console, go to Search > Search Logics > your search logic > Query
Expansion.

2. Under Spell check, select Enable.

3. (Optional) Select another dictionary to use for spell check.

136 - Configuration

Setting Up Spell-Check

4. (Optional) Modify the remaining spell check options. These are described in the tooltips on the
interface.

5. Select an allow list or a block list. For more information, see Force or Prevent Spell-Check
Suggestions with Allow Lists and Block Lists.

6. Click Apply.

Set Up Ngram and Phonetic Extraction in the Data Model (Optional)

Ngrams and phonetic forms improve spell-check quality. See Improve Spell-Check with Ngram
and Phonetic Extraction.

1. In the Administration Console, go to Index > Data Model > Semantic Types.
2. Click the text semantic type to display its configuration.

3. Select Extract spell check ngrams and Extract phonetic forms.

4. Click Apply.

This adds the Phonetizer and NgramsExtractor semantic processors to your analysis
pipeline.

5. Reindex your documents.

Enable Dictionaries for Spell-Check (Allow or Block List)

Before you can specify an allow list or block list for spellcheck, you must first enable these on the
target dictionary.

1. In the Administration Console, go to Index > Linguistics > Dictionaries.

2. Select an existing dictionary or create a new one. See Create a New Dictionary.

3. Go to Features and click Spellcheck to display its setup pane.

4. In the setup pane, specify a new tokenization config. To understand tokenization, see
Tokenizing Text.

5. Under Allow list or Block list.

◦ If you have already created a resource file: specify a name for this allow list or block
list, and in List path, select the resource file (list of resources created in the Resource
Manager) or alternatively, if you created a resource file using cvadmin, type the path to the
resource file using the format resourcemanager://group_name/resource_name.

◦ OR, create a new resource: click Create new, specify a name for the allow list or block
list, and click Accept. This adds a resource file to the Resource Manager, which ensures
correct deployment of interdependent resource files in multihost environments.

◦ Click Add allow list or Add block list to add more lists.

6. Click Apply.

Configuration - 137

Adding Search Suggestions

7. To define the contents of the resource file, click Edit. This takes you to the Business Console.
For more information, see "Add a spellcheck block list" and in the Exalead CloudView
Business Console User's Guide.

Set Up Spell-Check Allow Lists or Block Lists on a Search Logic

1. In the Administration Console, go to Search > Search logics > Your search logic > Query
Expansion tab.

2. Under Spell check, select Enable if not already enabled.

3. Expand Block and allow lists.

4. Next to Allow list or Block list, select a list. It includes all allow list or block lists created on the
dictionary used for spell check.

If you do not see any lists in the list, it means that none exists in the selected dictionary.
Either select another dictionary, or add at least one list to the current dictionary. See Enable
Dictionaries for Spell-Check (Allow or Block List).

5. Click Apply.

6. (Optional) To define the contents of the resource file, click Edit. This takes you to the
Business Console. For more information, see "Add a spellcheck block list" and in the Exalead
CloudView Business Console User's Guide.

Set Up Spell-Check for CJK (Chinese-Japanese-Korean)

Check and apply the Preferred Settings first.

1. In the Administration Console, go to Search > Search logics > Your search logic > Query
Expansion tab.

2. Under Spell check, expand Edit distance and set:

a. 0 for First letter.
b. 1 for Insertion.

c. 1 for Deletion.

3. Expand Triggers and set 4 for Min word length anywhere for distance 2.

Adding Search Suggestions

The goal of search suggestion is to auto-complete the user’s query by providing relevant
suggestions for what the user wants to search. It shows some of the terms associated with the
beginning of the user search query.

138 - Configuration

About Search Suggestions

Note: Exalead CloudView also offers another query suggestion feature, called "Trusted Queries".
It guides end users by suggesting categories from indexed facets. For more information, see
"Adding Trusted Queries" in the Exalead CloudView Mashup Builder User's Guide.

About Search Suggestions

Create a Suggest Dictionary

Enable the Suggest in the Mashup UI

Use the Suggest Via the Search API

Export Suggest Dictionary Content to an XML File

Dispatch a Query to Several Suggest Dictionaries

Performance Considerations and Options for Search Suggest

About Search Suggestions

Search suggest relies on precomputed dictionaries to offer efficient matching (millisecond-range,
thousands of queries per second). It can be based on:

• Exalead CloudView index content – fetching the values of an index field or a category facet

• Previously performed queries

• Custom XML dictionaries provided by the Administrator.

Suggest dictionaries are recomputed periodically.

A suggest dictionary contains suggest entries. These entries are the suggestions to be made to
the user. Each entry has a given score. The number of possible matches for a given input string is
a fixed parameter when building a suggest. For each input string, only the N best matches can be
returned.

Available Suggest Types

Suggest Type Description

Suggest from the index These take the result of an index query and build a suggest dictionary from
a part of each hit.

You can use this to either build a suggest dictionary based on the whole
index, by using "#all" as the query, or to restrict to a subset of the index.

• Index field suggest – Takes the value of an index field. You can
enable security for this type of suggest (expand the Build options
node). It uses both documents and user security tokens to restrict

Configuration - 139

About Search Suggestions

Suggest Type Description
suggestions. To build suggests on alphanumeric index fields, see also
Performance Considerations and Options for Search Suggest.

• Category title suggest – Takes all category titles from a subpath of
one category index field.

• Category path suggest – Takes all category paths from a subpath of
one category index field.

• CSV index field suggest – Takes one value from a multiencoded CSV
field, also known as the "metas" field in the default configuration.

• Related terms suggest – Takes the value of the keyword field.

Suggest from query
reporting logs

The option Query reporting suggest automatically builds a suggest
dictionary from all stored query logs. These query logs also serve for
search reporting (see Analyzing User Queries with Reporters).

Suggest from a custom
XML dictionary

If you want to suggest dictionary from an external data source, use the
Static XML suggest option:

• Create your own XML dictionary (see XML dictionary structure below).

• Place the XML file on the server hosting the main gateway.

In the Administration Console, add a Static XML suggest and give the
path to the XML file, prepending it with "file://" (for example file:///
data/mydir/mydictionary.xml).

The root node of the XML file is SuggestDictionary, it contains:

• a set of SuggestDictEntry

• maxEntries

• subExpr

• subString

• permutation (optional, see the Compute permutations option in
Configure Build Options)

Each entry of the dictionary is defined by a SuggestDictEntry node,
which contains the attributes:

• entry – the expression to match

• score – the score

• display – what must be displayed

140 - Configuration

About Search Suggestions

Suggest Type Description

A suggest dictionary entry can contain alternative expressions. For
example, if you want to add synonyms ("resto" for "restaurants"), you
can add a SuggestDictEntryAlternativeForm node inside
SuggestDictEntry. This specific node contains two attributes:

• form - the alternative expression to add

• score - the score of the alternative form, if not set we use the score of
SuggestDictEntry

Example: Here the Suggest query "a" returns 3 results: "aircraft",
"airlines", "air".

<sugg:SuggestDictionary

xmlns="exa:com.exalead.mot.suggest.v10"

maxEntries="3" subExpr="false" subString="false"

> <sugg:SuggestDictEntry entry="airport" score="1"

display="Airport" /> <sugg:SuggestDictEntry entry="air"

score="2" display="Category:Air" /> <SuggestDictEntry

entry="airlines" score="3" display="Airlines"/>

<sugg:SuggestDictEntry entry="aircraft" score="4"/>

<sugg:SuggestDictEntry entry="airelles" score="1" />

<sugg:SuggestDictEntry entry="airpower" score="1" />

<sugg:SuggestDictEntry entry="trucpower" score="1" /

> <sugg:SuggestDictEntry entry="restaurant"

score="10"> <sugg:SuggestDictEntryAlternativeForm

form="resto" score="2" /> </sugg:SuggestDictEntry> </

sugg:SuggestDictionary>

Example with extra information: A Suggest dictionary entry can
also contain a set of extra information (a set of URL for example),
stored in SuggestDictEntryExtraInfo. Extra information are
strings associated to each entry. They are returned by the suggest
API when doing a query. You can also store the information in
SuggestDictEntryKeyValue if you want to store a set of keys/
values. In this example, the entries "airport", "air", "aircraft" and
"airelles" have extra information.

<sugg:SuggestDictionary

xmlns="exa:com.exalead.mot.suggest.v10"

maxEntries="3" subExpr="false" subString="false" >

<sugg:SuggestDictEntry entry="airport" score="1">

<sugg:SuggestDictEntryExtraInfo info="http://

Configuration - 141

Create a Suggest Dictionary

Suggest Type Description
www.c.com"/> <sugg:SuggestDictEntryExtraInfo

info="http://www.d.com"/> </sugg:SuggestDictEntry>

<sugg:SuggestDictEntry entry="air" score="2"/>

<sugg:SuggestDictEntry entry="airlines" score="3" /

> <sugg:SuggestDictEntry entry="aircraft"

score="4"> <sugg:SuggestDictEntryKeyValue

key="url.first" value="http://www.a.com"/>

<sugg:SuggestDictEntryKeyValue key="url.second"

value="http://www.b.com"/> </SuggestDictEntry>

<sugg:SuggestDictEntry entry="airelles"

score="1" > <sugg:SuggestDictEntryExtraInfo

info="http://www.e.com"/> </sugg:SuggestDictEntry>

<sugg:SuggestDictEntry entry="airpower" score="1" />

<sugg:SuggestDictEntry entry="trucpower" score="1" />

</sugg:SuggestDictionary>

Suggest from a custom
precompiled resource

A static resource suggest takes an already-compiled suggest dictionary
as a parameter. This dictionary is loaded by the search server suggest
command to answer queries. All the suggest types available in the
Administration Console help retrieving the entries that must be compiled to
produce this suggest resource.

This suggest dictionary cannot be scheduled or built.

Force or Prevent Suggestions with Allow Lists and Block Lists

You can add block list and allow list resources to your suggest dictionaries.

• Allow list: Always suggests the listed entry when a query matches one of its alternative forms.
No need to rebuild the suggest dictionary. Note this gives the same behavior as if you manually
add entries into the suggest dictionary with a maximum score.

• Block list: Deletes the specified suggest expression at search time (suggest time). No need to
rebuild the suggest dictionary.

Create a Suggest Dictionary

This section gathers all the procedures you need to add and configure a Search Suggest
dictionary.

Add a New Suggest Dictionary

1. In the Administration Console, go to Search > Suggest.
142 - Configuration

Create a Suggest Dictionary

2. Click Add suggest and select one of the suggest types. For more information, see Available
Suggest Types.

Add Allow Lists or Block Lists to a Suggest Dictionary

1. Expand Block and allow list.
2. Next to Allow list or Block list, specify your resource file.

◦ If you have already created a resource file, click Browse. Select the resource file, which
contains all allow list and block list resources created in the Suggest group of the Resource
Manager. Then click Accept. If you have created a resource file using cvadmin, type
the path to the resource file using the format resourcemanager://group_name/
resource_name.

◦ OR, create a new resource: click Create new, specify a name for the allow list or block
list, and click Accept. This adds the resource to the Suggest group in the Resource
Manager, which ensures correct deployment of interdependent resource files in multihost
environments.

3. Click Apply.

4. (Optional) To define the contents of the resource file, click Edit. This takes you to the Business
Console. For more information, see "Add a Suggest Block List" and in the Business Console.

Configure Query-Time Options

1. Expand Query-time options to specify how the suggest handles queries.

Option Description

Distance Allows approximate matching. The higher the distance the more approximate the
match.

• 0: exact match.

• 1: distance tolerance of 1 between the result and the query

• 2: distance tolerance of 2 between the result and the query

For more information about approximate matching, see Approximation.

Autocomplete Appends suggest results to the last query word entered in the search field to
autocomplete it.

It only applies to suggests built with the Subexpr matching or Substring
matching build options.

Recursive Discards the leftmost word of the query progressively.

Configuration - 143

Create a Suggest Dictionary

Option Description

It sends each new subquery to the suggests until you reach the max number of
suggestions, or until there is no more word to use.

For example, for a query "A B C", the suggest is called 3 times, with "A B C", "B
C", and "C".

Configure Build Options

Important: These options can have a tremendous performance impact, read carefully
Performance Considerations and Options for Search Suggest.

1. For all suggests (except those based on custom dictionaries), you can configure build options.

Build option Description

Subexpr and
Substring matching

Normally, suggest matching is prefix-based: "first" returns entries "first test"
and "first image".

Sometimes, you want to be able to do a wider matching, not always prefix-
based.

• Subexpr matching allows you to find matches on every start of word.
For example, "first test" returns both for "fir" and for "tes".

• Substring matching allows you to find matches on every letter. For
example, "first test" returns for "fir", for "rs", for "es", ...

Sentence split and
Ngram split

For performance reasons, use these options to avoid long entries. By
"long", we mean entries longer than 100 characters (100 bytes).

Sentence and ngram split options allow you to break up a suggest entry
into several entries, and to perform matches independently on the chunks.

• For sentence split, if the entry is multisentence, an entry is created for
each sentence.

• For ngram split, a sliding window of ngrams of a given size is created
and an entry created for each step of the window. For example, "a b c d
e f" with a split on 4-grams gives entries "a b c d", "b c d e", "c d e f".

Note: 0 means no splitting.

Compute
permutations

Computes all permutations for an entry and adds them as separate
entries. For example, if you start entering "Angeles", Exalead CloudView
automatically suggests "Los Angeles".

144 - Configuration

Create a Suggest Dictionary

Build option Description

Note: Entries longer than 8 words are not permuted for performance
reasons.

This action is performed after the sentence split if the Sentence split
option is selected.

To apply permutation to Static XML suggest and Static resource
suggest types, you need to add permutation="true" to the
SuggestDictionary tag in your XML file or suggest resource in the
Business Console.

Max. entry length The maximum number of characters in a suggest entry.

This is a security measure to prevent overly long entries. They are
automatically truncated after the specified length.

0 means no limit.

Max. suggestions The maximum number of suggestions that can be shown to the user for a
given input string. You cannot change this dynamically.

Tokenization config Specifies the Tokenization configuration to use.

Sanitize entry This option strips the entry of punctuation, and encloses any UQL
operators in quotes.

It is useful when you want to suggest among a list of product references
containing "-" (hyphens) or other delimiters, and you do not want any
tokenization on these characters.

Build after import Triggers a build automatically after the index refreshes.

Enable security Makes use of documents and users’ security tokens to restrict suggestions.

Compile the Suggest Dictionary

Once created, suggests must be compiled in the Administration Console.

Important: Building suggest fails if there is not enough disk space to calculate it. It is best to
allocate substantial disk space for the suggest build to copy/compute raw files from temporary
files (in build/resources/tmp). If Build options are enabled, for example subexpr matching
and substring matching, the required disk space is even bigger. Read carefully Performance
Considerations and Options for Search Suggest.

1. Go to Search > Suggest and click Build now.

Configuration - 145

Enable the Suggest in the Mashup UI

For each suggest, you can also schedule suggest builds using the Build scheduling options.

Enable the Suggest in the Mashup UI

To display suggests in the Mashup UI, you need to enable this option in the Mashup Builder.

1. In Mashup Builder, go to a page using a search form widget. For example, the /index page,
which uses the Standard Search Form widget.

2. Click the widget header to display its properties panel.

3. On the Suggest tab, complete the following:

a. Select Enable suggest.
b. For Suggest Name, click inside the field.

c. From the dynamic list that displays on the left, select the suggest service.

Note: If you do not see the suggest you created, refresh the list.

4. Repeat these steps for the /search page.

5. Click Apply.

Use the Suggest Via the Search API

If you are using a custom UI, you probably want to access the suggest backend API, which directly
provides the suggestion.

It is available as a Search API command, by default on /suggest.

For example, if the name of your suggest is "mysuggest", then the API is available on:

http://<searchserver_host>:<searchAPI_port>/suggest/service/mysuggest

It supports HTTP GET queries, with the following input parameters.

Parameter Value Description

q string The input query

distance integer

(0, 1, 2)

The suggest dictionaries supports fuzzy matching at runtime. This
specifies the maximum Levenshtein distance between the input
string and the suggestion. 0 means exact match

minLenForDist1integer Only searches for distance 1 fuzzy matches if the original word
in the query is at least N characters long. This avoids too much
approximation on very short words. The suggested value is 3.

146 - Configuration

Export Suggest Dictionary Content to an XML File

Parameter Value Description

minLenForDist2integer Only searches for distance 2 fuzzy matches if the original word
in the query is at least N characters long. This avoids too much >
approximation on very short words. The suggested value is 6.

logic string Specify a Search Logic name.

exhaustive true/false
Boolean

Displays exhaustive results.

recurse true/false
Boolean

Suggests new matches on query words recursively.

autocomplete true/false
Boolean

Suggests matches for the last word only.

output string

(xml or json)

Output format:

• xml – returns a complete output, with text suggestions, score,
distance.

• json – returns text suggestions only.

Other search output format such as csv, flea, and atom, are not
supported.

Note: The Accept HTTP header is also taken into account if
output is not specified.

callback string When using JSON output, the name of a Javascript function
to call. The returned Javascript fragment is "callback &&
callback(json_object)".

Export Suggest Dictionary Content to an XML File

It can be useful for debugging purpose or generating other resources, to see the entire content of
a suggest dictionary.

1. Make sure that the Exalead CloudView instance is running.

2. Go to <DATADIR>/bin/ and run cvadmin.

3. Start the following command:
cvconsole cvadmin> suggest dump-suggest-to-xml [args]

Where the args are:

◦ [name=]: The Suggest name (type: STRING)

Configuration - 147

Dispatch a Query to Several Suggest Dictionaries

◦ [output=]: Path to the output XML file (type: FILE)

◦ [dictionary=]: Dictionary name for related-terms based suggest (type: DICTIONARY)

Dispatch a Query to Several Suggest Dictionaries

Suggest dispatchers allow you to use several suggests in a single query and therefore quickly
refine your data at search time.

You can:

• Map prefix handlers to suggest dictionaries and then start queries made of several prefixes and
associated suggests.

• Define a default suggest to get suggestions without entering prefix handlers in the search field.
By combining this default suggest with prefix handler/ suggest pairs, you can further extend
search suggestion possibilities.

Add and Configure a Suggest Dispatcher

1. Click Add suggest dispatcher, enter a name, and click Accept.
2. Specify the options to apply:

Option Description

Match whole query Sends the whole query to the default suggest if the cursor is outside a
prefix handler.

For example, if the query is:

author: "George Lucas" Star Wars

If the cursor is after the last quote, you are outside the author: prefix
handler scope, and:

• If the option is selected, the suggest is made on the whole query,
author: "George Lucas" Star Wars

• If cleared, the suggest is applied to Star Wars only. author:
"George Lucas" is not considered.

Use default suggest for
non configured prefix

Sends the query to the default suggest if the cursor is within an
undefined prefix handler.

If cleared, undefined prefix handlers are ignored and there is no
suggestions.

Add quotes to
suggestions

Adds quotes where required so that the whole suggestion is included in
the prefix handler.

148 - Configuration

Dispatch a Query to Several Suggest Dictionaries

Option Description

Add prefix handler to
suggestions

Adds prefix handlers automatically when you enter a query

Check with search logics Selecting specific search logics allows prefix handler suggestion and
configuration check while configuring prefix handler/suggest pairs
below.

Max. suggestions Allows you to define a maximum number of suggestions to be
displayed (default is 0, meaning no limit).

Note: You can also define a maximum number of suggestions to be
displayed for each prefix handler. See below.

Boost variety Allows to retrieve the best matches for each suggest according to the
maximum number of suggestions defined previously.

Note: This mode does not return the best global results but the best
results for each suggest.

Example: a suggest dispatcher is configured to display 10 suggestions
maximum, for 3 suggest dictionaries.

Without Boost variety, you get:

• Suggest 1: 3 results

• Suggest 2: 10 results

• Suggest 3: 8 results

With Boost variety, you get:

• Suggest 1: 3 results

• Suggest 2: 4 results

• Suggest 3: 3 results

Prefix handler | Suggest Maps a prefix handler to a suggest dictionary. You can map as many
pairs as required.

Select Default to specify the suggest dictionary to use by default for a
specific prefix handler.

Note: You must specify at least one default suggest, using the
following options:

• Match whole query

Configuration - 149

Dispatch a Query to Several Suggest Dictionaries

Option Description

• Use default suggest for non configured prefix

• Add prefix handler to suggestion

If required, define a maximum number of suggestions to be displayed
for each prefix handler in the Max. suggestions field.

3. Click save and apply your configuration.

Note: You do not need to rebuild the suggest dictionaries for suggest dispatchers.

Enable a Suggest Dispatcher in Mashup Builder

1. In Mashup Builder, go to a page using a search form widget, for example the Standard Search
Form widget.

2. Click the widget header to display its properties panel.

3. On the Suggest tab, complete the following:

a. Select Enable suggest.
b. For Action, select dispatcher.
c. For Suggest Name, click inside the field. From the dynamic list that displays on the left,

select the suggest dispatcher previously created in the Administration Console.

4. Click Save and then apply your changes.

5. Open the Mashup UI and enter a query using the prefix handlers defined previously.

You get suggests for each of these prefix handlers.

Example: Two Prefix Handlers Mapped to Two Suggests

In the following example, we have set a suggest dispatcher to map two prefix handlers
(categories and text) to two different suggests. We are then able to enter queries with the
following format: categories: suggestX text: suggestY

1. Open the Mashup UI and enter a first prefix handler, for example categories: and a few
characters to get a first list of suggestions.

150 - Configuration

Dispatch a Query to Several Suggest Dictionaries

2. Enter a second prefix handler, for example text: and a few characters to get a second list of
suggestions.

3. You can also make this query with the Search API suggest/dispatcher command.

The URL format is the following:

http://<HOSTNAME>:<BASEPORT+10>/suggest/dispatcher/<DISPATCHER_NAME>

For example, to get the suggest obtained in step 2, we could enter the following URL:

http://myhost:10010//suggest/dispatcher/mydispatcher?q=categories:"connectors" text:"mana

Configuration - 151

Performance Considerations and Options for Search Suggest

Performance Considerations and Options for Search Suggest

To perform extremely efficient matching, we have to compute the exact matches for each input
substring.

For example, if the suggest entries are:

• "first test" score=10

• "first of a kind" score=20

• "second test" score=10

• "first test of the world" score=25

And the number of matches is set to 2

• "first" returns "first of a kind" and "first test of the world"

• "first t" returns "first test" and "first test of the world"

The build time and temporary space required can roughly be computed as:

(number of entries) x (length of entries)2

When you enable substring matching, we have to recreate this prefixing for each letter of the entry.
Therefore, the build time and temporary space can be computed as:

(number of entries) x (length of entries)2 x (length of entries)

152 - Configuration

Adding Related Terms

When you enable subexpr matching, we have to recreate this prefixing for each word of the entry.
Therefore, the build time and temporary space can be computed as:

(number of entries) x (length of entries)2 x (words per entry)

The build time is therefore highly dependent on the entries size. It is therefore an extremely bad
idea to compute a suggest on the "text" field without any options. Such a suggest can take hours
to build, even with a few thousand documents. If you want to build suggest based on the textual
content of the index, you must use:

• Sentence splitting or ngram splitting

• Maximum entry size limitation (about 50 chars is a sane default value)

Adding Related Terms

You can configure Related Terms to offer users-related query terms that might be relevant
depending on their original queries.

About Related Terms

Configure Related Terms and Similar Documents Detection

About Related Terms

Related terms are a list of nouns or adjectives separated by link words, and shared by at least N
documents of your corpus. The link words are identified by an internal, language-specific resource
file that you cannot edit.

Related terms are flagged at index time as semantic annotations, based on the configuration of the
Related Terms Extractor semantic processor.

Note: You can also add text directly to the dictionary using the dedicated annotation
relatedTermCustom when defining annotations (Kind or Name field).

For related terms to display on the Refinements panel at search time, they must meet the following
criteria:

• Not be shared by more than X% of your hits (X=25 by default).

• Be in at least Y hits (Y=3 by default).

• Have a corpus frequency of at least Z (Z=0 by default).

Configuration - 153

About Related Terms

Force or Prevent Related Terms with Allow Lists and Block Lists

• Allow list: An indexing-time instruction that ensures whenever the specified expression is
detected in the text. It is sent to the dictionary as a possible related term.

Note: This does NOT bypass the selection criteria for displaying related terms in the
Refinements panel. The related terms that appear are determined according to their relevance
to the search results. You cannot force a certain related term at search time.

• Block list: A search-time filter that blocks the specified expression from displaying as a related
term in the Refinements panel. There is little to no performance impact, and no need to
reindex.

Configure the Detection of Similar Documents Based on Related Terms

Similar documents search means that for each hit, Exalead CloudView generates a new query that
retrieves all indexed documents deemed close enough to it.

Depending on the frequency of each related term in your corpus, the number of related terms in
your documents, and the conditions specified in the Similarity configuration parameters, the prefix
handler generates:

• A new dynamic virtual field that specifies the similarity formula.

• A new dynamic sort on this virtual field, to display more similar documents first.

UQL Query

For example, your similar query probably looks like:

similar:(264 328 579 628 730 782 806 847 853 871 955 1064 1071 1073 1074 1134 1137 1177 1194 1270 1285 1362
 1390 1391 1474 1537 1539 1560 1579 1585)

ELLQL Query

This generates the following ELLQL query, which defines the similarity virtual field and assigns a
weight to each keyword lookup according to its corpus frequency.

#query{nbdocs=934, score.expr="@term.score * @proximity + @b",
 similarity.expr="(#length(keyword) >= 5) * ((score >= 332925) * score / #sqrt(30* #length(keyword)))
/ 0.083231266666667",
 proximity.maxDistance=1000,
 term.score=RANK_TFIDF}(#or(#num{b=53646}(keyword,==,264)
 #num{b=70688}(keyword,==,328) #num{b=75574}(keyword,==,579)
 #num{b=74506}(keyword,==,628) #num{b=34317}(keyword,==,730)
 #num{b=40264}(keyword,==,782) #num{b=107885}(keyword,==,806)
 #num{b=143583}(keyword,==,847) #num{b=76695}(keyword,==,853)
 #num{b=80417}(keyword,==,871) #num{b=60146}(keyword,==,955)

154 - Configuration

Configure Related Terms and Similar Documents Detection

 #num{b=88194}(keyword,==,1064) #num{b=61715}(keyword,==,1071)
 #num{b=30021}(keyword,==,1073) #num{b=46950}(keyword,==,1074)
 #num{b=61715}(keyword,==,1134) #num{b=143583}(keyword,==,1137)
 #num{b=96514}(keyword,==,1177) #num{b=90061}(keyword,==,1194)
 #num{b=51783}(keyword,==,1270) #num{b=130086}(keyword,==,1285)
 #num{b=90061}(keyword,==,1362) #num{b=83255}(keyword,==,1390)
 #num{b=161950}(keyword,==,1391) #num{b=161950}(keyword,==,1474)
 #num{b=43783}(keyword,==,1537) #num{b=92059}(keyword,==,1539)
 #num{b=76695}(keyword,==,1560) #num{b=99010}(keyword,==,1579)
 #num{b=69832}(keyword,==,1585)))

Configure Related Terms and Similar Documents Detection

If you selected the option Enable related terms during setup, the related terms feature is already
set up. You can yet customize default values or add block lists and allow lists.

If you did not select the option Enable related terms during setup, see the procedure below to
enable related terms first.

Find Out Which Languages Support Related Terms

1. In the Administration Console, go to Index > Linguistics > Dictionaries > dictionary_name >
Related Terms.

or, check your <DATADIR>/config/dictionary.xml file.

Enable Related Terms

1. In the Administration Console, select Data Model > Semantic Types > text.
2. Select the Extract related terms check box. A default semantic processor

(RelatedTerms.default) is added to your analysis pipeline and a facet (rt_keyword) is
added to your search logic.

3. To allow the display of related terms in the Refinements panel of your search application,
select Search > Search Logics > Your_Search_Logic > Facets.

4. Under Related terms (at the bottom), select Enable.

Related terms are enabled. See the procedure below to customize default values or add block lists
and allow lists.

Configure Related Terms

1. In the Administration Console, select Search > Search Logics > Your_Search_Logic >
Facets.

2. In the Related terms section, configure the following options:

Configuration - 155

Configure Related Terms and Similar Documents Detection

Parameter Description

Dictionary Specify the dictionary to use.

Value field indexing RT Index field in which related terms have been indexed (by default,
named keyword).

Block list Blocks the specified expression from displaying as a related term in the
Refinements panel. See Set Up Related Terms Block Lists.

You can also set up related terms allow lists. See Set Up Related
Terms Allow Lists.

Maximum number of RT Maximum number of related terms to be computed for a query.

Minimum frequency for a
RT

Minimum number of occurrences in the whole index for a term to be
possibly selected for synthesis.

Result-set Low-pass filter Filters out terms occurring more than this threshold in the result set
(value comprised between 0 and 1).

Corpus Low-pass filter Filters out terms occurring more than this threshold in the whole index
(value comprised between 0 and 1).

3. Optionally, for big corpuses, you can enhance the quality and performance of Related Terms
calculation by tuning two parameters in the Search Logic XML configuration.

a. Open the API Console and click Manage
b. Search for SetSearchLogicList and go the <ns:#RelatedTermsSynthesisConfig>

node and configure its parameters.

Note: For information about these parameters, see "RelatedTermsSynthesisConfig" in the
Exalead CloudView XML Configuration Reference Guide.

4. Click Apply.

Set Up Related Terms Block Lists

1. In the Administration Console, go to Index > Data processing > Pipeline name > Semantic
Processors.

2. Under Block list, specify your resource file.

◦ If you have already created a resource file, click Browse to select the resource file. If you
have created a resource file using cvadmin, type the path to the resource file using the
format resourcemanager://group_name/resource_name.

◦ OR, create a new resource: click Create new, specify a name for the list, and click Accept.
This adds a resource file using the same name as the Administration Console's Resource

156 - Configuration

Configure Related Terms and Similar Documents Detection

Manager, to ensure correct deployment of interdependent resource files in multihost
environments.

◦ To define the contents of the resource file, click Edit. This takes you to the Business
Console. For more information, see "Add a related terms block list or allow list" in the
Exalead CloudView Business Console User's Guide.

3. Click Apply.

Set Up Related Terms Allow Lists

1. In the Administration Console, go to Index > Data processing > Pipeline name > Semantic
Processors.

2. Under Allow list, specify your resource file.

◦ If you have already created a resource file, click Browse to select the resource file. If you
have created a resource file using cvadmin, type the path to the resource file using the
format resourcemanager://group_name/resource_name.

◦ OR, create a new resource: click Create new, specify a name for the list, and click Accept.
This adds a resource file using the same name as the Administration Console's Resource
Manager, to ensure correct deployment of interdependent resource files in multihost
environments.

◦ To define the contents of the resource file, click Edit. This takes you to the Business
Console. For more information, see "Add a related terms block list or allow list" in the
Exalead CloudView Business Console User's Guide.

3. Click Apply.

Enable the Detection of Similar Documents

The similarity of two documents is based on related terms. You must set up related terms before
you can use similar documents. See Enable Related Terms.

1. In the Administration Console, go to the Search Logics > Hit Content tab.

2. In the Similarity section, select Enable.

3. Change the configuration parameters if required.

Parameter Description

Prefix handler name Specifies the prefix handler that must be entered in the search box
before the query.

Min. shared keywords Does not return documents that do not share at least the specified
number of shared keywords with the reference document.

Configuration - 157

Configure Related Terms and Similar Documents Detection

Parameter Description

Min. keywords per
document

Does not return similar documents that do not have at least the
specified number of keywords.

Min. similarity threshold Specifies the minimum similarity score for two documents to be
considered similar. Value must be between 0 and 1, 1 meaning exact
match.

Language constraint Forces to detect similar documents in the same language.

4. Click Apply.

5. Start a query in the Mashup UI.

You can view similar documents by clicking the Similar results link (on the lower right).

158 - Configuration

Configuring and Using Similarity Measures

Configuring and Using Similarity Measures

The #attrsimilar function calculates similarity between a given vector and vectors in the index.
For example, you can use it to detect 3D parts with similar shape or size.

#attrsimilar is a query node in the index, which returns all the documents matching the
similarity query and calculates the similarity measure. As it does not filter search results at all, you
must combine it with a #filter to return only the documents having a similarity higher than a
given threshold value.

Note: Similarity is the inverse of distance and calculated as follows: similarity = 1 -
distance

Important: The standard way to use #attrsimilar is inside a query template. See Defining
Query Templates.

Configure the Index for Similarity Queries

Use the #attrsimilar Function in the Search API

Code Samples to Create Similarity Query Prefix Handlers

Configure the Index for Similarity Queries

This section describes how to index and process signature values to be able to enter similarity
queries in the Search API and calculate similarity measures.

Configure the Data Model and the Data Processing

The following procedure explains how to store a signature in an index field represented by the
SIGNATURE_INDEX_FIELD variable.

Note: If you need to store multiple signatures, use a dynamic field. To do so, follow step 2 and in
the field Advanced options, select the Multivalued and Store meta names properties.

1. In the Administration Console, go to Index > Data Model > Advanced Schema .
2. Add a SIGNATURE_INDEX_FIELD to store signature values.

a. Click Add field .
b. Enter a name, for example, my_signature_bin and set the type to Binary.

c. Set the new field as RAM-based for performance reasons.

3. Go to Index > Data Processing > Analysis pipeline > Document Processors.

Configuration - 159

Configure the Index for Similarity Queries

4. Add a SimilarStringToPart document processor for part conversion to the pipeline, and in
Input from, enter the name of the SIGNATURE_INPUT_META containing all values of the
signature vector, for example, my_signature_meta.

This document processor can:

◦ Parse signature values and convert them into binary blob ready to use by the index.

◦ Delete the meta to create a part with the same name.

5. In the Mappings tab, create the mapping between the SIGNATURE_INPUT_META and the
SIGNATURE_INDEX_FIELD.

a. Add a mapping source. Give it a name, for example, my_signature_meta and set its type
to Part.

b. Add the SIGNATURE_INDEX_FIELD as mapping target. For example, target the
my_signature_bin index field.

6. Click Apply.

Test the Configuration

1. Go to the API Console to push a test document.

a. In URI, enter a document name, for example, doctest.

b. In Metas, add your SIGNATURE_INPUT_META in the Name column and a list of float
separated by spaces in the Value column.

For example, Name = my_signature_meta, Value = 0.458 -1.68 2

c. Click Push document.

The result must be "The document was successfully pushed."

2. Open the Search API and test the #attrsimilar function with the following syntax:

http://HOSTNAME:BASEPORT+10/search-api/search?eq=

%23attrsimilar{name=SIGNATURE_SCORE_OUTPUT}(SIGNATURE_INDEX_FIELD,

SIGNATURE_FLOAT_VALUES)&hit_meta.SIGNATURE_OUTPUT_META_NAME.expr=@SIGNATURE_SCORE_OUTPUT.value

In this example:

◦ The SIGNATURE_FLOAT_VALUES variable is set with the float values 0 2 3 (you do not
need to surround these values by double quotes "").

◦ The SIGNATURE_SCORE_OUTPUT.value returns a numerical value, which is the similarity
score calculated by the similarity function.

<metas>

 <Meta name="url">

 <MetaString name="value">doctest</MetaString>

 </Meta>

160 - Configuration

Use the #attrsimilar Function in the Search API

 <Meta name="SIGNATURE_OUTPUT_META_NAME">

 <MetaString name="value">0.4833253026008606</MetaString>

 </Meta>

</metas>

For more details about the use of #attrsimilar in the Search API, see the following section.

Use the #attrsimilar Function in the Search API

This section describes the use of the #attrsimilar function in the Search API, after the
http://HOSTNAME:BASEPORT+10/search-api/search?eq=%23 part of the URL. Do not
forget to remove the # before attrsimilar in the URL.

#attrsimilar Syntax

You can call the #attrsimilar function in a query using the following Search API syntax:

#attrsimilar{name=SIGNATURE_SCORE_OUTPUT}(SIGNATURE_INDEX_FIELD,SIGNATURE_FLOAT_VALUES)

Where:

• The SIGNATURE_FLOAT_VALUES (for example, 0 2 3) is compared with all the signatures
stored in the SIGNATURE_INDEX_FIELD.

• SIGNATURE_SCORE_OUTPUT is the name of the ranking key that stores the similarity measure.

This value can be:

◦ Displayed in all hit metas with this meta value:
&hit_meta.SIGNATURE_OUTPUT_META_NAME.expr=@SIGNATURE_SCORE_OUTPUT.value.

◦ Used as a sorting key to display best values first:
&s.SIGNATURE_SORT_KEY_NAME.expr=@SIGNATURE_SCORE_OUTPUT.value&s=desc(SIGNATURE_SORT_KEY_NAME).

To use #attrsimilar with a dynamic field containing multiple signature values, use the following
syntax:

#attrsimilar{...}(MULTICONTEXT_INDEX_FIELD, "context_signature_1", SIGNATURE_FLOAT_VALUES)

Where:

• the MULTICONTEXT_INDEX_FIELD variable corresponds to the dynamic field name
containing the signatures.

• context_signature_1 is the name of a context in this dynamic field.

Similarity Functions

The similarity measure varies depending on the function used to compare vectors two by two.

Configuration - 161

Use the #attrsimilar Function in the Search API

Important: With most similarity functions, it is not possible to compare two vectors that do not
have the same size. In that case, indexed documents for which the signature vector does not have
the same size than the query vector, are not returned to the #attrsimilar node.

To choose a function, use the following syntax:

#attrsimilar{name=SIGNATURE_SCORE_OUTPUT,
 function=euclidian_normed}(SIGNATURE_INDEX_FIELD,SIGNATURE_FLOAT_VALUES)

Similarity is calculated as follows: similarity = 1 - distance. For all _normed functions,
we can summarize the calculation as:

similarity = 1 <--> close; similarity = 0 <--> far
dist = 1 <--> far; dist = 0 <--> close

For non-normed similarity functions (for example Manhattan, Euclidian, etc.), the calculation
is identical but the distance milestones change from [0;1] to [0,Infinity] and similarity is
delimited by [-Infinity;1].

The cosine similarity function is the exception, with milestones -1 (unsimilar) and 1 (similar).
The angular similarity function allows you to bring cosine similarity between 0 and 1, and be
consistent with other similarity functions.

Function Use

manhattan (default function) For L1-normalized vectors.

Formula: sim = 1 - (Sum{abs(x1[i] - x2[i])}/2)

The similarity is between 0 and 1.

manhattan_normed Same as manhattan with L1-normalized vectors first.

Formula: sim = 1 - (Sum{abs(x1[i]/
NormL1(x1) - x2[i]/NormL1(x2))}/2),

NormL1(x)=sum_i{abs(x[i])}

The similarity is between 0 and 1.

manhattan_dist For any vectors.

Formula: dist = Sum {abs(x1[i] - x2[i])}

The distance is between 0 and infinity.

multi_manhattan_normed Compares 2 sets of vectors having the same dimension.

For example, 2 vectors of 8 floats and 3 vectors of 8 floats, using
the exclusive min between all MANHATTAN_NORMED distances.

The similarity is between 0 and 1.

euclidian For L2-Normalized vectors.

162 - Configuration

Use the #attrsimilar Function in the Search API

Function Use

Formula: sim = 1 - sqrt((Sum_i{(x1[i]-
x2[i])^2})/2)

The similarity is between 0 and 1.

euclidian_normed Same as euclidian with L2-normalized vectors first.

Formula: sim = NormL2(x)=sqrt(sum_i{x[i]^2})

The similarity is between 0 and 1.

euclidian_dist For any vectors.

Formula: dist = sqrt(Sum_i{(x1[i]-x2[i])^2})

The distance is between 0 and infinity.

cosine Angle between 2 vectors.

Formula: COSINE = (Sum {x1[i]*x2[i]/
(NormL2(x1)*NormL2(x2))})

Similarity is between -1 and 1, where -1 is unsimilar and 1 is
similar.

angular Formula: arccos(COSINE) / PI

The similarity is between 0 and 1.

dice For binary bits strings. It computes the intersection between bits
to 1 of 2 sequences.

Formula: D = (2*|X inter Y| / (|X| + |Y|))

The similarity is between 0 and 1.

jaccard For binary bits strings. It computes the intersection between bits
to 1 of 2 sequences.

Formula: J = (2*|X inter Y| / (|X| + |Y| - |X
inter Y|))

The similarity is between 0 and 1.

Note: jaccard is sometimes called TANIMOTO

hamming For binary bits strings. It computes the number of ones in an
XOR of bits sequence.

Formula: H = 1 - (|XOR(X,Y)|/lenBit(X))

The distance is between 0 and length(vectors).

Configuration - 163

Code Samples to Create Similarity Query Prefix Handlers

Combine #attrsimilar with a Filter

To combine #attrsimilar with a filter, use the following syntax:

#filter("@SIGNATURE_SCORE_OUTPUT.value>SIGNATURE_SCORE_THRESHOLD",
#attrsimilar{name=SIGNATURE_SCORE_OUTPUT,function=euclidian_normed}
(SIGNATURE_INDEX_FIELD,SIGNATURE_FLOAT_VALUES))

This syntax allows you to keep only the documents with a similarity measure higher than (>) the
SIGNATURE_SCORE_THRESHOLD. For example, you could use a float value like 0.55.

You can also combine several signature computations in one #filter expression. For example:

#filter("@SIGNATURE_1_SCORE_OUTPUT.value>SIGNATURE_1_SCORE_THRESHOLD&&
@SIGNATURE_2_SCORE_OUTPUT.value>SIGNATURE_2_SCORE_THRESHOLD",
#and(#attrsimilar{name=SIGNATURE_1_SCORE_OUTPUT,function=euclidian_normed}
(SIGNATURE_1_INDEX_FIELD,SIGNATURE_1_FLOAT_VALUES),
#attrsimilar{name=SIGNATURE_2_SCORE_OUTPUT,function=euclidian_normed}
(SIGNATURE_2_INDEX_FIELD,SIGNATURE_2_FLOAT_VALUES))

Code Samples to Create Similarity Query Prefix Handlers

The standard use of #attrsimilar is inside a query template using the ELLQL language. For
advanced Exalead CloudView users who want to manage similarity queries in UQL, you can adapt
the following code samples.

To create your similarity query prefix handler, adapt the following code samples to your use case
and package your custom prefix handler as a CVPlugin. For more information, see in the Exalead
CloudView Programmer's Guide.

Code for simple attrsimilar prefix handler (SimpleAttrSimilarPrefixHandler.java)

package com.exalead.example.search;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.apache.log4j.Logger;
import com.exalead.mercury.component.CVComponent;
import com.exalead.mercury.component.config.CVComponentConfigClass;
import com.exalead.search.query.QueryContext;
import com.exalead.search.query.QueryProcessingException;
import com.exalead.search.query.node.AttrSimilar;
import com.exalead.search.query.node.If;
import com.exalead.search.query.node.IndexOptions;
import com.exalead.search.query.node.Node;
import com.exalead.search.query.node.NodeVisitor;
import com.exalead.search.query.node.PrefixNode;
import com.exalead.search.query.node.UserQueryChunk;
import com.exalead.search.query.prefix.CustomPrefixHandler;

164 - Configuration

Code Samples to Create Similarity Query Prefix Handlers

import com.exalead.search.query.util.LongOrDouble;
@CVComponentConfigClass(configClass=SimpleAttrSimilarPrefixHandlerConfig.class)
public class SimpleAttrSimilarPrefixHandler extends CustomPrefixHandler implements
 CVComponent {
 private static final Logger log = Logger.getLogger(SimpleAttrSimilarPrefixHandler.class);
 private final SimpleAttrSimilarPrefixHandlerConfig config;
public SimpleAttrSimilarPrefixHandler(SimpleAttrSimilarPrefixHandlerConfig config) {
 super(config);
 this.config = config;
}
@Override
public Node handlePrefix(Phase phase, PrefixNode node,
 NodeVisitor parentVisitor, QueryContext queryContext)
 throws QueryProcessingException {
 if(phase == Phase.POST_PARSE){
 if (node.content instanceof UserQueryChunk) {
 UserQueryChunk uqc = (UserQueryChunk) node.content;
 String[] tokens = uqc.value.split(",");
 IndexOptions options = new IndexOptions();
 LongOrDouble filterValue = null;

 String signatureField = config.getIndexField();
 String signatureContext = null;
 String function = config.getDistance();

 //let's parse node options to override config ones
 if(uqc.indexOptions != null && uqc.indexOptions.getRawOptions() != null){
 for(Map.Entry<String, String> entry : uqc.indexOptions.getRawOptions().entrySet()){
 if("filter_value=".equals(entry.getKey())){
 filterValue = new LongOrDouble(Double.parseDouble(entry.getValue()));
 } else if("index_field=".equals(entry.getKey())){
 signatureField = entry.getValue();
 } else if("function=".equals(entry.getKey())){
 function = entry.getValue();
 } else {
 options.addRawOptions(entry.getKey(), entry.getValue());
 }
 }
 }

 if(filterValue == null && config.getFilterValue() != null){
 filterValue = new LongOrDouble(config.getFilterValue());
 }
 queryContext.query.hitOrder.clone();
 options.addRawOptions("function=", function);

 String vfName = tokens[0];
 List<LongOrDouble> signature = parseSignature(tokens[1]);

Configuration - 165

Code Samples to Create Similarity Query Prefix Handlers

 if(signatureField != null && signatureField.contains("@")){
 String[] signatureFieldTokens = signatureField.split("@");
 signatureField = signatureFieldTokens[1];
 signatureContext = signatureFieldTokens[0];
 }

 return createAttrSimilarNode(vfName, options, signatureField, signatureContext,
 signature, filterValue);
 }
 }
 return node;
}

private Node createAttrSimilarNode(String vfName, IndexOptions options,
 String signatureField, String signatureContext,List<LongOrDouble> signature,
 LongOrDouble filterValue) throws QueryProcessingException{
 Node res = null;
 options.addRawOptions("name=",vfName);
 if(signatureField == null){
 log.error("Missing signature field config or option");
 throw new QueryProcessingException("Missing signature field config or option");
 }
 //the #attrsimilar node
 res = new AttrSimilar(signatureField, signatureContext, signature, null, null, null, options);

 if(filterValue != null){
 //here we create the surrounding #filter node
 String filter = "@"+vfName+".value>="+filterValue.toString();
 IndexOptions opts = new IndexOptions();
 res = new If(res,filter, opts);
 }
 return res;
}

/**
 *
 * @param signature a space-separated list of double
 * @return The List<LongOrDouble> containing the signature
 */
private List<LongOrDouble> parseSignature(String signature){
 String[] tokens = signature.trim().split(" ");
 List<LongOrDouble> res = new ArrayList<LongOrDouble>(tokens.length);
 for(int i = 0; i<tokens.length; i++){
 res.add(new LongOrDouble(Double.parseDouble(tokens[i])));
 }
 return res;
 }
}

166 - Configuration

Code Samples to Create Similarity Query Prefix Handlers

Code for simple attrsimilar prefix handler configuration
(SimpleAttrSimilarPrefixHandlerConfig.java)

package com.exalead.example.search;
import com.exalead.config.bean.IsHidden;
import com.exalead.config.bean.IsMandatory;
import com.exalead.config.bean.PropertyDescription;
import com.exalead.mercury.component.config.CVComponentConfig;
import com.exalead.search.query.util.LongOrDouble;
public class SimpleAttrSimilarPrefixHandlerConfig implements
 CVComponentConfig {
 public SimpleAttrSimilarPrefixHandlerConfig() {
 }
 private String indexField;
 private String distance = "manhattan_normed";
 private LongOrDouble filterValue;

 @IsMandatory(false)
 @PropertyDescription("The binary index field that contains the signatures."
 + "If it's a dynamic field (multi valued and storing meta names) "
 + "use the following syntax: signatureName@indexFieldName. "
 + "This value can be overridden in query option \"index_field\".")
 public void setIndexField(String indexField) {
 this.indexField = indexField;
 }

 public String getIndexField() {
 return indexField;
 }

 @PropertyDescription("The distance function to use. "
 + "Some possible values: manhattan, manhattan_normed, euclidian, "
 + "euclidian_normed, cosine. "
 + "Normed versions of the distance must be used when the signatures "
 + "in the index have not been normed before indexing. "
 + "This value can be overridden in query option \"function\".")
 public void setDistance(String distance) {
 this.distance = distance;
 }

 public String getDistance() {
 return distance;
 }

 @IsMandatory(false)
 @PropertyDescription("The minimum similarity score that a hit must have "
 + "to match the query. "

Configuration - 167

Configuring Geographic Search

 + "This value will generally between 0 and 1. "
 + "It can be overridden in query option \"filter_value\". "
 + "If empty, there will be no filtering based on the score.")
 public void setFilterValue(Double filterValue) {
 this.filterValue = new LongOrDouble(filterValue);
 }

 public Double getFilterValue() {
 if(filterValue == null){
 return null;
 }
 return filterValue.getDouble();
 }

 @IsHidden
 public LongOrDouble getLongOrDoubleFilterValue() {
 return filterValue;
 }

}

Configuring Geographic Search

This section explains how to create geographic points in Exalead CloudView

Note: To keep high performance, Exalead CloudView distance calculation uses an efficient but
approximative algorithm, which may introduce precision errors up to 0.2%.

Note: For information about geographic facets, see Geographic Facets.

About Geographic Points

Create a Geographic Point

Search a Geographic Point

Calculate Distances in Virtual Fields

Use Geolocation Based on Place Detection

About Geographic Points

Exalead CloudView supports the following geographic coordinates:

• GPS fields, also called WGS84, that are a latitude and a longitude expressed in decimal.

• XY fields, also called Meter, that are two integers used on a map.

168 - Configuration

Create a Geographic Point

GPS Points

GPS points are indexed in decimal format, to an accuracy of 6 decimal places (which represents
on average an accuracy of 10cm on Earth). A meta consists of two double values separated by
commas.

Example: 37.818667,-122.478383 is a valid meta.

XY Points

XY points consist of two integer values, separated by commas.

Example: 125, 8215 is a valid meta.

No unit is defined, so you can consider the unit as meters, miles, or whatever unit you need.

Create a Geographic Point

Geographic search is available through the Point field type.

For an example of creating a geographic point and using it to perform a geographic search in
Mashup UI, see the "Restrict the search results to a Geographical Area" in the Exalead CloudView
Mashup Builder User's Guide.

Create a Point Using the Data Model

1. In the Administration Console, go to Index > Data model > Classes.

2. Click Add property.

◦ Give a name to the property.

◦ For Data type, select either GPS point or XY point.

◦ Click Accept.

3. Optionally, select Use separate metas for each coordinate if latitude/ X and Longitude/ Y
come from two different metas in your data source. Exalead CloudView concatenates the two
coordinates to store them in a single index field.

4. Click Apply.

The Data model configures the Index Schema and the Mapping automatically.

Create a Point Field Using the Index Schema

To enable the feature, you need to set the parameter indexExact to false in<DATADIR>/
config/IndexSchemaList.xml

1. In the Administration Console, go to Index > Data model > Advanced Schema.

Configuration - 169

Search a Geographic Point

2. Click Add field.

◦ Give a name to the field.

◦ Select the Point type.

3. For the Geographical coordinates type, select WGS84 (GPS) or Meter (XY).

4. In Index > Data processing > Pipeline name > Mappings, add a new mapping and a new
target.

5. Under Indexing options, select Index exact form. You can clear all the other indexing
options.

6. Click Apply.

Search a Geographic Point

You can search a geographical point:

• in ELLQL, in the search-api.

• in UQL, using the geo: prefix handler.

You can search for a point by radius or within a polygon.

Search within a Radius (ELLQL)

1. To get all the points around a certain point:
#distance(point_field, lat/x, long/y, distanceInMeters)

.

2. To also retrieve the distance of each point from the center:
#distance{name=pointQuery}(point_field, lat/x, long/y, distanceInMeters)

3. Then use @pointQuery.distance in a virtual field.

Search within a Polygon (ELLQL)

1. To get all the points within a polygon:
#within(point_field, (X1, Y1; X2, Y2; X3, Y3; ...))

where Xn Yn are corners of your polygon in the same coordinate format as your points.

For example:

#within(gps, (0.0, 0.0; 1.0,0.0; 1.0,1.0; 0.0, 1.0))

Returns all the points within the square (0.0, 0.0) - (1.0, 1.0).

#within(gps, [(0.0, 0.0; 2.0, 0.0; 2.0, 2.0; 0.0, 2.0) (1.0, 1.0; 3.0, 1.0; 3.0, 3.0; 1.0, 3.0)]

170 - Configuration

Calculate Distances in Virtual Fields

Returns all the points within the square (0.0, 0.0) - (2.0, 2.0) OR (1.0, 1.0) - (3.0, 3.0) but not in
both.

Search with a Radius or Polygon (UQL)

1. In UQl, you can use the following operands with a Geographic prefix handler (geo:).

Operand Example

within(lat1,lng1; lat2, lng2;

lat3, lng3;)

searches all the locations within the specified
polygon

geo:WITHIN(48.33, 2.51; 45.65, 1.34;

24.54, -4.54; 12.34, -6.65)

distance(lat, lng,

distance_in_meters)

retrieves all the documents where
the geographic field is located
distance_in_meters from the specified
lat, lng

geo:DISTANCE(48.33, 2.51, 250000)

Use UQL with ELLQL for Geographical Search

1. You can mix UQL queries with ELLQL, for example:
eq=#and(#distance(gps, 3.4, 4.3, 100) #uql("query in uql OR file_size<100"))

Calculate Distances in Virtual Fields

You can calculate distance using virtual fields that are based on retrievable index fields. These
distances can then display as hit meta.

• When #distance is used with a name, @thename.distance returns the distance to the
center. It is also possible to use #dist(pointField, lat/x, lng/y) to return the
distance of the point to (lat, lng) or (x, y) depending on the coordinate format.

• When GPS points are used the distance is in meters.

You can also use #lat(point) to get the latitude or the X component of a point, and
#lng(point) to get the longitude or the Y component of a point.

Use Geolocation Based on Place Detection

Exalead CloudView is delivered with two resource files to enable geolocation based on place
detection in your search results. They include a predefined list of cities with gps coordinates.

Configuration - 171

Use Geolocation Based on Place Detection

This section describes the procedures to follow to use geolocation based on place detection.

Step 1 - Add an Ontology Matcher and Annotation Manager to the Analysis Pipeline

1. In the Administration Console, go to Index > Data processing > Pipeline name > Semantic
Processors.

2. Drag an Ontology Matcher processor to the list of current processors.

3. Click the Ontology Matcher link to expand the view, and in Resource directory, enter:

resource://namedentities/geoloc/geoloc.bin

4. Add an Annotation Manager processor after the Ontology Matcher.

5. Click the Annotation Manager link to expand the view, and in Resource file, enter:

resource://namedentities/geoloc/selectmostfrequentgeoloc.xml (this
resource uses the geoloc.bin resource defined above).

Step 2 - Create a New GPS Point Index Field

1. Go to Index > Data model > Classes
2. Click Add property and for:

a. Name, enter selected_geoloc.

b. Data type, select GPS point.
c. Field type, select Dedicated field only.

3. Expand Other advanced options and select Multivalued.

Step 3 - Add a Mapping Source and a Mapping Target

1. Go to Index > Data processing > Pipeline name > Mappings
2. Click Add mapping source and for:

a. Name, enter the annotation name selectedGeoloc (this annotation is delivered by the
annotation manager with the documentAnnotation attribute)

b. Type, select Annotation.

3. Click Add mapping target and for:

a. Type, select index field
b. Name, enter document_selected_geoloc

172 - Configuration

Adding a Query Cache

4. Click Apply
5. Import documents with your connectors.

Step 4 - Add the Google Maps Widget to Your Mashup UI Application

1. In Mashup Builder, go to the /search page, and select the Design view

2. In the Widgets panel, select Visualizations > Maps, and drag the Google Maps widget on the
page.

3. Click the Google Maps widget header. The widget properties panel opens at the bottom of the
screen.

4. In the Based on entries tab, edit location (2) with the following MEL expression:
${entry.metas["selected_geoloc"]}

5. Click Apply.

You can now enter queries in your Mashup UI application and see all the locations detected in the
search results on the Google Maps widget.

Adding a Query Cache

You can improve search performance by enabling the query cache, which resides on the Search
API command of the Exalead CloudView search server.

The query cache contains a list of hits and facets associated with a specific query, available to
users who enter the same query.

To count as an exact match, the query must:

Configuration - 173

About Query Cache

• Have the same q= (UQL) or eq= (ELLQL) value as the cached query.

• Have the same values for all other parameters passed to the Search API.

About Query Cache

Create and Manage a Query Cache

About Query Cache

A query cache can be either:

• Consistent: clears the existing cache every time the index is updated, which ensures up-to-date
results but impacts performance for frequently changing indexes.

• Time-based: keeps a query in cache for N seconds, this generates a new cache to create a
continuous update of the cache at the risk of the occasional stale result.

Warm-Up Queries

Each query cache also includes the option to define warm-up queries for popular searches, which
are automatically loaded into cache:

• When the search server starts.

• After each index update (consistent query caches only).

• Every N seconds (time-based query caches only).

Sample Use Case

Imagine you have a search application that displays a sales dashboard for a chain of retail stores.
Executives frequently want an overview of financial trends that includes all the stores in their
search results. However, individual store managers want to see the latest sales figures for their
store only.

In such a case, you could create two caches:

• One to store user queries in a consistent cache.

• Another to store warm-up queries in a time-based cache.

Create and Manage a Query Cache

Create a Query Cache

You can add multiple query caches to the same command.

1. In the Administration Console, go to Search > Search API.

174 - Configuration

Create and Manage a Query Cache

2. Under Commands, select /search-api > Search cache.

3. Under Search cache, click Add search cache and create one of the following:

◦ Consistent: creates a new cache every time the index is updated.

◦ Time-based: keeps a query in cache for N seconds.

4. (Optional) Under warm-up queries, define one or more queries to cache automatically.

◦ Enter the query and any parameters as they appear in the search URL.

◦ For example, to search for "new york city" while restricting the search to the sl0
search logic, enter: q=new%20york%20city&logic=sl0

◦ For details on available parameters, see Appendix - Search API Parameters.

◦ (Optional) Modify the other configuration options from their default values.

5. Click Apply.

Store Warm-Up Queries Only in a Cache

1. In the search cache settings for your search-api command, clear the cache queries options.

Know if Your Query Comes from Cache

This procedure assumes that you have indexed documents.

1. In the browser, open the search-api service at BASEPORT +10 with your query or #all.

For example, http://localhost:10010/search-api/search?q=%23all

2. The search results <Stats> node returns:

◦ When not cached: <Stats status="ok" queueTime="0" ... />

◦ When cached: <Stats status="from_cache" cache="CACHE_NAME" />

Configuration - 175

Configuring Search Results

Configuring Search Results

The chapter describes how to configure what is displayed in the search results.

This goes from the content of the search results themselves that we call hit content, the facets
that can be added to refine search results, and the ranking and sorting of search results.

Defining Search Results Content

Creating Facets to Refine Search Results

Calculating Results On-The-Fly with Virtual Fields

Specifying a Timezone for Date Time Metas

Ranking and Sorting Search Results

Collapsing/ Grouping Search Results

Setting the Limits of Search Results

Defining Search Results Content

A search result often called hit corresponds to a document in the index that contains a match to
the user query.

Configure the Search Result Summary

Configure Value Selection for Metas

Configuring the Highlighting of Search Terms

Configure the Search Result Summary

A search result can contain a summary, which is a small number of selected sentences, centered
around the query terms. You can typically configure how long it is and whether to highlight search
terms in its content.

Note: You can apply a summary on any meta, but it mostly applies to the text meta.

1. In the Administration Console, go to Search > Search Logics > SearchLogic > Hit content.
2. Click a meta to display its settings.

3. In the meta settings, click Customize.

4. Select the Summary check box.

5. Expand Operations, and expand Summary.

176 - Configuration

Configure Value Selection for Metas

Configure the summary as required. For details on summary options, see the tooltips.

6. Click Apply.

Configure Value Selection for Metas

You can configure the number of values that are displayed for metas in hit content. This is typically
useful to restrict the number of values retrieved from multivalued fields. Especially when you do
not want to clutter hit content with too many values for a given meta.

Set the Value Selection

In the Administration Console, when you go to Search > Search Logics > SearchLogic > Hit
content and select a meta, you can add the Value display selection operation. This operation
has two required settings:

• Min. values – minimum number of values to display for the meta in the hit content. If set to
0, no value is displayed if there are no matching values. If set to more than the number of
matching values, some nonmatching values are displayed in addition to the matching values.

• Max. values – maximum number of values to display for the meta in the hit content. It selects
the n first values. For examples, if you set it to 10 and the query matches more values, only the
first 10 values are displayed.

Note: It is a stand-alone feature but you can associate it with the highlight or the summary
operations.

Value Selection Use Case

We consider a corpus of cooking recipes where you have an ingredients meta, which comes
from a multivalued index field.

The problem is that this meta displays by default all the ingredients found in the documents
matching your queries, and not only the relevant ingredients. You may thus get extra-long hits with
metas containing hundreds of worthless values.

If we search for "curry AND paprika AND chicken", what we expect is to see these 3
ingredients, as values of the ingredients meta.

If we want to display at least these 3 ingredients, and then possibly a few other ingredients
retrieved randomly, we can for example, define a Value selection on the ingredients meta, with
Min. values to 5 and Max. values to 5. The ingredients meta displays: curry, paprika and chicken
and 2 other ingredient values in the order they are retrieved from the document. For example, your
meta may display as follows: ingredients: curry, cardamon, paprika, coriander,
chicken

Configuration - 177

Configuring the Highlighting of Search Terms

If we want to display matching values only, we must set Min. values to 0. We get: ingredients:
curry, paprika, chicken in the order they are retrieved from the document.

If we want to display 3 matching values, and at least 2 values (whether matching or not), we set
Min. values to 2 and Max. values to 3. We get:

• ingredients: cardamom, salt – if the document contains ingredient values cardamom,
salt, pepper; since we set it to keep a minimum of 2 values whether matching or not.

• ingredients: cardamom, chicken – if the document contains ingredient values
cardamom, salt, pepper, chicken; since we set it to keep a minimum of 2 values whether
matching or not.

• ingredients: chicken, paprika – if the document contains ingredient values
cardamom, chicken, paprika, salt, pepper, since we keep in priority matching values.

• ingredients: chicken, paprika, curry – if the document contains ingredient values
cardamom, chicken, paprika, curry, salt, pepper, since we can keep a maximum of 3
matching values.

• ingredients: chicken, green curry, red curry – if the document contains
ingredient values cardamom, chicken, green curry, red curry, paprika, salt,
pepper, since we can keep a maximum of 3 matching values and the order in which values
are retrieved is taken into account.

Configuring the Highlighting of Search Terms

A common search application requirement is to display the results with the matching terms
highlighted, in bold or in a different color.

About Highlighting

Setting Up Hit Highlighting

About Highlighting

You can configure highlighting on any meta, but it mostly applies to the text and title metas,
as they allow users to quickly identify whether the hit is interesting or not.

Highlighting Behavior with Prefix Handlers

By default when searching with a prefix handler, the matching terms are only highlighted in the hit
meta of the same name.

Using the title: Prefix Handler, Matches are only highlighted in the Title Text.

178 - Configuration

Configuring the Highlighting of Search Terms

You can, however, associate extra prefix handlers and facets for highlighting matching terms.

This is the case of the title hit meta, which is pre-configured with additional prefix handlers. This
means that matching terms are highlighted in a document’s title when:

• Searching with the title: prefix handler. This is the default behavior described above.

• Searching with one of these prefix handlers: text:, soundslike:, or spellslike:. These
are specified in the title hit meta setup as extra prefix handlers.

Using the text: Prefix Handler, which is an extra Prefix Handler for the title Hit Meta,
Matches are highlighted in the Title, as well as in the Summary Text.

Configuration - 179

Configuring the Highlighting of Search Terms

Deactivating the Highlighting for a Subquery Node

In specific use cases, you may want to disable the highlighting and the summary for a specific
node of your query only. In other words, you want the highlighting/summary to be activated for the
overall query and deactivated for a subpart of it.

This can be specified in both UQL and ELLQL languages by appending the {hl=0} parameter
to the node that must not be highlighted. For example, to highlight New York but not city in the
UQL query New York city, we can enter the following query: New York city{hl=0}

Note: You could also change the query template in Search > Search Logics > Your search logic
> Query Template, to exclude a subquery node globally by appending the {hl=0} parameter to
#query

180 - Configuration

Creating Facets to Refine Search Results

Setting Up Hit Highlighting

This section describes how to highlight matching search terms in result hits.

Display and Configure a Hit Highlight

1. In the Administration Console, go to Search > Search Logics > yourSearchLogic.

2. On the Hit Content tab, click a meta to display its settings.

3. In the meta settings, click Customize.

4. Select the Highlight check box.

5. Expand Operations, and expand Highlight.

Configure the highlight as required. For details on highlight options, see the tooltips.

6. Click Apply.

Specify Extra Prefix Handlers or Facets for Highlighting

1. In the Administration Console, go to Search > Search Logic > yourSearchLogic.

2. On the Hit Content tab, click a meta to display its settings.

3. In the meta settings, click Customize.

4. Expand Operations, click Add operation, and then select Highlight.
a. For Extra prefix handlers for highlight, enter the names of the additional prefix handlers,

separated by commas (the list of prefix handlers is on the Query Language tab).

b. For Facet ids for highlight, enter the facet names, separated by commas.

5. Click Apply.

When you search using these prefix handlers or facets, matching search terms in this hit meta are
highlighted.

Creating Facets to Refine Search Results

Facets allow your users to filter their search results.

About facets

Create Facets

Numerical Range facets

Date Facets

Configure Date Facets

Multidimension Facets

Configuration - 181

About facets

Geographic Facets

Create Value Facets for Nonhierarchical Metas

Create Aggregations for Facets

Exclusive vs. Disjunctive Refinements

About facets

In your Mashup UI applications you typically use facets through the Refinements panel. By refining
your query on a specific facet, you narrow the number of hits displayed in the search results.

Facets are also displayed in charts and table widgets, where you can refine the view by selecting
values. For example, in a chart displaying a document count by month, you can focus on the
values of a specific month.

Index-Time and Search-Time Facets

Exalead CloudView has 2 notions of facets:

• Index-time facets, stored as hierarchical categories in the category field of the index.
These index-time facets are often referred to as category facets. They are typically used for
alphanumeric metas. After creating index-time facets, you must reindex to store the resulting
categories in the category field. In turn, these hierarchal categories display as facets in your
search application.

• Search-time facets, also known as virtual facets. They are based on index fields stored in
RAM, and are typically used for dates and numbers. A big advantage of search-time facets is
they are available as soon as you create them; you do not need to reindex.

Which Facet Type Should I Use?

The following table explains which type of facet to create, depending on what you want to display
in your application. In each section is a cross-reference for learning more about that particular
facet type.

Facet Types

To display the following Use this facet type

Dates Choose from the following Date facets:

• Date: provides fine-grain control on date sorting.

• Dynamic dates: Automatically adjusts date granularity, depending
on the maximum number of categories specified, and the date
range of the search results.

182 - Configuration

About facets

To display the following Use this facet type

Multiple facets, typically to
display in tables, charts, or
pivot tables

Choose from the following Multidimension facets:

• Multi-dimension: Based on N single-dimension facets, and
generates a grid, with one facet per dimension. Each cell contains
the number of documents and aggregation values for each of the
N single-dimension facets. Displays only one level at time, which
means better facet performance compared to Hierarchical2D.

• Hierarchical2D: Based on two single-dimension facets for each
axis. Displays all levels in the hierarchy at once. Use for multiple
timelines.

Ranged values, such as
prices ($0-100, $101-200...)

Numerical ranges are virtual numerical facets used to organize search
results in ranges. Specify how to create these ranges:

• automatically: to specify the number of ranges only, and leave
Exalead CloudView define ranges based on search results
automatically.

• that are the same size: to define a fixed size for all ranges. For
example, a range of 100 creates the ranges 0-100, 101-200.

• manually: to define everything, that is, the number of ranges,
their max and min values, and the range title to display in the
Refinements panel.

Geographic data, either
rasters or vectors

Choose from the following Geographic facets:

• Auto-tile geographic: Use for rasters. It creates geographic facets
based on a bounding box. Must be based on a XY or GPS point
Data Model property.

• Geographic: Use for vectors. It creates geographic facets based on
disks or polygons. Must be based on a XY or GPS point Data Model
property.

Alphanumeric metas with
hierarchical values

Category: Use this type of facet if you want to display hierarchical
values, or want to define meta mappings to a category manually,
instead of using Data Model properties.

This type of facet resides in the index, under the category field in the
format. It is the only facet type that requires reindexing to be available
in your application.

Configuration - 183

Create Facets

To display the following Use this facet type

Alphanumeric metas with
nonhierarchical values,
such as a list of countries,
or file formats

Value: Use this instead of a Category facet. It is saved under the
value field, which is optimized for faster faceting.

Only use for nonhierarchical metas. Create this facet on a value type
index field.

Concept of Category Facet

All facet types output as a tree made up of facet value objects, called "Category".

In addition, in the data model, when a property is defined as a category facet, such a facet is
always created from the values of the properties. For more information about properties, see Using
Properties to Configure Document Metas.

Even facets created for numerical data model properties, are always category facets. This means
that each value of the property creates a category.

Create Facets

Create Facets Using the Data Model

This procedure applies to category facets only. Facets created by the data model are available as
Top/ClassProperties/Property_name.

1. In the Administration Console, go to Index > Data model.
2. (Optional) Under Classes, click Add class and specify a new class.

3. Under Properties for the <class name>, you can either:

◦ modify an existing property by selecting the Category facet option,

◦ create a new property and select the Category facet option.

4. (Optional) Change the default configuration.

For more information, see the "Datamodel" section of the CloudView XML Configuration
Reference Guide.

5. Click Apply.

6. On the Administration Console Home page, scan your data source.

The next time you search your index, this facet is included in the results.

Create Facets in the Search Logic

This procedure applies to both category (index-time) and virtual (search-time) facets.

1. In the Administration Console, go to Search > Search Logics > Facets.

184 - Configuration

Numerical Range facets

2. Click Add facets.

a. Specify a Name
b. Select a Type.

c. Click Accept.
3. Configure according to the facet type.

For more information, select the section corresponding to the facet type from the related topics
panel above. See also the "Search" section of the CloudView XML Configuration Reference
Guide.

4. Click Apply.

The next time you search your index, this facet is included in the results.

Create Facets Dynamically Using the Search API

You can also declare facets dynamically at query-time, on a per-query basis.

1. Use the "f" parameter as described in Appendix - Search API Parameters.

Create Facets Dynamically in Mashup Builder

1. In Mashup Builder, select an application page, for example, the search page.

2. Select the Feeds view.

3. In the CloudView Search feed, expand the Facets section.

4. In Add facet, define one or more new facets. The syntax is [facetId][key][value].

For a description of possible facet keys, see Appendix - Search API Parameters.

5. Click Apply.

Numerical Range facets

Virtual numerical facets are used to organize search results in ranges.

Unlike category facets, the values created by a virtual numerical facet do not have a hierarchy.
They are, however, attached to a "virtual root", which is a category path under which the virtual
categories are created.

The computation is based on a virtual field expression, which allows you to categorize based on
any calculation supported by the virtual expression syntax.

You then need to specify how you want to create these ranges.

Configuration - 185

Numerical Range facets

Create Ranges Automatically

When facet ranges are created automatically, they generate ranges across the results of the
query. However, this feature can be costly in terms of memory consumption.

The following range-generation policies are available:

• Linear

• Geometric

Linear Range Policy

A linear range policy defines ranges so each range includes a similar number of documents. The
Max number of ranges option defines the number of ranges to generate and the parameter policy
defines which policy must be applied.

For example, for these search results:

• 10 documents that each contain 1

• 9 documents that each contain 2,3,4,..,10

With the following configuration:

• Range generation policy: linear

• Max. number of ranges: 2

Displays the dynamic range facets as follows:

Top/
 dynamic2/ 19
 [1;1] 10
 [2;10] 9

Geometric Range Policy

A geometric range policy accepts the same parameters as linear, except that each range contains
twice as many documents as the range that follows.

Create Ranges That Are the Same Size

In this variant, a fixed range size is given, and a facet value is created for multiples of this range.
For example, create a facet on price with a range size of 100 creates the following facet values:

• 0-100

• 101-200

• 201-300

186 - Configuration

Date Facets

Create Ranges Manually

In this variant, you can manually specify the ranges. Each range receives a title, which is the value
of the category.

Range boundaries are inclusive, therefore, if you have 2 ranges [0;1] and [1;2], 1 is in both
ranges.

For example, we can define an explicit range facet on the expression:

#now() - last_modified_date, with the following ranges:

min=0, max=86400*7 --> title = "Modified last week"

min=86400*7, max=86400*31 --> title = "Modified last 30 days"

Date Facets

Date faceting is used to:

• Create a Top/myDate/YYYY/MM/DD category hierarchy at indexing time. This is a category
date facet.

• Apply a CategorySynthesis to Top/myDate at search time. This is a virtual date facet, of
which there are the following types:

◦ Date: allows you to control date sorting for individual date units (year, month, and so on).
See Control Sorting with Static Date Facets.

◦ Dynamic date: adapts dynamically to the chosen date range, so dates can display as years
for multiyear date ranges, but as month/year or day/month/year for shorter date ranges.
This is useful for displaying large date ranges in widgets. See Control Date Display with
Dynamic Date Facets.

Advantage of Virtual Date Facets

Using virtual date faceting saves on index, while providing greater flexibility.

For example, let us say that each document has a date/time of:

2013/05/12 15:05:12

Before virtual date faceting, date synthesis required that the analysis preprocess all dates and
create a category per year, month, and day for them, as well as one per hour, minute, second if
time synthesis was required.

Now, with virtual faceting, no specific analysis is required. In your search logic, you can define
which categories to create. For example, for year and month faceting, create a DateFacet with
withYear and withMonth set to true, and all others set to false.

Configuration - 187

Date Facets

Synthesis can be enabled independently for year, month, week, day, hour, minute, and second.

Note: DateFacets refinements behave differently for full dates (such as Year/month or Year/
month/day/hour) than for other date-time combinations (such as Year/hour).

• For full dates, refinements are done efficiently with a numerical search.

• For other date-time combinations, refinements are done with a less efficient attrnum query.

Control Sorting with Static Date Facets

When sorting date facets by date, you can control the sort on a category by category basis.

For example, by default a date facet sorts categories by:

• years in descending order

• months in ascending order

• days in ascending order

In the Mashup UI’s Refinement panel, the date facets are displayed like this:

188 - Configuration

Date Facets

However, you can change this by changing the arrows for each category in the facet. In the
following example, years, months, and days are displayed in ascending order.

Control Date Display with Dynamic Date Facets

Use Dynamic Date facets to:

• Drill down in the Refinements panel. Depending on the date granularity you selected for the
facet, you can drill from year to month, or from month to days. By contrast, static Date facets
display all levels in a hierarchy.

Dynamic Date Facets Allow You to Drill down in the Refinements Panel

• Control how many date values display in widgets.

Widgets have a limited width, which makes it hard to display large date ranges in a legible way.
Dynamic date facets solve this by choosing a granularity that displays the most date values
possible for the date range, without exceeding the maximum date values allowed. By default,
this maximum is 40 but you can change it.
For example, if the search results included 1-year worth of documents, the facet initially
displays 12 months. It uses a month granularity because displaying four quarters does not take
full advantage of the number of date values allowed (40 by default), while displaying 52 weeks
exceeds it.
However, if search results only included 2 weeks’ worth of documents, the facet adapts to the
shorter period by initially displaying 14 days.

• Fill in missing dates with null values, which is useful for time-series widgets.

Configuration - 189

Configure Date Facets

If some documents are missing dates, there is an option to generate missing dates
automatically, with a count of 0 and an aggregation value of NO_VALUE.

Note: You can only generate missing dates when sorting the dynamic date facets by date. The
auto-generated dates do not display in the Refinements panel, but they do display in Mashup
Builder chart widgets.

Configure Date Facets

Define Dynamic Date Facets

Dynamic date facets automatically adjust the granularity of the date display, according to the
maximum number of facet values specified, and the date range for your search results.

1. Follow the steps to create a new facet, selecting Dynamic date for the Type field. For details,
see Create Facets in the Search Logic.

2. For Expression, define an expression based on a RAM-based index field for this facet.

3. For Units, select the granularity you want to be able to display. For example, select Year,
Month and Day.

4. (Optional) In Max. categories, change how many date values this facet can display. By default
this is 40.

The lower this number, the more likely dates display at a lower granularity (years instead
of months, or weeks instead of days). Displaying lower-granularity dates is useful when
representing large date ranges in widgets.

5. Select Enable ISO 8601 compliance, to get weeks starting on Monday and a few rules
determining the first and last week of each year. Use compatible Output formats. Typically, use
%V instead of %U otherwise week numbering is not consistent with grouping.

6. Click Apply.

7. In the Mashup UI, perform a search that returns a date range that spans several months or
weeks.

As you refine on these search results, the dynamic date facet display on the Refinement panel.
For an example of how dates adjust when displayed in a chart, see Generate Missing Dates,
Step 8 and Step 9.

Generate Missing Dates

1. In the dynamic date facet setup options, for Sort by check that Date is selected.

2. Select Generate missing intervals, if not already selected.

3. Click Apply.

190 - Configuration

Configure Date Facets

4. In Mashup Builder, add a line chart widget to your /search page:

a. Go to the search page and select the Design view

b. In the Widgets panel, expand Visualizations > Charts, and drag the Line Chart widget on
to the page.

5. Click the header of the Line Chart widget to fill in the required properties:

a. For Facet type, select normal.
b. For X, select the dynamic date facet from the list at left. In our example, this is

lastmodified date.

c. Under Aggregation, select count.
d. For Chart type, select line.

e. For Axis, select 1.

6. Click Preview to make sure that the chart looks as expected.

7. Click Apply.

8. In the Mashup UI, perform a search that returns a date range that you know includes some
missing dates.

Configuration - 191

Configure Date Facets

Note: While the chart widget displays auto-generated missing dates, the Refinement panels
does not. It only displays facet dates that exist in the underlying index field.

9. Refine your search results to shorten the matching documents’ date range.

192 - Configuration

Multidimension Facets

Change the Display Format for the Dates

The output format is defined using UNIX date syntax.

1. In the dynamic date facet setup options, expand Output formats.

2. Modify the various output formats. See Indexing Options for Date Properties.

3. Click Apply.

Multidimension Facets

Multi-Dimension facets and Hierarchical2D facets are different from the other facet types. They
do not apply directly to expressions, but use the categories generated by two or more other facets
(any type, virtual or not, but one-dimensional only) to create its own categories.

Multi-Dimension Facets

A MultiDimensionFacet takes the categories generated by N single-dimension facets, and
generates a grid, with one facet per dimension as shown in the figure below. Each cell of the grid
contains the number of documents and aggregation values that have a given category for each of
the N one-dimension facets.

Here is an example with N=2 (two dimensions):

<CategoryFacet id="location" root="Top/loc"/>
<CategoryFacet id="date" root="Top/date"/>
<MultiDimensionFacet id="multi" virtualRoot="Top/multi">
 <MultiFacetDimension id="location"/>
 <MultiFacetDimension id="date"/>
</MultiDimensionFacet>

Which generates the following:

Example of Multidimension Facet

Important: When one of the two single-dimension facets used to build a Hierarchical 2D facet has
no values (for example, when value facet F1 has /a/b/c categories, and value facet F2 has no

Configuration - 193

Multidimension Facets

categories), the Hierarchical 2D facet does not display any categories. To bypass this behavior,
you can create default values for the empty facet. To do so, go to Data Model > Classes and for
the empty category facet, enter the required value in the Default value field.

Hierarchical2D Facets

A Hierarchical2DFacets creates a two-dimension (or matrix) hierarchy of categories. They
enable the calculating of pivot tables. They are based on two single-dimension facets for the two
axes.

For example, if you have a country category and a sales index field, you can define:

• a category facet on country

• a ranged facet on the sales

• a Hierarchical2D facet on the previous two, which calculates a matrix of sales per country

For example, let us consider a Hierarchical2DFacet, hier2d, that references facets id1 and id2.

id1 generates:

Top/root1/A/x
Top/root1/A/y
Top/root1/B/z

id2 generates:

Top/root2/C/r
Top/root2/D/x
Top/root2/E/t

The documents have the following categories:

doc1: Top/root1/A/x, Top/root1/B/z, Top/root2/D/x
doc2: Top/root1/A/x, Top/root2/D/t
doc3: Top/root1/A/x, Top/root2/D/t
doc4: Top/root1/A/y, Top/root2/C/r
doc5: Top/root1/A/y, Top/root2/D/x, Top/root2/C/r
doc6: Top/root1/B/z, Top/root2/C/r
doc7: Top/root1/B/z, Top/root2/C/r
doc8: Top/root1/B/z, Top/root2/D/t
doc9: Top/root1/B/z, Top/root2/E/u
doc10: Top/root1/B/z, Top/root2/E/u
doc11: Top/root1/B/z, Top/root2/E/u
doc12: Top/root1/B/z, Top/root2/E/u
doc13: Top/root1/B/z, Top/root2/E/u

Therefore hier2d generates the following 2D hierarchy:

Example of Hierarchical2D Facet

194 - Configuration

Geographic Facets

Important: When one of the two single-dimension facets used to build a Hierarchical facet has
no values (for example, when value facet F1 has /a/b/c categories, and value facet F2 has no
categories), the Hierarchical facet does not display any categories. To bypass this behavior, you
must create default values for the empty facet. To do so, you can either use the Data Model >
Classes > Default value field or use a Data Processing > Document Processors > Value
Selector processor with a Does not exist condition to indicate that the given meta is empty .

Displaying Multidimension Facets in Mashup UI

Mashup Builder includes several widgets that support Multi-Dimension and Hierarchical2D facets,
such as:

• 2D Table

• Stacked Column Chart

• Mutable Chart

• Timeline

For more information, see the Widget Reference.

Geographic Facets

You can create facets based on geographic points (both GPS and XY types). Like other facets,
they automatically display a count of matching documents for each facet value.

You can also aggregate document values that fall within one or several geographic areas.

You can define the following types of geographic facets:

Configuration - 195

Geographic Facets

• To return matches within a specified disk or polygon, create a Geographic facet. Use this facet
when you know where to focus your search. You can define multiple disks or polygons for a
facet. Each disk or polygon represents a facet value.

• To highlight areas containing matches within a bounding box, create an Auto-tile geographic
facet. Use this facet when you want to locate areas containing matches (known as tiles) within
a larger area.

By default, this bounding box (or the extent) is the entire globe, but you can modify this. Each
tile represents a facet value.

Create Facets Based on Disks or Polygons

1. In the Administration Console, go to Search > Search Logics > Facets.

2. Click Add facet, specify a name, and select the Geographic type.

3. In Index field, select a geographic field from the list.

4. In Domains, for Type select the shape of the area, that is to say Disk or Polygon and specify
the area’s extent.

The coordinates depend on whether the facet is based on a GPS or XY point index field:

◦ For a disk: specify a center point and a radius.

◦ For a polygon: specify a list of coordinates, separated by semicolumns. Two successive
points must be connected by an edge, and the polygon is automatically closed (an edge is
added between the last and first point).

Important: The time required for facet synthesis is directly proportional to the number of points
in the polygon.

5. (Optional) Add another disk or polygon area. You can mix polygons and disks within the same
facet, and the areas can overlap.

6. (Optional) Expand Aggregation to create a summary on an index field for this facet.

7. Click Apply.

For an example (created in the XML configuration file, rather than in the Administration Console),
see below.

Example 1. Example

This example uses an ExplicitGeoFacet with one DiskDomain (blue) and two PolygonDomains
(red and green), as shown in the figure below.

<PolygonDomain title="redpoly" vertices="346,401;94,230;156,319;293,296;390,160;204,37"/>
<PolygonDomain title="greenpoly" vertices="689,377;542,397;539,526;685,464"/>
<DiskDomain title="bluedisk" x="501" y="641" radius="78"/>

196 - Configuration

Geographic Facets

Example of an ExplicitGeoFacet with One DiskDomain (Blue) and Two PolygonDomains (Red and
Green).

In this example, dark red crosses represent indexed points for each document. The red and blue
domains overlap, which is allowed, and the point that falls within the intersection counts once for
each domain.

Five points fall into the red polygon domain, three into the disk, and one into the green polygon
domain. Three points fall outside all domains, and so are not counted in the results.

Create Facets Based on a Bounding Box

1. In the Administration Console, go to Search > Search Logics > Facets,

2. Click Add facet, specify a name, and select an Auto-tile geographic type.

3. In Index field, select a geographic field from the list.

4. By default, the bounding box is the entire globe. If you want to change this, the coordinates
depend on whether the facet is based on a GPS or XY point index field:

a. Bounding box min: define the lower left limit.

b. Bounding box max: define the upper right limit.

c. Tile size: specify the size of the area to highlight when there is a matching point on the
map.

5. (Optional) Expand Aggregation to create a summary on an index field for this facet.

6. Click Apply.

Display Geographic Facets in a Map Widget

1. In Mashup Builder, drag a Google Maps widget onto your page.

2. Select a feed for your widget.

3. In the widget properties, go to the Based on Geo Facets tab.

a. In Geo facets list, click inside the field, then select your geographic facets from the panel
on the left.

Configuration - 197

Create Value Facets for Nonhierarchical Metas

b. In Aggregation, click inside the field, then expand Aggregation from the panel on the left.
From the list, select an aggregation. The higher this value, the darker the tile appears on
the map.

4. Click Apply.

Create Value Facets for Nonhierarchical Metas

You can use value facets instead of category facets for alphanumeric metas that are not
hierarchical and do not need to be tokenized. For example a list of countries, or file formats.

Value facets are saved under the value field, which is optimized for faster faceting.

Create a Value Facet Using the Data Model

1. In the Administration Console, go to Index > Data Model.
2. Select the appropriate class, and then click Add property.

◦ Data type: Alphanum

◦ Semantic type: accept the default, since no semantic processing is applied on a value
field.

◦ Field type: Dedicated field and facet

3. In the settings for this property, expand Other advanced options, and select Enumerated.

4. Click Apply.

The next time you scan the corresponding data source for this property, Exalead CloudView
creates a value field for this property in the index, as well as a value facet in the search logic.

Create a Value Facet Using the Index Advanced Schema

1. In the Administration Console, go to Index > Data Model > Advanced Schema tab.

2. Click Add field. For Type, select Value.

3. Configure the field’s options as required.

4. Click Apply.

The next time you scan the corresponding data source for this property, Exalead CloudView
creates a value field for this property in the index, as well as a value facet in the search logic.

Create Aggregations for Facets

All facet types allow you to calculate aggregations for each value of the facet.

You can define an aggregation by:

198 - Configuration

Create Aggregations for Facets

• A virtual field expression defining the value to use for each hit.

• A function to create the aggregated value.

For example, if you have a facet based on the "country" of a sale, you can add an aggregation,
on the price * quantity expression, using the "SUM" aggregation function. For each country,
you get the total revenue generated by the sales on this country.

Available Aggregation Functions for Facets

Function Description

MIN The minimum value of the expression for all documents in the facet value.

MAX The maximum value the expression for all documents in the facet value.

SUM The total of all values of the expression over all documents in the facet value.

AVG The average value of the expression over all documents in the facet value.

STDDEV The standard deviation of all values of the expression for all documents in the facet
value.

CENTILE(x)Computes Nth percentile of the expression for all documents in the facet value, where
N is a double between 0.0 and 100.0.

COUNT The count of all documents that contain a value for the expression set in the facet
value.

Note: Do not confuse it with the category document count.

MAXDATE Computes the max date based on index time. You can specify output format in a
custom expression using date formats (see Which Facet Type Should I Use?).

MINDATE Computes the min date based on index time. You can specify output format in a
custom expression using date formats (see Which Facet Type Should I Use?).

Most Mashup UI widgets that display facets can use aggregations, instead of the simple count of
the facet value.

The results of aggregation functions on NULL values in the Search API follows these conventions:

• max(empty) = empty (that is, no value)

• avg(empty) = empty (that is, no value)

• sum(empty) = empty (that is, no value)

These values are returned as follows in the Access API (no values for unvalued aggregations):

<exa:facet id="Language" path="Top/language" data="" description="Language" count="2"
refinable="true" refinementPolicy="exclusive" type="category" nbClippedCategories="0" totalClippedCategories="0">

Configuration - 199

Exclusive vs. Disjunctive Refinements

 <exa:facetInfo key="sort" value="count"/>
 <exa:facetInfo key="reverse" value="false"/>
 <exa:facetInfo key="hasRefine" value="false"/>
 <exa:aggregation id="mini" type="LONG"/>
 <exa:aggregation id="moyen" type="LONG"/>
 <exa:aggregation id="maxi" type="LONG"/>
 <exa:category id="f/Language/fr" path="Top/language/fr" data="" description="fr" count="2" score="0"
state="DISPLAYED" nbClippedChildren="0">
 <exa:aggregation id="mini" type="LONG"/>
 <exa:aggregation id="moyen" type="LONG"/>
 <exa:aggregation id="maxi" type="LONG"/>
 </exa:category>
</exa:facet>

Exclusive vs. Disjunctive Refinements

The Refinement policy option specifies how search results are filtered when you select a facet
value from the Refinements panel in a Mashup Builder application.

Exclusive Refinement

Exclusive is the standard refinement policy, it allows you to drill down on a single facet value,
excluding all other values in the facet.

CategoryFacet(Top/Language, exclusive)

• Refines on the language/en facet.

• The result set only contains English documents.

• All other languages have disappeared from the navigation sidebar.

Disjunctive Refinement

Disjunctive refinement allows you to build a checkbox-based navigation. This navigation also
allows you to drill down on a single facet value, while still displaying all other facet values on the
Refinements panel.

Use this policy to refine on multiple facet values, which are combined using an OR operator when
querying the index. To display check boxes next to each facet, select the Disjunctive facets
option for the Standard Facets widget in Mashup Builder.

CategoryFacet(Top/Language, disjunctive)

• Refines on the language/en facet.

• The result set only contains English documents.

200 - Configuration

Calculating Results On-The-Fly with Virtual Fields

• All other languages are still included in the navigation sidebar, with counts on them. If you then
refine on the language/fr facet, the result set contains both French and English documents.

Note that the HorizontalFacets widget displays only the first level of disjunctive facets.

No Refine

Use this when you need to group search results, but do not need to refine on them.

Calculating Results On-The-Fly with Virtual Fields

Virtual fields allow you to compute values from many elements of the Exalead CloudView index.
The main purpose of a virtual field is to access stored index fields.

For example, a virtual field called revenue with expression price * quantity accesses the
two fields and calculate the total price.

When to Use Virtual Fields

You can use virtual fields for multiple areas within your search application. For example, for a
given hit, virtual fields can calculate:

• A meta to display in the search client.

• The value for the hit in a dynamic numerical facet (see below).

• The value for the hit in a facet aggregation (see below).

• Ranking elements (see below).

• A value to use for filtering queries.

For example, you can define a numerical prefix handler, total_price, allowing a user to
queries directly on the total price, such as. total_price: > 500.

Performance Considerations

Virtual fields have a significant overhead at query time, because of the evaluation that must take
place for each hit.

In some cases, this evaluation must absolutely be performed at query time.

For example, if your geographic expression calculates the distance between a hit and the current
position of the user, then it is fully contextual to the query. However, if you find yourself using a
large number of virtual fields with totally static expressions that are always used, it can be a good
compromise to precompute them using processors in the analysis pipeline.

Configuration - 201

Virtual Field Syntax

Virtual Field Syntax

The virtual fields syntax supports a wide range of built-in functions:

• All numerical operators

• Basic math functions

• Time manipulation functions

• Geographic manipulation functions; for more information, see Configuring Geographic Search.

For a complete list of virtual field syntax, see Appendix - Virtual Field Expression Syntax.

Specifying a Timezone for Date Time Metas

If a timezone is detected inside the date time value, it is interpreted to convert and store this value
in UTC format. By default, date values are also restituted at search time in UTC format.

There are however several methods to adjust the display of date time values to a specific
timezone.

Specify a Timezone in the Output Format

The best method is to specify a default timezone output format for the date time meta (%Y-%m-
%dT%H:%M:%S+00:00). This method allows you to get a complete date format that is easy to
adjust to the web browser timezone settings.

1. Go to Search Logics > Hit Content.
2. Expand the date time meta and click Customize if it was generated by the Data Model.

3. Click Add operation to add a Time format operation.

4. Expand Time format and for Output format, enter a format including a timezone, for example,
%Y-%m-%dT%H:%M:%S+00:00

5. Click Apply.

Convert Date Time Values to a Specific Timezone

The following procedures describe how to adjust the timezone server-side to match the end user’s
timezone specified at query time. The goal of these procedures is to display date time values with
the end user’s setting for both hit metas and facets.

To Adjust Date Time for Hit Metas

To adjust date time for hit metas, you need to use virtual field.

202 - Configuration

Specify a Timezone at Search Time

1. Go to Search Logics > Virtual Fields.

2. Add a new virtual field and give it a name, for example date_timezone_adjusted

3. Click Edit and in the Expression builder:
a. In Functions, double-click the #adjust_timezone function to insert it in the Expression

field.

b. Place your cursor between the parentheses and in Index fields, and set how to adapt the
time display.

Your expression must be: #adjust_timezone(<Name of date time field>)

4. Go to Search Logics > Hit Content.
5. Expand the date time meta and from Index field, select the virtual field you have created.

To Adjust Date Time for Facets

To adjust date time values for a date facet, you need to change its formula.

1. Go to Search Logics > Facets.

2. Expand your date facet, and click Edit next to the Expression field:

a. In Functions, double-click the #adjust_timezone function to insert it in the Expression
field.

b. Place your cursor between the parentheses and from Index fields, double-click the index
field impacted by the timezone adjustment.

Your expression must be: #adjust_timezone(<Name of date time field>)

To Adjust the Default Timezone

You finally have to adjust the default timezone.

1. Go to Search Logics > Locale Settings.

2. Specify the Default timezone that applies to all date values. This is calculated based on the
difference with the UTC timezone.

3. Click Apply.

End users can now specify the timezone of their choice at search time. See Specify a Timezone at
Search Time. This overrides the default timezone specified in step 2.

Specify a Timezone at Search Time

Once the server-side configuration is prepared to convert date time values, end users can specify
the timezone of their choice at search time.

Configuration - 203

Ranking and Sorting Search Results

To Specify a Timezone at Search Time in the Search API

You can also specify a timezone as a query parameter to search for documents precisely.

1. In the Search API, use the timezone or tz parameter. For example, to adjust the timezone
to UTC -01:30 (UTC being the default timezone), you can enter a query like: http://
<HOSTNAME>:<BASEPORT+10>/search?q=%23all&tz=-01:30

For more information, see Appendix - Search API Parameters.

To Specify a Timezone at Search Time with a UQL Prefix Handler

It is also possible to specify a timezone at search time when using Date prefix handlers.

1. For example, to get all documents created after 9:30AM on February 12, 2016, with a timezone
of UTC -02:00, you can enter: date>=”Fri 12 Feb 2016 09:30:00 -02:00” or any
other supported format between quotes.

How is the Timezone Handled in Mashup UI Applications?

When creating Mashup UI applications with the Mashup Builder, the user's browser timezone is
automatically detected and sent to each query.

For more information, see the Cookie to parameter prerequest trigger description in "Add triggers
to an application or a page" (in the Exalead CloudView Mashup Builder User's Guide).

Ranking and Sorting Search Results

The ranking and sorting you define for a search logic controls the order in which hits display in the
search results.

There are two phases in ranking and sorting: calculating the ranking elements, then defining
sorting and grouping using these ranking elements.

About Ranking

Sorting

About Ranking

In the default configuration, Exalead CloudView uses a single ranking element, which is defined by
a virtual field called text_relevance.

204 - Configuration

About Ranking

Default Ranking Model

The text_relevance virtual field is used in a single SortBy clause. The expression of this
virtual field is: @term.score * @proximity + @b

Where

• @term.score – A value assigned to each alphanumeric node in a query. A node's
term.score value is determined by the textual ranking algorithm for the node. For more
information, see Term Scoring.

• @proximity – proximity boost, applied to the document as a whole. For more information, see
Proximity Boost.

• @b – boost. It is a node property that is commonly used to indicate that elements that match
a particular term must be boosted. Boost is defined on a query-by-query basis. For more
information, see Boost.

Term Scoring

Each alphanumeric node in a query has a special property, called a term.score. A node’s
term.score value is the result of the textual ranking algorithm for the node.

The term.score uses the default merge policy, which is to sum its values over the whole query.
In the Administration Console, it can be set in Search > Search Logics > Sort & Relevance >
Term Scoring.

Scoring Algorithms

The following table describes the available scoring algorithms.

Note: TF-IDF, IDF, and BM25 are standards, and not described in this section. For more
information about them, look for documentation on the internet.

Algorithm Description

No Ranking With No ranking, the term score is always 0, for all alphanumeric nodes of the
query.

When term scoring is not really required, disabling term.score significantly
improves hit matching performance (by up to +30%).

Rank The Rank term score uses only the statically defined rank of each word. In the
index, each word can have a rank for each document. The term.score value is
rank * w.

Configuration - 205

About Ranking

Algorithm Description

w is a special node option, which can be set on each alphanumeric value, both in
ELLQL and in UQL:

• in UQL: a OR b{w=2}

• in ELLQL: #alphanum{w=2}(text, "a")

The default value of w is 1.0

Use w to increase, decrease, or cancel the importance of the presence of one word
with a specific rank.

For example, for query a AND b we have two matching documents:

• doc 1: a[rank=4] b[rank=6]

• doc 2: a[rank=6] b[rank=4]

With the default configuration, both doc1 and doc2 have term.score=10.

With the query a AND b{w=2}:

• doc1 has term.score=16

• doc2 has term.score=14

You can also use w to ignore a given word for the textual relevance calculation, by
setting w=0.

Rank IDF The Rank IDF term score adds the notion of IDF, or Inverse Document Frequency.

The IDF represents the relative rarity of a word in a corpus. The more frequently the
word appears in the corpus, the lower its IDF. The idea behind this algorithm, is the
rarer the word, the greater its importance.

For example, on query the OR economy, we want the documents matching
economy first, because they are more specific.

For a given word, IDF(word) = 1 + log(number of docs in corpus /
number of docs containing this word)

The term.score of one word with this algorithm is: rank * w * idf * 10000

IDF is a positive double above 1.0 (for a word that is in all documents).

For example, for a word present in only one document out of a corpus of one million,
IDF = 20.9

Rank TF-IDF The Rank TF-IDF term score adds the notion of Term Frequency. To represent the
importance of a term within a document, it takes into account term density instead of
term occurrences.

For example, we have the query: iphone and the following documents:

206 - Configuration

About Ranking

Algorithm Description

• Doc1: {iPhone}

• Doc2: {iPhone accessories}

Both have the same number of iphone occurrences, but doc1 is more dense with
iphone and intuitively a better match. We consider that the number of occurrences
is not as meaningful as the term density.

To use this algorithm, go to Data Model > Advanced Schema, click the index field
to modify, select Compute TF, and click Apply.

For a word w in a document d, a simple version of TF would be:
SimpleTF(w, d) = (number of occurrences of w in d).

To avoid overranking documents where a word occurs frequently, Exalead
CloudView uses a more advanced version of the formula:

TF(w, d) = (2.2 * SimpleTF(w, d) / (1.2 + SimpleTF(w,d))

The term.score of one word with this algorithm is: rank * w * tf * idf *
10000

TF varies between 1 (for a word present only once) to 2.2. Therefore, the
term.score varies between rank * w * 10000 and rank * w * 10000 *
2.2.

BM25F TF-IDF does not use the length of the document to normalize the term frequency.
The BM25 term score uses a more complete version the TF formula:
SimpleTF(w, d) = (number of occurrences of w in d) * (length of the document) /
(average length of all the documents)

As for TF-IDF, this SimpleTF is normalized to avoid overranking. Moreover, Exalead
CloudView combines this term frequency with the TF-IDF value, using the following
formula:

The term.score of one word with this algorithm is: rank * w * tf * idf *
10000.

TF varies between almost 0 (for a word that occurs once in a very large document)
and 2.2 (for a word that occurs once in a small document and where all the other
documents are large).

Custom You can define your own custom ranking by selecting the Custom scoring algorithm
and defining a formula.

Configuration - 207

About Ranking

Ranks Remapping

During indexing, a static rank or relevance class is set for each meta. This relevance class is a
numerical value that is used to rank search results.

You can display current relevance classes for each meta in Index > Data Processing >
Mappings > Details > Relevancy options > Relevance class. Nine values are available (from 0
to 8), 8 being the highest rank:

• 0: No score

• 1: Hidden text

• 2: Text

• 3: Boosted text

• 4: Relevant text

• 5: Boosted relevant text

• 6: Title

• 7: Boosted title

• 8: URL

After indexing, relevance classes cannot be modified anymore. To change the relevance class
set for a meta, you must use the Ranks remapping field in Search > Search Logics > Sort &
Relevance > Term scoring. Use numerical values in increasing order and separated by commas
to set the new rank of existing relevance classes. Example: I want to give more weight on titles. I
must specify that titles (relevance class=6) have now the highest rank (relevance class=8). I fill the
Ranks remapping field as follows: 0,1,2,3,4,5,6,9,10.

Proximity Boost

A special ranking element called proximity is the result of the proximity algorithm.

Proximity is a double value, between 0 and 10, where 0 is out of range.

To set proximity boost in the Administration Console, go to Search > Search Logics > Sort &
Relevance > Proximity boost.

Boost

Boost, or b, is summed over all nodes.

• in UQL: a OR b{b=100}

• in ELLQL, like all node properties: #alphanum{b=1000}(text, "a")

208 - Configuration

About Ranking

A common use of b is to assign a score for nodes that do not normally have them, like categories:

a AND b AND (source:important_source{b=1000} OR

source:less_important_source{b=0})

The score of an alphanumeric value can be forced, replacing the term.score, by setting
{w=0,b=DESIRED_SCORE}.

b can also be negative, to unboost certain terms.

Custom Ranking Elements

For advanced ranking use cases, you can create custom numerical key-value pairs attached to
each node of the query tree to use as ranking elements.

For example, to create a behavior similar to the boost one, we can define the following query:

• in UQL: fruit{interest=1} tomato{interest=10}

• in ELLQ: #and(#alphanum{interest=1}(text, "fruit")
#alphanum{interest=10}(text, "tomato"))

With this query, a hit that matches:

• fruit has a lower score of 1 as custom ranking element.

• both fruit and tomato have 11 as custom ranking element.

By adding a sort expression on @interest, we get the interesting hits first.

The default policy is to sum the values for numerical ranking keys, from all children nodes where it
matches. You can also keep the maximum or minimum values among children:

• #and{interest.policy=MAX}(#alphanum{interest=10}(text, "tomato")

#alphanum{interest=1}(text, "fruit")) (score 10)

• #and{interest.policy=MIN}(#alphanum{interest=10}(text, "tomato")

#alphanum{interest=1}(text, "fruit")) (score 1)

Reusing Ranking Elements in Virtual Fields

You can re-use node properties and predefined ranking elements as expressions in the virtual field
syntax for:

• Constructing higher-level ranking elements

• Metas

• Dynamic faceting

• Faceting aggregations

For more information, see Calculating Results On-The-Fly with Virtual Fields.

Configuration - 209

Sorting

For example, if you define a complex ranking element to calculate the relevance of a hit, you may
want to reuse this calculated value to compute an aggregation, which is the sum of this relevance
score for each value of a facet, indicating the "total relevance" of this facet value.

The syntax to access a given ranking element is @elementname.

As the ranking elements are computed once a hit has been identified, there is a major restriction,
which is that they generally cannot be used in a virtual field for querying. For example, you cannot
use #attrnum(@proximity, ==, 42) because when we want to evaluate whether the hit
matches, the proximity has not yet been computed.

The main consequence is that if you define a numerical facet, which uses a ranking element,
you cannot refine on it. For example, if you defined a numerical facet with expression
#floor(@proximity), you can use this to obtain a histogram of the documents by the
proximity of the query terms within them. However, you cannot refine, because a query "I want all
documents where the computed proximity score is between 1.3 and 1.7" is not supported.

One exception is the #filter ELLQL node, see Filtering Search Results in ELLQL.

Sorting

You can perform sorting on RAM-based retrievable fields. In the Data model property, or advanced
schema index field configuration, select the RAM based option for all the fields on which you want
to apply sorting.

You can specify one or several sort clauses to be treated one after the other cumulatively. For
example, if our index schema has the lastname and age index fields, we could want to sort:

• First on the lastname field by ascending order.

• Then on the age field by descending order.

Note: Sorting can also be performed dynamically at query time using specific Search API
parameters. For more information, see the Sorting and Grouping Parameters in the Search API
Parameters Reference.

Set Sorting in the Administration Console

1. Go to Search > Search Logics > Sort & Relevance > Sort
2. Click to add as many sort clauses as required.

3. For each clause, you must specify:

◦ a Name

◦ a virtual Expression - click Edit and specify the expression with the Expression Builder. It
can be the name of an index field only or a more complex virtual field expression.

210 - Configuration

Collapsing/ Grouping Search Results

For example, if you want the sort to be in lowercase, use the #strlower function, to
make an expression like #strlower(myAlphanumField1). If you want the sort to be
normalized (that is, lowercase and unaccentuated), use the #strnormalize function, to
make an expression like #strnormalize(myAlphanumField2).

◦ A Sort order (ascending/descending).

◦ And if the sort clause is Active, so that it is executed.

Reduce the Performance Overhead at Query-Time

Alphanumeric sorting has a high-performance overhead at query-time.

1. To reduce this performance issue, you can set a limit at query time using the Chars limit
option, which is the maximum number of characters on which to perform the sort.

Only documents that do differ on the first limit characters are ordered.

Collapsing/ Grouping Search Results

Collapsing or grouping search results means keeping similar results together so they display in a
concise, readable way.

There are typically two scenarios where you want to collapse search results:

• To display a concise list of results, often based on multiple criteria. You do not want to explore,
you want to see specific hits.

To do this, use grouping as explained in this section.
Examples:

◦ For web search, you want to keep only one result per site.

◦ You want a list of every Apple phone that had more than 1000 units sold in the past week,
worldwide, regardless of store or country.

• To see the overall distribution of search results in a dashboard, and to explore the results by
drilling down on certain areas.

To do this, use faceting. See Creating Facets to Refine Search Results.
For example, you want to know how different Apple products are selling in different countries.

About Grouping

Setting Up Grouping

Configuration - 211

About Grouping

About Grouping

The main purpose of grouping is to remove duplicates so search results are easier for users to
read.

With grouping, your results only retains a hit (or N hits) for each group. The particular hit that
displays for each group is determined by how you sort the hits within the group. Within these
groups, you can nest additional grouping clauses.

Important: As with other search-time manipulations like facets and sorting, you can only define
group or group sorting expressions on fields that are stored in RAM.

While grouping in Exalead CloudView works similar to the SQL GroupBy in that you can use
multiple clauses and create aggregations, keep in mind that it is not identical to database
grouping.

For search results, the ultimate purpose to collapse several hits into one (or several)
"representative" hit. The following examples demonstrate how grouping works.

Simple Grouping Example

Say that you are sporting gear retailer. Spring is coming and you want to find out what kind of bike
merchandise you have in stock.

Without using any grouping, here are the results for a query on bike:

Hit rank in
results

Name Quantity Warehouse distance (km)

1 Bike 10 100

2 Bike helmet 100 1

3 Bike seat 50 12

4 Bike shoes 20 28

5 Biking jersey 500 5

You want to reduce this list by grouping the results on which the quantity is higher than 50. To do
so, define a group where quantity > 50.

How Many Search Results Do You Have?

Two, because defining a group creates 2 groups:

• More than 50: Bike helmet, Biking jersey

212 - Configuration

About Grouping

• 50 or fewer (the "other" group): Bike, Bike seat, Bike shoes.

Which hits Do Display for the Group?

This is defined by:

• The number of hits to represent the group. Let us keep the default, 1. This means that 2 hits
are displayed in the search results, one for each group.

• The sorting expression for the group. In our example, you want to know what's close by, so let
us sort on the distance field in ascending order. This means the hit with the lowest distance
value in the group represents the group.

In the grouped search results, this returns:

• One hit from More than 50, Biking helmet (because distance = 1 km, less than for
Biking jersey).

• One hit from 50 or fewer, Bike seat (because distance = 12 km, less than for Bike or
Bike shoes).

Which Group Displays First in the Search Results?

The group sorting determines which hit represents the group. But ultimately it is the representative
hit's relevance score before grouping that determines the group’s rank (display order) in the
search results.

In this case, Bike seat ranked higher than Biking jersey before grouping. So the grouped
results look like this:

Grouped hit
rank

Name Quantity Warehouse distance (km)

1 Bike seat 50 1 km

2 Biking jersey 500 5 km

Multicriteria Grouping Example

You can add additional clauses to group on multiple criteria.

Without using any grouping, here are the results for your bike query, this time with country
information.

Hit ranking Name Quantity Warehouse distance (km) Country

1 Bike 10 100 Germany

2 Bike helmet 100 1 France

Configuration - 213

About Grouping

Hit ranking Name Quantity Warehouse distance (km) Country

3 Bike seat 50 12 Germany

4 Bike shoes 20 28 France

5 Biking jersey 500 5 France

In addition to grouping by quantity, you also want to group by country.

This means you now have three groups:

• More than 50 in France: Bike helmet, Biking jersey.

• 50 or fewer in France: Bike shoes

• 50 or fewer in Germany: Bike, Bike seat.

Still displaying only one hit from each group, and sorting in ascending order on distance, this will
return three hits:

• Bike helmet from More than 50 in France

• Bike shoes from 50 or fewer in France

• Bike seat from 50 or fewer in Germany

Since CloudView ranks these "representative" hits to their initial rank before being grouped, the
hits display in this order:

Grouped hit
rank

Name Quantity Warehouse distance (km) Country

1 Bike helmet 100 1 France

2 Bike seat 50 12 Germany

3 Bike shoes 20 28 France

Displaying an Aggregation Example

You can also calculate an aggregation for group and display it in the grouped hit. Note that the
aggregation is based on all hits within the group, regardless how many hits display in the grouped
hit.

Available aggregations:

• Sum

• Max

• Min

• Average

214 - Configuration

Setting Up Grouping

• Standard deviation

• Concatenation - this lists all the values for a field within the group. Unlike other aggregations,
it needs an alphanumeric field.

Say that you want to display the total quantity in stock for all hits within a group. Let us go back to
the simple grouping example with only two groups.

Group Name Quantity

More than 50 Biking jersey 500

 Bike helmet 100

50 or fewer Bike seat 50

 Bike 10

 Biking shoes 20

By creating a sum aggregation on the quantity field, you can display the aggregation in your
grouped hit:

Grouped hit
rank

Name Quantity Total quantity for
group

1 Bike seat 50 80

2 Biking jersey 500 600

Setting Up Grouping

Add a Group

1. In the Administration Console, go to Search > Search Logics > Your search logic > Sort &
Relevance.

2. Under Group, click Enable.

3. Define your grouping and sorting criteria by clicking Edit.

For our example, specify:

a. Group by: quantity > 50.

b. Sort hits in group by: distance.

When in the Expression builder, if you do not see the field that you want on the list of Index
fields, it is because the field is not being stored in RAM. You need to enable that field's RAM-
based option, apply your changes, then clear your build group & reindex.

Configuration - 215

Setting the Limits of Search Results

4. (Optional) Specify an additional clause to your Group by expression by clicking Add clause.

For an example of how additional clauses impact your search results, see Multicriteria
Grouping Example.

5. Click Apply.

Create an Aggregation for a Group

1. In the Group section, expand Aggregations
2. Select the type of aggregation. For our example, select Sum.

a. Enter an expression. For our example, type quantity.

b. Specify the name of the meta to store the aggregation. For our example, type
total_quantity_for_group.

3. Click Apply.

You can now add a hit meta to display this aggregation.

Display the Aggregation in the Grouped Hit

1. In your aggregation definition, copy the meta name that is storing the aggregation to the
clipboard.

2. On the Hit content tab, click Add meta.

3. Paste the meta name into the Name box. In our example, this is
total_quantity_for_group.

4. In the setup panel for this meta, click Add meta source.

5. In Index field, paste the aggregation’s meta name again: total_quantity_for_group.

6. Click Apply.

The next time you perform a search in your application, this new meta display in your grouped hits.

Setting the Limits of Search Results

Exalead CloudView provides advanced control on query execution, and allows you to define a
compromise between search performance and exhaustiveness.

Fully exhaustive search is available, but it is also possible to impose timeouts and limits on the
number of matching hits. When a timeout or limit is reached, partial results are returned.

1. Go to Search > Search Logics > Limits
2. Set the limits as required and click Apply.

216 - Configuration

Managing Saved Configurations

Managing Saved Configurations

This chapter describes how to manage saved Configurations of CloudView.

About Saved Configurations

Comparing Configuration Versions

Rolling Back to a Previous Configuration

Editing the Configuration Manually

Apply changes when Exalead CloudView has stopped

About Saved Configurations

Exalead CloudView has a versioned configuration. When you save a modification in the
Administration Console, the new configuration is not immediately applied to the running instance.
Instead, it is stored in the configuration store. When you apply the configuration, it is transferred to
all running components.

The configuration store is located in <DATADIR>/config. It contains the latest version of all
configurations, stored as XML files. For a list of the available configurations, see the CloudView
XML Configuration Reference.

How Applying Configuration Works

Exalead CloudView’s configuration defines the high-level functional setup of the product.
For example, in /config/deployment.xml your Exalead CloudView installation's server
deployment is defined through roles such as Indexing, SearchAPI, or ConnectorsServer.

In the running Exalead CloudView instance, these roles are mapped to running processes.

When you apply the configuration, Exalead CloudView checks the high-level configuration for
errors, then computes a low-level configuration for each process, known as the GCT. This process
is described below.

Apply Configuration Process

When Exalead CloudView applies a configuration, it does the following:

1. Checks the entire configuration store for errors.

2. Computes and creates a new version of the detailed configuration (the GCT).

3. The GCT contains a list of services that run on each process, the configuration of each
process, and the configuration for dynamic interprocess configuration.

Configuration - 217

Comparing Configuration Versions

4. Saves the new version of the GCT and the current state of the configuration store for future
rollbacks.

5. Sends the new configuration to all hosts on the Exalead CloudView cluster.

6. Dynamically reloads the configuration for the running processes.

◦ If Exalead CloudView cannot dynamically load some configuration changes, it restarts the
affected processes.

◦ If some roles were added, Exalead CloudView starts the new processes.

Note: When applying deployment changes (for example, adding new roles), we recommend
restarting Exalead CloudView afterward. If restarting is required, you are prompted to restart when
you apply the configuration.

Comparing Configuration Versions

You can select two configuration versions and compare their XML configuration files through the
Administration Console. This can be helpful to roll back to a previous configuration version.

1. From the top navigation bar of the Administration Console, click the down arrow next to Apply.

2. Select Show all previous versions.

3. Select two configuration versions and click Compare versions.

4. The Changed files window opens, highlighting the differences between the two selected
versions.

Use the Compare file select box to select XML configuration files.

Rolling Back to a Previous Configuration

You can roll back to a previous configuration version through the Administration Console. This
replaces the entire configuration store with the configuration from the time the changes were
applied.

1. From the top navigation bar of the Administration Console, click the down arrow next to Apply.

2. Select Rollback to version for the required version.

218 - Configuration

Editing the Configuration Manually

Editing the Configuration Manually

Most configuration changes are made in the Administration Console, which is an easy to use
web interface. However, you must manually modify the configuration store to do some advanced
configuration changes.

You can edit the configuration store:

• By using the API Console

• By editing the XML configuration files

Edit a File in the API Console

The API Console is a graphical interface for the Management API (MAMI).

It allows you to edit most configuration files (except for Mashup Builder and Business Console
configurations), inspect product status and perform administrative tasks.

Note: For more information about the API Console, see "Perform advanced operations with the
API console" in the Exalead CloudView Administration Guide.

1. Go the API Console and click Manage.

2. Locate the entry point where you want to edit a configuration file. For example, to edit the
IndexSchemaList configuration:

a. Select MAMI indexing.
b. Click the set<ConfigName> method.

c. Edit the file.

d. Click Save.

3. In the Manage section of the API Console, click Apply.

If the configuration is invalid, an error message displays and your changes are not saved.

Configuration - 219

Edit the Configuration Files Directly

Edit the Configuration Files Directly

Before you do this, make sure no one is working in the Administration Console, to avoid editing
conflicts.

1. If you have access to the <DATADIR>, you can edit the XML files in <DATADIR>/config.

When you save your changes to the file, there is no configuration check. This happens only when
you apply your changes, as described below.

Apply Changes in the Command Line

If you have modified the configuration manually, Applyis not available in the Administration
Console.

You have the choice between applying the configuration using the API Console, as described in
Edit a File in the API Console, or use the command line.

The cvcmd command-line tool provides access to the configuration application. Exalead
CloudView must be running for this to work.

1. Go to <DATADIR>/bin.

2. Test your configuration: cvcmd testConfig

3. If no errors are returned, apply the changes: cvcmd applyConfig

Apply changes when Exalead CloudView has stopped

In rare cases, a severe configuration conflict can prevent Exalead CloudView from starting. As a
result, the standard tools to apply changes will be unavailable.

For this scenario, use the buildgct emergency configuration application tool.

You must follow this procedure exactly as described for it to work.

Important: Do not use buildgct except for this procedure, especially for multi-host
deployments. The buildgct tool does not contact the other hosts to synchronize the
configurations, so it can cause severe inconsistencies in the product configuration.

1. Stop Exalead CloudView on all servers.

2. Edit the configuration files to fix the error.

3. Run <DATADIR>/bin/buildgct.

4. If it fails, continue editing.

5. Restart the master host.

220 - Configuration

Apply changes when Exalead CloudView has stopped

6. Wait for the master host to be fully started.

7. Restart the other hosts, if any.

Configuration - 221

Troubleshooting

Troubleshooting

This chapter describes how to troubleshoot common document analysis issues and how to
analyze queries.

Troubleshooting Document Analysis

Analyzing User Queries with Reporters

Troubleshooting Document Analysis

Below is a list of potential issues with document analysis and their solutions.

Identify the Cause of the Index Crash

Unexpected Search Behavior

Identify the Cause of the Index Crash

The following procedure describes how to identify the cause of the crash.

1. Go to the log.log file in <DATADIR>\run\indexingserver-bg0\

2. Look for ‘ERROR’.

3. You need to locate:

◦ document URI

◦ processor type

◦ method

The document URI is added to the block list file indexing_uri_blacklist.txt in
<DATADIR>\gct. It is not indexed anymore.

4. Contact support for advanced analysis (file format, character strings etc.).

Example:

@@CRITICAL ERROR with "/%2Fdata%2Fcorpus%2Fdepeches%2Fvrac%2Ffr/3_2006-06-21T1226_FAP4251.txt"
 in LanguageDetector_process (com.exalead.indexing.analysis.processors.cpp:622):
 caught abort (signal 6) from tkill (code -6)

Key elements are:

• document URI: 3_2006-06-21T1226_FAP4251.txt

• processor type: LanguageDetector

• method: process

222 - Configuration

Unexpected Search Behavior

Unexpected Search Behavior

Search for Issues in Document Processing

Follow the steps below to identify document processor issues.

Step 1 - to Add log Information

To display detailed chunks in the log.log file, you must first add a Debug Processor element to
your document processors list.

1. From the Administration Console, go to Index > Data processing > Pipeline name.

2. In the Document Processors tab, click Other in the Processor types menu.

3. Drag the Debug Processor element to the end of the processors list.

Example: <Debug> tags are displayed:

[2013/09/23-09:54:11.584] [info] [AnalyzerThread-bg0-default_model-1] [analysis.debug] uri:
 C:\Users\E7G\Downloads\traffic.csv8 source: RATP did: 57 slice: 0: DebugProcessor: dumping
 C:\Users\E7G\Downloads\traffic.csv8DebugProcessor: dumping C:\Users\E7G\Downloads\traffic.csv8:
<DebugChunk type="TextChunk" ctx="ville" deleted="false" part="null" value="Paris" score=0 language="xx">
</DebugChunk>
<DebugChunk type="TextChunk" ctx="arrondissement" deleted="false" part="null" value="1" score=0
language="xx"> </DebugChunk>
<DebugChunk type="TextChunk" ctx="source" deleted="false" part="null" value="RATP" score=0 language="xx">
</DebugChunk>

Step 2 - to Submit Document Using cvdebug

1. Submit your document to test processors in your pipeline:
cvconsole cvdebug> analysis analyze path=<PATH_TO_DOCUMENT>

For example, submit a .CSV file.

cvconsole cvdebug> analysis analyze path=/tests/myfile.csv

The output is a mapping of contexts and chunk values.

<TestAnalysisPipelineOutput xmlns="com.exalead.indexing.analysis.v10" documentProcessorsTimeUS=1000

semanticAndMappingTimeUS=0>

 <##default>

 <DocumentProcessorsOutput xmlns="com.exalead.indexing.analysis.v10">

 <Document>

 <Document xmlns="com.exalead.ndoc.v10">

 <element>

 [

 <Context xmlns="com.exalead.ndoc.v10" language="xx" name="source"/>,

 <ScoreContext xmlns="com.exalead.ndoc.v10" value=0/>,

 <Chunk xmlns="com.exalead.ndoc.v10" value="sourceTest"/>,

Configuration - 223

Unexpected Search Behavior

 <Context xmlns="com.exalead.ndoc.v10" language="xx" name="uri"/>,

 <ScoreContext xmlns="com.exalead.ndoc.v10" value=0/>,

 <Chunk xmlns="com.exalead.ndoc.v10" value="C:\Users\E7G\Downloads\traffic2.csv"/>,

 <Context xmlns="com.exalead.ndoc.v10" language="xx" name="extracted_mime"/>,

 <ScoreContext xmlns="com.exalead.ndoc.v10" value=0/>,

 <Chunk xmlns="com.exalead.ndoc.v10" value="text/plain"/>,

 <Context xmlns="com.exalead.ndoc.v10" language="xx" name="mime"/>,

 <ScoreContext xmlns="com.exalead.ndoc.v10" value=0/>,

 <Chunk xmlns="com.exalead.ndoc.v10" value="text#plain"/>,

 <Context xmlns="com.exalead.ndoc.v10" language="xx" name="docsrc"/>,

 <ScoreContext xmlns="com.exalead.ndoc.v10" value=0/>,

 <Chunk xmlns="com.exalead.ndoc.v10" value="txt"/>,

 <Context xmlns="com.exalead.ndoc.v10" language="xx" name="text"/>,

 <ScoreContext xmlns="com.exalead.ndoc.v10" value=0/>,

 <Chunk xmlns="com.exalead.ndoc.v10" value="Rang,Reseau,Station,Trafic,Correspondances,

c1,c2,c3,c4,Ville,Arrondissement1,M#tro,GARE DU NORD,"48,146,629",4,5,0,0,0,Paris,102,

M#tro,SAINT-LAZARE,"46,790,941",3,9,12,13,14,Paris,8"/>,

 </element>

 </Document>

 </Document>

 </DocumentProcessorsOutput>

 </##default>

 <##default>

 <UnmappedContexts xmlns="com.exalead.indexing.analysis.v10">

 <StringValue>

 [

 <StringValue xmlns="exa.bee" value="docsrc"/>,

 <StringValue xmlns="exa.bee" value="extracted_mime"/>,

 <StringValue xmlns="exa.bee" value="source"/>

]

 </StringValue>

 </UnmappedContexts>

 </##default>

</TestAnalysisPipelineOutput>

Search for Issues in Semantic Processor

You can follow the steps below to identify semantic processor issues.

Step 1 - Display Semantic Processors for Each Document

To display detailed information on semantic processing in an HTML file, you must first add a
Debug Processor element to your semantic processors list.

Important: The HTML output is verbose. You can use sample data to avoid using large amounts
of disk space during indexing.

1. From the Administration Console, go to Index > Data processing > Pipeline name.

224 - Configuration

Unexpected Search Behavior

2. In the Semantic Processors tab, drag the Debug Processor to the end of the processors list.

3. In the Input from field, specify the HTML file in which information is logged.

Example: all semantic processing applied to field 327 of document [0000000031217F90]

Step 2 - Submit Text or Document

1. Submit text through the semantic pipeline to display all running processors:

◦ Using a single word:

cvconsole cvdebug> semantic annotate language=en context=text value=”WORD”

◦ Using a text block (.TXT file):

cvconsole cvdebug> semantic annotate-file language=en path=<PATH_TO_TXT_FILE>

Example: submit the word ‘test’

cvconsole cvdebug> semantic annotate language=en context=text value=”test”

The output displays tokens tagged with annotations:

<AnnotatedToken id="0" kind="TOKEN_SEP_PUNCT" lang="en" token="#Ç¥" offset="0" />

<AnnotatedToken id="1" kind="TOKEN_ALPHA" lang="en" token="test" offset="3" >

 <Annotation TID="7" kind="LOWERCASE" id="0" nbTokens="1" display="test" displayKind="lower"

trustLevel="0" />

 <Annotation TID="8" kind="NORMALIZE" id="1" nbTokens="1" display="test" displayKind="norm"

trustLevel="0" />

 <Annotation TID="20" kind="phonetic" id="2" nbTokens="1" display="T.E.S.T" displayKind="norm"

trustLevel="100" />

 <Annotation TID="23" kind="relatedTermsPreprocessor_staticLemma" id="3" nbTokens="1" display="test"

displayKind="norm" trustLevel="100" />

</AnnotatedToken>

<AnnotatedToken id="2" kind="TOKEN_SEP_PUNCT" lang="en" token="#Ç¥" offset="7" />

<AnnotatedToken token="ö" kind="PUNCT" lang="en" offset="0 ">

</AnnotatedToken>

<AnnotatedToken token="test" kind="ALPHA" lang="en" offset="1">

 <Annotation displayForm="test" displayKind="lowercase" tag="LOWERCASE" nbTokens="1" trustLevel="0" />

 <Annotation displayForm="test" displayKind="normalized" tag="NORMALIZE" nbTokens="1" trustLevel="0" />

 <Annotation displayForm="T.E.S.T" displayKind="normalized" tag="phonetic" nbTokens="1"

trustLevel="100" />

 <Annotation displayForm="test" displayKind="normalized" tag="relatedTermsPreprocessor_staticLemma"

Configuration - 225

Analyzing User Queries with Reporters

 nbTokens="1" trustLevel="100" />

</AnnotatedToken>

<AnnotatedToken token="ö" kind="PUNCT" lang="en " offset="5 ">

</AnnotatedToken>

Step 3 - Display All Processors

1. Display the list of semantic processors in the analysis pipeline using cvdebug:
cvconsole cvdebug> semantic dump-pipe

The output (extract) displays each semantic processor and resources:

<Processor>

 [

 <Normalizer xmlns="com.exalead.mot.components" resource="exalead.891136526.normalizer.resource"

 trustLevel="0"

normalizeCJ="true"/>,

 <GermanTokenizer xmlns="com.exalead.mot.components"

normalizerResource="exalead.891136526.normalizer.resource"

splitPolicy="keepToken3" useCustomNormalizationTID="true" stickTokens="false"

resource="exalead.subtokenizer.de.resource"/>,

 <DutchTokenizer xmlns="com.exalead.mot.components"

normalizerResource="exalead.891136526.normalizer.resource"

splitPolicy="keepToken3" useCustomNormalizationTID="true" stickTokens="false"

 resource="exalead.subtokenizer.nl.resource"/>,

 <NorwegianTokenizer xmlns="com.exalead.mot.components"

normalizerResource="exalead.891136526.normalizer.resource"

splitPolicy="keepToken3" useCustomNormalizationTID="true" stickTokens="false"

resource="exalead.subtokenizer.no.resource"/>,

 <JapaneseCharDetector xmlns="com.exalead.mot.components"/>,

 <CJKProcessor xmlns="com.exalead.mot.components"/>

]

</Processor>

Analyzing User Queries with Reporters

CloudView contains several reporters allowing you to collect reporting information related to the
behavior of your front-end applications.

For example, reporters can retrieve information related to the execution time or the CPU time of
the search service, the suggest service, the mashup components of your applications (page, feed,
widget, and trigger), etc. Reporters are therefore useful to analyze and troubleshoot performance
issues.

Once you have selected a reporter, you can choose between different output formats to export
collected data. To do so, you can select one or several publishers: CSV, JDBC, Reporting Store,
PAPI.

226 - Configuration

About Reporters

Once data is exported to CSV, JDBC or Reporting Store, you can build reports out of it using
external reporting tools.

About Reporters

Output Reporting Data to CSV Files

Output Reporting Data to a JDBC Database

Output Reporting Data to the Internal SQLite Database

Index Reporting Data as a Data Source

Available Fields for the Reporting Publishers

About Reporters

This section describes the use of the reporters delivered by default when you install Exalead
CloudView.

In the Administration Console, if you select the Search > Reporting menu:

• All of them have a Reporting Store Publisher,

• the search-reporting and suggest-reporting reporters also have CSV publishers.

What Can You Do?

You can:

• Choose to add more publishers to the default reporters to output data in different formats as
explained in the following "Output data to..." sections.

• Add and configure your own custom reporter if the default ones do not cover your needs.

What Can Reporters Do?

Reporter Description

search-reporting Collects user query data submitted to the /search-api/ command of the
Search API.

suggest-reporting Collects query data submitted to the Suggest command of the Search API.

mashup-ui-reporting Collects data relative to task execution and to CPU activity on the Mashup
UI. For example, when a user queries a page, the reporter retrieves data
such as the execution and CPU time of pages, widgets, and triggers.

Configuration - 227

Output Reporting Data to CSV Files

Reporter Description

Once configured in the Administration Console, this reporter must be
enabled in the Mashup Builder > Application > Application Properties
menu.

Note: When you enable the mashup-ui-reporting reporter and the Mashup
UI debug mode, you can open a Timeline tab in your Mashup UI
application. This tab shows a set of reporting fields with bars representing
either real or CPU time values.

mashup-api-reporting Collects data relative to feeds, subfeeds, and triggers execution. This
reporter allows you to understand explicitly the feed execution process, with
subfeeds and triggers and to identify possible problematic issues.

Once configured in the Administration Console, this reporter must be
enabled in the Mashup Builder > Application > API Properties menu.

Note: When you enable the mashup-api-reporting reporter and the
Mashup UI debug mode, you can open a Timeline tab in your Mashup UI
application. This tab shows a set of reporting fields with bars representing
either real or CPU time values.

opendocs-reporting Collects data relative to the download and preview of documents on your
application pages. In other words, what happens when people click the
Download and the Preview links of the Result List widget.

Once collected internally, data is displayed in the Business Console’s Query
Reporting > Top Opened Documents tab.

Output Reporting Data to CSV Files

Exalead CloudView can output reporting data to CSV files.

For all reporters, you can add or remove reporting fields, and adjust the rotation frequency for the
output.

Note: The CSV publisher is configured by default for the search-reporting and suggest-reporting
services. Reporting fields are already selected but you can edit this default configuration.

Configure the CSV Output (Optional)

1. In the Administration Console, go to Search > Reporting.

2. Under Reporter, select the CSV Publisher.

228 - Configuration

Output Reporting Data to CSV Files

a. For Published fields, add or remove fields.

b. Modify the other options if required.

Option Description

Output to File Allows you to specify a name for the CSV file.

The default names are suggest.csv and search.csv for the
default suggest-reporting and search-reporting reporters.

You can specify other file names if required.

Max file size (MB) Allows you to specify the maximum size allowed for the CSV file.

If you crossed the max size, the rotation is launched automatically.

Rotate every N months/days/
hours

Allows you to specify when to write the data to a new CSV file.

The previous CSV files remain on the server.

Max files to keep Maximum number of reporting files to keep. The oldest files are
discarded at rotation time. 0 means that no limit is enforced,
whereas 1 discards all rotated files.

Max days to keep Maximum file age in days to keep. The oldest files are discarded
at rotation time. 0 means that no limit is enforced, whereas 1 only
keep today’s files.

Max size to keep (MB) Maximum size allowed for CSV files. The oldest files are dcarded at
rotation time. 0 means that no limit isis enforced.

3. Click Apply.

Access CSV Query Data

1. Go to your <DATADIR>/run/searchserver-ss0/ directory:

2. Then for:

◦ search-reporting: /search-reporting/search.csv

◦ suggest-reporting: /suggest-reporting/suggest.csv

◦ mashup-ui-reporting: /mashup-ui-reporting/<FILENAME>.csv

◦ mashup-api-reporting: /mashup-api-reporting/<FILENAME>.csv

◦ opendocs-reporting: /opendocs/<FILENAME>.csv

Configuration - 229

Output Reporting Data to a JDBC Database

Output Reporting Data to a JDBC Database

You can create your own JDBC database to store search or suggest query data, then set up the
required connection details and fields to output in Exalead CloudView. For all reporters, you can
configure the export to only include a subset of these fields. You can also specify additional fields.
For details, see the procedures below.

Create the JDBC Database

1. Create a JDBC database:

a. Create a dedicated table for each reporter. A table to store your search query data, a
separate table to store suggest query data, etc.

b. Define the fields you want to report on.

2. Copy your JDBC driver to <DATADIR>/javabin.

3. On the Administration Console Home page, restart the searchserver and connector
processes.

4. Add the JDBC reporting publisher. See Add a JDBC Reporting Publisher.

Add a JDBC Reporting Publisher

1. Follow the steps in Create the JDBC Database.

2. In the Administration Console, go to Search > Reporting.

3. Expand the configuration for the reporter to export. For example, for search queries, click
search-api, for suggest queries, click suggest-reporting, etc.

4. Click Add reporting publisher.
a. Select JDBC Publisher.
b. Click Accept.

5. Click the newly added reporting publisher to display its configuration settings, and:

a. For Published fields, select the fields to include.

b. Specify the connection details to the database you created in the previous procedure:

Option action

Driver Enter the JDBC driver class name. For MySQL, it is
com.mysql.jdbc.Driver.

Connection string Enter the JDBC URL of the database.

Login Enter your database login, if any.

Password Enter your database password, if any.

230 - Configuration

Output Reporting Data to the Internal SQLite Database

Option action

Table Enter the name of the database table you want to report on.

6. Click Apply.

Output Reporting Data to the Internal SQLite Database

You can use the Reporting Store Publisher to send data to the embedded CloudView SQLite
database.

The Reporting Store Publisher is the default publisher used by all reporters. You can view
reporting data for the:

• search-reporting in the Business Console’s Query Reporting menu.

• mashup-ui-reporting in the Mashup UI Debug Mode > Timeline tab.

• mashup-api-reporting, in the Mashup UI Debug Mode > Timeline tab.

• opendocs-reporting in the Business Console’s Query Reporting > Top Opened Documents.

Output Data to the Reporting Store Publisher

1. In the Administration Console, go to Search > Reporting.

2. Under Reporter, expand one of the reporters, and select Reporting Store Publisher.
3. For Schema, select one of the predefined schemas of the embedded SQLite database. For

example, for the:

◦ search-reporting reporter, select queries,

◦ suggest-reporting reporter, select suggests,

◦ etc.

4. For Rotation cron, enter a cron command to run the rotation job periodically. By default, 0
0 * * * runs once a day at midnight. A rotation is also triggered every time a collection is
queried.

5. For Max records to keep, enter the maximum number of records that can be accumulated.
When you reach the limit, the oldest records are discarded. 0 means that there is no limit to the
database size.

6. Click Save.

Access Reporting Store Data

1. Go to <DATADIR>/reporting_store/<SELECTED SCHEMA>/collection.db

Configuration - 231

Index Reporting Data as a Data Source

Index Reporting Data as a Data Source

Using a PAPI Publisher allows you to use reporting data as a CloudView data source. You are
then able to index this reporting data and use the Mashup Builder widgets (charts, tables, etc.), to
create your own graphical reports.

Output Data to the PAPI Publisher

1. In the Administration Console, go to Search > Reporting.

2. Under Reporter, expand one of the reporters, for example, search-reporting.

3. Click Add reporting publisher.
a. Select PAPI Publisher.
b. Click Accept.

4. Click the newly added PAPI Publisher to display its configuration settings, and:

a. For Connector name, select the Push API (unmanaged) connector.

b. For Host, enter the connector hostname.

c. For Port, enter the Push API port number <BASEPORT> + 2.

5. Click Apply.

Index Data Collected by the PAPI Publisher

1. Go to Data Model > Classes, and select Trace all metas to retrieve the reporting fields.

2. Perform a query in your front-end application.

3. In the Administration Console, go to the Home page, you see that the default connector is
working as it processes the search data.

4. To add the reporting fields as configurable properties in the Data model:

a. Go back to Data Model > Classes.

b. Click Add class to create a new class for your reporting properties.

c. Click Add properties from traced metas and define how reporting fields must be indexed.

5. Click Apply.

Once done, you can search for reporting data.

Available Fields for the Reporting Publishers

By default, all the fields listed in the following tables are exported. However, for the CSV publisher,
you can configure the export to only include a subset of these published fields.

232 - Configuration

Available Fields for the Reporting Publishers

Search Reporting Fields

search-reporting Query Fields

Field Name Type Description

timestamp datetime The date and time of the export of the data.

apiclient_ip string IP address of the client for this API request.

query_logic string Search logic used for the query.

query_target string Search target used for the query.

query_querystring string The UQL query (q=) entered by the user. This is
the same as the _default_ value for the query
template defined in searchLogicList.xml.

query_language string ISO language code

query_start unsigned
integer

First requested full hit.

query_hf unsigned
integer

Number of requested full hits.

query_origin string Explains "what" created this request: page load
on Mashup UI; AJAX load on Mashup UI; trusted
queries; cache warm-up; isAlive; alerting; and so
forth.

answer_nmatches unsigned
integer

Total number of matches.

answer_nhits unsigned
integer

Number of hits.

time_total unsigned
integer

Total query time in microseconds.

query_full string Full query parameters in URL form.

query_id unsigned
integer

Auto-assigned internal query ID.

spellcheck_enabled Boolean Was spellcheck enabled on this query?

Configuration - 233

Available Fields for the Reporting Publishers

Field Name Type Description

spellcheck_suggestions unsigned
integer

Number of spellcheck suggestions.

spellcheck_autocorrect Boolean Was autocorrect enabled?

spellcheck_autocorrected Boolean Was autocorrect triggered?

applicationId string Mashup application ID passed by the API client.

user_id string User ID passed by the API client.

usersession_id string Session ID passed by the API client.

userquery_id string Query ID passed by the API client.

processing_indexquery string ELLQL query

answer_status unsigned
integer

Answer status. 0=ok, 1=error, 2=timeout, 3=limit
reached

time_queue unsigned
integer

Time in query processing queue in microseconds.

time_queryprocessing unsigned
integer

Time for query parsing and processing in
microseconds.

time_exec unsigned
integer

Time for partial hits execution in microseconds.

time_synfh unsigned
integer

Time for synthesis and full hits execution in
microseconds.

cputime_queryprocessing unsigned
integer

CPU time for query parsing and processing in
microseconds.

cputime_exec_searcher unsigned
integer

CPU time for partial hits execution, searcher side, in
microseconds.

cputime_exec_index unsigned
integer

CPU time for partial hits execution, index side, in
microseconds.

cputime_synthesis_searcher unsigned
integer

CPU time for synthesis execution, searcher side, in
microseconds.

cputime_synthesis_index unsigned
integer

CPU time for synthesis execution, index side, in
microseconds.

234 - Configuration

Available Fields for the Reporting Publishers

Field Name Type Description

cputime_fullhits_searcher unsigned
integer

CPU time for full hits execution, searcher side, in
microseconds.

cputime_fullhits_index unsigned
integer

CPU time for full hits execution, index side, in
microseconds.

searchserver string The search server that processed this query.

expansion_languages string Language detected at search-time for the
expansion.

Suggest Reporting Fields

suggest-reporting Fields

Field name Type Description

timestamp datetime The date and time of the export of the data.

apiclient_ip string IP address of the client for this API request.

query_service string Name of the suggests or dispatchers called.

query_querystring string The UQL query (q=) entered by the user. This is
the same as the _default_ value for the query
template defined in searchLogicList.xml.

query_output string output format: JSON or XML.

query_full string Full query parameters in URL form.

answer_status Boolean 0 = OK, 1 = error

answer_nhits unsigned integer Number of suggestions returned.

answer_blacklisted unsigned integer Number of removed suggestions.

time_total unsigned integer Total query time in microseconds.

query_distance unsigned integer Approximate matching. The greater the distance,
the more approximate the match. 0 for exact match.

query_cursor_pos unsigned integer The cursor position.

query_recursive Boolean Was the query processed recursively?

query_autocomplete Boolean Was the original query auto-completed?

Configuration - 235

Available Fields for the Reporting Publishers

Field name Type Description

query_min_d1 unsigned integer If distance >= 1: minimum entry length to perform
approximative suggestions with distance set to 1.

query_min_d2 unsigned integer If distance >= 2: minimum entry length to perform
approximative suggestions with distance set to 2.

query_logic string Search logic used for the query.

query_callback string The javascript callback that was called.

query_exhaustive Boolean Did the output contain exhaustive information?

searchserver string The search server that processed this query.

Mashup UI & Mashup API Reporting Fields

These are the fields that can be applied for both mashup-ui-reporting and mashup-api-reporting.

mashup-ui-reporting & mashup-api-reporting Fields

Field name Type Description

timestamp datetime The date and time of the export of the data.

user_id string User ID passed by the API client.

application_id unsigned integer Auto-assigned internal application ID.

report_id unsigned integer Auto-assigned internal report ID.

component_type string Indicates the reported component types. For
example, Page, PreRequestTrigger, Widget,
MashupWidgetTrigger, etc.

component_name string Indicates the names of all the components that can
be found on the page, that is to say the name of the
page itself, the widget names and the trigger names.

component_event string Indicates the event types. For example, render,
before_query, after_query, before_rendering,
after_rendering, etc.

start_cpu unsigned integer CPU start time value in microseconds for each page
component event.

stop_cpu unsigned integer CPU stop time value in microseconds for each page
component event.

236 - Configuration

Available Fields for the Reporting Publishers

Field name Type Description

start_nanotime unsigned integer Real start execution-time value in nanoseconds for
each page component event.

stop_nanotime unsigned integer Real stop execution-time value in nanoseconds for
each page component event.

service_instance string Mashup UI or Mashup API instance name (as
specified in Deployment > Roles).

For example, mu0 for Mashup UI and ac0 for
Mashup API.

user_session string Auto-assigned internal user session ID.

query_querystring string The full query string received by the page or the
Mashup API.

client_ip string The web client (browser) IP address.

client_user_agent

(for mashup-ui-reporting
only)

string The web client (browser) user agent.

client_accept_language

(for mashup-ui-reporting
only)

string The web client (browser) default language.

response_size unsigned integer The web client (browser) or the Mashup API
response size in bytes.

opendocs Reporting Fields

opendocs-reporting Fields

Field name Type Description

timestamp datetime The date and time of the export of the data.

document_source string The connector name.

document_uri string The document URI that was downloaded or
previewed.

document_filename string The document file name that was downloaded or
previewed.

Configuration - 237

Available Fields for the Reporting Publishers

Field name Type Description

user_id string User ID passed by the API client.

application_id string The name of the mashup UI application on which
documents were downloaded or previewed.

query_querystring string The UQL query (q=) entered by the user. This is
the same as the _default_ value for the query
template defined in searchLogicList.xml.

query_queryfull string Full query parameters in URL form.

buildgroup string The name of the build group in which the document
is indexed.

type string The type of action that was executed: Download or
Preview.

238 - Configuration

Performance Considerations

Performance Considerations

This chapter describes what you need to understand before indexing a full corpus.

About Exalead CloudView Sizing

The Impact of the Data Model on Performance

Dealing with Hierarchical Dimensions

About Exalead CloudView Sizing

While developing your search application, you most likely used a small corpus to test indexing.
Your focus was on getting relevant results that display according to the specifications for the
application.

Once you start the testing phase of your application, indexing with a real corpus, your focus turns
to performance, and the sizing you need to support it.

Sizing is a complex topic with so many variables that it is impossible to provide hard & fast rules.

We can, however, explain the main sizing considerations in a project, and the type of resource
they impact.

Important: This section does not replace an Exalead professional services engagement. Sizing
is complex, with many factors to consider. Consult an Exalead sizing expert before undertaking
sizing.

How Project Requirements Impact Sizing

This requirement Impacts

Project description

• Do you need exhaustive search? (It
guarantees that it searches and retrieves
every match, even if it takes longer).

CPU

• What is an acceptable response time?
Typically, for dashboards it is 4 or 5 sec; for
intranet search it is in milliseconds.

CPU & RAM

Scope: what is the expected lifecycle for this
app? Can this app be used for further projects?

Number of machines, or type of hardware

Configuration - 239

Disk Requirements

This requirement Impacts

How many documents can be indexed? Mainly disk space. May also impact RAM & CPU

How many data sources, and what kind? CPU & RAM

How many users + what is the estimated QPS
(Queries Per Second)?

CPU & RAM

Index freshness - every minute/every hour/every
day?

CPU, RAM & disk performance

What is the expected throughput (how many
incremental changes to your corpus)?

CPU, RAM & disk performance

Does it need to be an HA deployment? Number of machines

See also the "Before going live" in the Exalead CloudView Administration Guide for a list of issues
to be aware of when going into production.

Disk Requirements

See the General System Requirements in the Exalead CloudView Installation Guide.

RAM Sizing Formula

You can estimate your total RAM requirements like this:

RAM for processes + RAM for RAM-based fields + RAM for document cache.

The table below explains this in more detail.

Memory is used for and requires

RAM for processes running Exalead
CloudView processes.

Fixed at 8 GB

RAM for RAM-based
fields

storing metas used for
faceting, sorting, grouping
and in virtual expressions
in memory.

Highly variable: 2* (avg size of all
RAM-based meta * # docs)

RAM for document
cache

caching indexed
documents in memory.

20% of the size of your index.

To estimate index size

• Enterprise search: 20 kb * # docs

240 - Configuration

The Impact of the Data Model on Performance

Memory is used for and requires

• Analytical dashboards or eCommerce: 3
kb * # docs

To put all this together:

• For enterprise search

Total RAM = 8 GB + 2 (avg size of all RAM-based meta * # docs) + 0.2(20 kb * # docs)

• For search-based applications (analytical dashboards) or eCommerce

Total RAM = 8 GB + 2 (avg size of all RAM-based meta * # docs) + 0.2(3 kb * # docs)

To see the RAM usage per field, use the cvdebug command-line tool located in <DATADIR>/bin
and start the following command:

cvdebug index dump-attribute-group-column-infos

The Impact of the Data Model on Performance

The data model serves as a way to group your metas according to business logic using classes.
Each property has options that determine how to store the corresponding meta in the index and
access it by the application.

You need to keep in mind, though, the impact of:

• selecting unnecessary options for properties

• having too many classes

How Property Options Impact Performance

These are the options we are talking about by ‘data model property options’.

Configuration - 241

How Property Options Impact Performance

The table below explains what they do and how they impact performance.

Data Model Options, Listed in Order of Performance Impact

Property option What it does Impacts Explanation

Dedicated field Creates an index field on disk. Disk, and
eventually
search latency

The more index fields,
the more folders on disk
(where an index field =
a folder), which in turns
means more things to
compact, and more
things to replicate which
in turn increases search
latency.

Searchable with prefix Creates the inverted list, which
is the lookup structure used to
respond to search queries.

RAM This also adds folders/
files to disk, and at
run-time, even when
there are no queries
sent to it, it consumes
some RAM. The files
containing the inverted
lists is mapped by the
index.

Map files can be loaded
or unloaded in RAM by
the OS; this explains
why virtual memory in

242 - Configuration

How Property Options Impact Performance

Property option What it does Impacts Explanation
the monitoring console
may display as higher
than available memory.

Searchable without
prefix

Copies the meta values into
the text field. Typically used for
legacy reasons (in v5).

By default, the text field is
targeted by the text prefix
handler, and means that if
users enter a query without a
prefix, the search targets this
text field.

If you change the default prefix
handler, however, it renders
this option useless.

In that case, it is better to
use the renameContext doc
processor and rename your
meta to the name of the field
targeted by your default prefix
handler.

RAM

Disk

Virtually the same
RAM consumption as
for Searchable with
prefix.

Less disk consumption
as values are all stored
in the same field.

Retrievable Copies the entire meta source
in the attributes structure.

This is the structure used for
returning the meta values,
whether this appears in search
results, facets, or for sorting.

Note: If you select this option
without selecting "index field",
the meta values are stored in
the "metas" default attribute.

For search only:
Disk.

For faceting and
search: RAM,
since these
must be RAM-
based.

For faceting and
sorting, the property
must be both retrievable
and RAM-based.

This is because we
need to ask for this
value very frequently
when sorting and
faceting for the entire
result set.

Conversely, metas used
only for search result
display must be stored
as retrievable, which

Configuration - 243

How Property Options Impact Performance

Property option What it does Impacts Explanation
means they are stored
on disk.

RAM-based This only displays if
"retrievable" and "index field"
are selected.

Important: Only use RAM-
based for fields required
for sorting, grouping, facet
aggregations, or search-time
facets.

RAM The more fields that are
RAM-based, the more
memory consumed.

There is a fixed amount
of RAM consumed
for each document,
regardless whether this
property is present or
not.

Sometimes for
numerical properties,
the default 64-bit
allocated for this
property is too much; if
you only have a small
range of values, you
can reduce this value
and thereby reduce
memory consumption.

Category facet Selecting this means the
original value of my meta is
stored in the category field of
the index.

This was the only method to
create facets in v5. However, in
v6 there are very few reasons
to use this because we can
now create search-time facets
for numerical, geographic, and
date metas.

Important: Only select this
option when you want, for
example, to facet on colors
(red, blue, green, etc.), and

RAM

Faceting
(synthesis)
speed

To process category
facets efficiently, we
have implemented a
structure (cdict) to
store these in RAM,
which assigns an ID to
each value.

Having too many
distinct values in a
category field increases
with ID range and
impact memory
consumption and the
speed of faceting.

244 - Configuration

How Classes Impact Performance

Property option What it does Impacts Explanation
do NOT need to use full-
text search options (wild
cards, approximate). You can,
however, use this to do exact
search, for example color: red
returns all documents with the
value red.

Enumerated (Value
facet)

Only available on alphanumeric
properties with the index field
option selected.

RAM and CPU,
but less than for
category facets

Since it does not
manage hierarchical
values, it does not
perform the calculations
required for parent-
child relationships,
and so consumes less
RAM and CPU than a
category facet.

How Classes Impact Performance

In the data model, you can define classes to organize your properties according to a business
logic. The name of the class appears in any element (index field, facet, hit meta) generated by the
property. This allows applications to select only the elements relevant to their business logic.

There is a limitation to adding many different classes and properties, however: the index does not
distinguish between class and properties.

This means in the index schema, they are flattened into one list. One document in the index has
the properties for all classes, even if there are no values for those properties.

This multiplies the performance impact of the options described in Table 12, for each “redundant"
property associated with a document.

Dealing with Hierarchical Dimensions

When dealing with hierarchical dimensions, several use cases can be addressed in two ways.
Either at search time, by configuring facets in the Search Logic, or at indexing time, by configuring
options in Data Processing and Data Model.

Examples:

Configuration - 245

Dealing with Hierarchical Dimensions

• For the search time solution, imagine you have 3 facets: People, Organization, and Role. If you
want to be able to switch dimensions from Organization / Role to Role / People or
Role / Organization, preparing all possible permutations would lead to important storage
and complex field creation. In this case, it is simpler to choose how you want to present values
at run time.

• If you have multiple metas, for example type, subtype, model and always use them in the same
order, it might be interesting to merge these metas in a single one called type/subtype/model.
It is still possible to point on a specific level of the tree, for example, if you want to get model
values only. This solution is faster in terms of query latency, but you cannot change the order.

To make it simple:

• Choose the Search/Run time solution when you want flexibility, that is to say, avoid reindexing
documents if you need to change the way dimensions have to be presented. This solution can
yet lead to longer query latency compared to the indexing time solution when the amount of
data is important.

• Choose the indexing time solution when the amount of data to process is important and you
need to have low query latency.

246 - Configuration

Appendix - Configure Document Processors

Appendix - Configure Document Processors

This section describes how to use and configure document processors in the analysis pipeline.

Chunk Operations

Normalization

Numerical Operations

Text Extraction

Text Operations

Custom

Other

Chunk Operations

Copy Context Chunks

Copies all document chunks from the context specified in Input from, and creates new document
chunks with the same score, language, and part, in the context specified in Output to.

You can apply matching conditions to this processor to refine its behavior. For example, if you
have a multivalued field having the following values: order-1, order-2 and order-A, and want
to numeric orders only (that is, everything but not order-A), you can set a condition with a value
that equals the order-d+ regular expression.

Multi-Context Encoder

Creates a DocumentChunk containing the ContextName and the textual value of the
DocumentChunks matching 'inputContexts'.

This processor can be used, for example, to store arbitrary (key, value) pairs into one single index
field.

The serialization format is the following:

• "ContextName1"="TextContent1"

• "ContextName2"="TextContent2"

• ...

The double-quote character in name and value is escaped with a backslash.

Configuration - 247

New Chunk

Note: This storing method is inefficient and must be used with caution.

New Chunk

Creates a new DocumentChunk with 'outputContext' as ContextName, and textual content
specified in 'value'.

Remove Contexts

Removes all DocumentChunks with a ContextName matching 'inputContexts'.

Rename Context for Chunks

Renames each DocumentChunk with ContextName matching 'inputContext' with a ContextName
'outputContext'.

Rename Unmapped Contexts

Changes the ContextName for all DocumentChunks associated with a ContextName that does not
have a Mapping Configuration.

This avoids extensive renaming using RenameContext.

Replace Values

Compares all DocumentChunks for a given inputContext with the specified KeyValue map.

When the DocumentChunk value is an exact match, the specified string replaces it.

You can use this processor, for example, to normalize different spelling for document metadata.

NOTE: The specified KeyValue map must be an exact match with the complete DocumentChunk.

To replace only a substring of a DocumentChunk, use ReplaceRegexp.

Input: All DocumentChunks associated with the specified 'inputContext' ContextNames.

Output: Same as input.

Value Selector

Takes the input contexts in the specified order, and as soon as one is found, copies the content to
the output context and stops.

248 - Configuration

Normalization

Normalization

Date Formatter

If a document chunk matches either:

• A custom input format defined with UNIX date syntax, for example, %Y/%m/%d %H:%M:%S
(see Indexing Options for Date Properties)

• One of the automatically recognized date formats (see Automatically Recognized Input
Formats)

The Date Formatter generates three additional document chunks, each with its own context name,
using the following naming convention:

• $inputContext$dateTimeOutputContext (default format: %Y/%m/%d-%H:%M:%S)

• $inputContext$dateOutputContext (default format: %Y/%m/%d)

• $inputContext$timeOutputContext (default format: %H:%M:%S)

Note: You can also define specific output formats in the config XML.

Automatically Recognized Input Formats

If no input format is specified, the Date Formatter automatically recognizes dates in the following
formats.

Note: Timezones are ignored.

• RFC 822 and 2822

• ISO 8601 and RFC 3339

• Other (‘day’ and ‘month’ values are only recognized if written in English):

◦ "day, DD month YYYY hh:mm:ss"

◦ "day, DD month YYYY hh:mm:ss timezone"

◦ "day, DD month YY hh:mm:ss"

◦ "day, DD month YY hh:mm:ss timezone"

◦ "day month DD YY hh:mm:ss"

◦ "day month DD hh:mm:ss timezone YYYY"

◦ "DD month YYYY hh:mm:ss"

Configuration - 249

Numerical Formatter

◦ "YYYY/MM/DD hh:mm:ss"

◦ "YYYY/MM/DD-hh:mm:ss"

◦ "MM/DD/YYYY hh:mm:ss"

◦ "MM-DD-YYYY hh:mm:ss"

◦ "MM/DD/YYYY"

◦ "MM-DD-YYYY"

Output Formats

The default output formats are:

• date-time: %m/%d/%Y %H:%M:%S

• date: %m/%d/%Y

• time: %H:%M:%S

Note: You can also define specific output formats in the XML configuration, using UNIX date
syntax.

Numerical Formatter

Creates valid numerical chunks from various number formats.

Public URL Processor

Creates 4 DocumentChunks, each associated with a different ContextName, for each input
DocumentChunk associated with the ContextName 'inputContext':

• 'treeOutputContext'

• 'leafOutputContext'

• 'urlOutputContext'

• 'urlCategoryOutputContext'

Units of Measurement Normalizer

Detects the unit symbol if specified in the input value and operates a conversion according to the
index unit symbol when required. Then creates a new meta-data with the normalized value.

You must define the following properties:

• Input from – Specify the name of your data model measurement property.

250 - Configuration

Numerical Operations

• Measurement type name – Specify the measurement type defined in your data model
measurement property.

• Unit Symbol – Specify the Unit symbol to use in the output value.

• Suffix to add to the meta_name – (default "_um") suffix name to add to the meta name to
create output meta value.

For example, if you have a volume index field with a measurement type set to volume and a unit
symbol set to millimeter:

Let us say that Document1 has a volume meta-data containing the value 50cl and Document2
has a volume meta-data containing the value 1000. Then the output for Document1 is a new
volume_um meta containing the value 500 and for Document2 a volume_um meta with the value
1000.

Numerical Operations

Double to Long

Stores floating point values into signed fields that can then be queried with the
DoublePrefixHandler.

Fixed Range Numerical Partitioning

Matches numerical values in a range. It transforms a numerical value into a matching range,
based on a fixed range size.

For example, with rangeSize = 100,

• 101 -> 100_199

• 234 -> 200_299

For negative numbers:

• -20 -> -100_-1

• 0 -> 0_99

This helps to create categories (for navigation) from numerical values.

Forced Range Numerical Partitioning

Configuration - 251

Math Document Processor

Transforms a numerical value into the text value associated to its matching range from a set of
predetermined ranges specified in 'NumericalRange'.

Math Document Processor

Performs mathematical operations on a numerical field. You must preface expressions with a $.

For example, the expression `$ht_price * 1.196` finds the first chunk in the `ht_price` context, and
replaces all occurrences of `ht_price` with the mathematical expression.

The result is a new text chunk, either in the Output context (if specified), or in the original `ht_price`
context.

Text to Num

Processor to hack an approximate sort on a text field.

Implements a surjection from the set of strings to the set of integers [0..N] with N close but inferior
or equal to 18,446,744,073,709,551,615.

You define an ordered alphabet. A first surjection from the set of all strings to the set of finite
sequences of symbols taken from this alphabet is applied (strip the string from symbols out of the
alphabet).

A partial order relation is inferred on the latter set by the alphabet (lexicographical order).

For obvious cardinal numbers reasons (one set is infinite the other is not), the second surjection
cannot be partial-order preserving. The idea is to preserve the relation on the shorter strings, and
preserve the relation between shorter strings and longer strings, such as:

• if STRING2ULONG('shortstring1') <= STRING2ULONG('shortstring2') then 'shortstring1' <=
'shortstring2'

• STRING2ULONG('longstring1') <= STRING2ULONG('longstring2') does NOT insure
'longstring1' <= 'longstring2'

• if STRING2ULONG('shortstring1') <= STRING2ULONG('longstring2') then 'shortstring1' <=
'longstring2'

The size of the prefix obviously depends on the size of the alphabet.

Text Extraction

HTML Relevant Content Extractor

252 - Configuration

MIME Detector

Extracts the most relevant parts of an HTML document.

Generally, the relevant part of an HTML document is the article on the middle of the page. The
header, the footer and the menus are often the same on all pages and should not be indexed.

The extraction can be tuned using different attributes (see below).

An annotation readability:concat is added (on the 1st chunk) when several relevant chunks
must be processed together.

Internally, the HTMLRelevantContentExtractor assigns a score to each chunk of its input, and
keeps only chunks having a score greater than "minScore".

This score is based on different weighting factors:

• word length

• paragraph length

• HTML tags

• CSS classes

• word/hyperlink ratio

It copies relevant HTML chunks to a new context defined by 'relevantChunkContext' and either:

• Copies irrelevant chunks to another context defined by irrelevantChunkContext (default).

• Annotates irrelevant chunks with an annotation defined by irrelevantChunkAnnotation.

By default, irrelevant chunks are indexed as text with a lower score. Remove the 'excludedcontent'
index mapping if you do not want to index them.

Chunks from other types of documents (non-HTML documents) are all copied to the relevant
context.

No more 'text' chunks are available after this processor. Use 'htmlcontent' if you want to
manipulate the original text.

MIME Detector

Operates on each DocumentPart for which a MIME-type is not available.

For each DocumentPart in the PAPI, you can specify the MIME-type.

For DocumentPart, the 'bytes' and the 'filename' are used to guess the real MIME-type and
charset.

The guessed MIME-type and the charset are then set as attributes of the DocumentPart.

Input: The DocumentPart of the document.

Configuration - 253

Mime Type Setter

Output: 'mime' and 'encodingToUse' attributes of DocumentParts.

This document processor does not create any document chunks.

Mime Type Setter

Manually specify the mime type.

Semantic Web Document Processor

Extracts microdata/format from indexed documents.

Standard Parts Merger

This processor needs one DocumentPart called the 'Master Part'. If there is only one part, this part
is the 'Master Part'.

If there are multiple parts, the part named after the 'masterPart' attribute is the 'Master Part'.

• The DocumentChunks from the 'Master Part' are removed if there is a root DocumentChunk
(that is, not within any part) with the same ContextName except for those whose ContextName
appears in 'partSpecificContexts'. For example, if there is a DocumentChunk with
ContextName 'title' in the root document, any DocumentChunk with ContextName 'title' in the
Master Part is deleted. This behavior allows you to keep the meta-data extracted from the
master part, unless overridden through a global 'meta' in the PAPI.

• The DocumentChunks from the other DocumentParts are deleted, except for those whose
ContextName appears in 'partSpecificContexts'. This avoids the index fields being polluted by
additional DocumentPart's metadata. For example, when processing an Email with attachment,
we keep the date of the email as a Date, rather than any date extracted as a metadata of any
attachment.

Input: All DocumentChunks' from parts.

Output: This processor does not create any new DocumentChunk. It deletes existing
DocumentChunks.

Text Extractor (All Mime Types)

Performs text content extraction for all MIME-types (300+ file formats are handled).

Text, HTML, and built-in data types must be processed by the 'NativeTextExtractor'.

Make sure to have a 'NativeTextExtractor' before the ConvertTextExtractor in your pipeline.

254 - Configuration

Text Extractor (text, html, exalead)

Input: Document Binary Part.

Output: One or more DocumentChunks are created for each part, using the text and metadata of
the binary content. Each DocumentChunk is associated with a ContextName. There can be one or
more ContextNames depending on the extraction process. The ContextNames created depend on
each mime-type.

Text Extractor (text, html, exalead)

Extraction is performed for the following data types:

• text/plain for Text files.

• text/html for HTML Files.

• application/x-exalead-document for CloudView 4.6 document format (com.exalead.document)

• application/x-exalead-ndoc for CloudView 5 internal document format, binary.

• application/x-exalead-ndoc-v10+xml for CloudView internal document format, XML.

Input: Each DocumentPart. The 'mimeType' and 'charset' of the DocumentPart are used by
the extractor. Only the DocumentParts for which the mime-type matches the specified list are
processed.

Output: Creates one or more chunks for each part, using the text and metadata for the binary
content. Each DocumentChunk is associated with a ContextName.

There can be one or more ContextNames depending on the extraction process.

The 'bytes' of each Document Binary Part are deleted.

Xpath Extractor

Extraction is performed for the following data types:

• text/html. HTML Files.

• application/xml. XML Files.

Input: Each DocumentPart. The 'mimeType' and 'charset' of the DocumentPart are used by the
extractor. Only DocumentParts for which mime-type matches the specified list are processed.

Output: DocumentChunks are created for each Xpath Rule. Each DocumentChunk is associated
with the specified 'Meta name' ContextName.

Note: The output is not processed through the TextExtractors, if you want only the textual content,
you must add //text() to your rule.

Configuration - 255

Xpath Fragment Extractor

Warning: Must be set before the NativeTextExtractor because the 'bytes' of each Document
Binary Part are deleted by the NativeTextExtractor.

Limitations: This extractor handles node set and string functions, not number and Boolean. You
can use number or Boolean functions inside your xpath <code>//img[starts-with(@src,
"http://")]</code> because this xpath return a set of nodes (<code></code>) but
xpath <code>count(//img)</code> does not work because it returns a number.

Xpath Fragment Extractor

Input: All DocumentChunks associated with the specified 'inputContext' ContextNames. Input can
be XML or HTML fragment.

Output: DocumentChunks are created for each Xpath Fragment Rule. Each DocumentChunk is
associated with the specified 'Meta name' ContextName.

Warning: To put before the NativeTextExtractor because the 'bytes' of each Document Binary
Part are deleted by the NativeTextExtractor.

Text Operations

Concatenate Values

Concatenates the textual content of DocumentChunks which context names match what is
specified in Input from, and joins them with the 'join' string.

A single DocumentChunk with the 'outputContext' context name is created as output.

Content Cleanup

Analyzes each DocumentChunk and performs white space removal. The Unicode specification
defines 'white spaces'.

This includes ' ' '\\r' and '\\n'

Input: All DocumentChunks associated with the context names specified as input.

Output: Same as input.

Language Detector

Language detection uses the text of all DocumentChunks associated to the context names
specified as input, for which language was not already detected or specified.

256 - Configuration

Language Setter

The whole text of all these DocumentChunks is taken into account by a statistical algorithm that
detects the language. This language is then set as the language for all specified chunks.

For example, the language attribute of a DocumentChunk is used by semantic processing.

Language is represented by its iso639-1 code: fr, en.

Language Setter

The language is set as the language for all the DocumentChunks associated with the context
names specified as input.

For example, the language attribute of a DocumentChunk is used by semantic processing.

The language is represented by its iso639-1 code: fr, en

Print Values

Prints textual content of DocumentChunks according to a formatting string.

This string contains variables in one of the 3 following formats:

• $(name), the name of a context: output is the textual content of this context.

• $/name:regexp/, the name of a context whose chunks must match the regexp: output is the
piece of text that has matched.

• $/name:regexp:format/, the name of a context whose chunks must match the regexp:
output is defined by a sed-like format referencing the regexp subexpressions.

Important: In the regexp and format parts, use a backlash to avoid colons and slashes.

For example: $(firstname) $(lastname) : $/age:[0-9]+/ $/date:([0-9]{2})
([0-9]{2})([0-9]{4}):day=\\\\1 month=\\\\2 year=\\\\3

Important: The context used in this method cannot be produced by another processor. It must
come from the connector.

Replace Regexp

Substitutes the content substring of all DocumentChunks having the ContextName 'inputContext',
using:

• Pattern as the matching substring regular expression

• and Replacement value, which may have a sed-like output format using references to capture
\\0 through \\9.

Configuration - 257

Split Values

A new DocumentChunk is created with the substitutions.

Split Values

Splits the textual content of all DocumentChunks containing the context name defined in Input
from using the specified separator as a separator regular expression.

A new DocumentChunk is created for each segment, with 'outputContext' as the ContextName.

String Hash

Computes a signed hash of the textual input value on 32 bits.

For example, you can use this value in a field used for grouping.

String Transform

Applies textual transformations on chunks from several contexts:

• trims blanks at the beginning and at the end of chunks

• reduces sequences of blanks to only one

• changes text to uppercase/lowercase/normalized/capitalized

Outputs replace inputs.

Custom

Custom Document Processor

Allows you to plug in custom code packaged as a CVPlugin into the document processing
pipeline.

For more information, see in the Exalead CloudView Programmer's Guide.

Java Document Processor

Takes Java code either inline or from a file, and executes it on-the-fly.

For production mode, it is best to use the packaging custom code as a Java Plugin (CVPlugin) and
using the Custom Document Processor to call it.Plug-ins allow better packaging and source
code maintenance.

258 - Configuration

Remote HTTP Transformer

For more information, see in the Exalead CloudView Programmer's Guide.

Remote HTTP Transformer

Posts part bytes to the remote HTTP service, and gets the entered resource as a result.

The remote service may return a Document.MIME_V10 document, or any other document that can
later be processed in the pipeline.

If the remote service returns a non "OK" HTTP status (!= 200 error code), the corresponding error
passes as a regular error.

The service may also advertise a file name, using the standard Content-Disposition's filename
attribute.

Other

Debug Processor

Dumps all the DocumentChunks specified in Input from as standard output. Provides a log of the
'Analysis' process.

Discard Document Processor

DEPRECATED

It does not stop the processing of the document. To do so, add a custom document processor with
the following code:

document.setProcessingFlag(Operation.DISCARD_AND_DELETE);
((AnalysisDocumentProcessingContext) context).stopProcessingAfterCurrentProcessor();

Document Processor Group

Contains a list of document processors, which are executed only if this group document processor
condition matches. Avoids condition duplication or distinct pipelines creation when several
processors share the same condition.

Format Checker Date

The Format Checker Date processor checks that the chunk matches either:

• A custom input format defined with UNIX date syntax (for example, %Y/%m/%d-%H:%M:%S).

Configuration - 259

Infer File Extension

• One of the automatically recognized date formats.

Infer File Extension

When the file_extension meta is not present, find the file extension based in the file name or
the mime meta (if one of these two is present).

Insert Current Date

Adds the current date in an output context.

Precomputed Thumbnails Document Processor

Precomputes thumbnails of the first DocumentPart.

Random DocumentChunks Generator (Uniform Distribution)

Adds a new DocumentChunk for one document out of 'modulo' documents processed.

The textual content of the DocumentChunk is picked out of the list specified in Values, with a
uniform distribution.

Random DocumentChunks Generator (Zipf Distribution)

Adds a new document chunk for one document out of 'modulo'.

The textual content of the document chunk is picked out of the list specified in Values, with a
nonuniform discrete Zipf distribution.

Real-Time Alerting

Matches queries defined by end-users and alerts them as soon as possible when a new matching
document is indexed.

Semantic Pipe

Instantiates a semantic pipe and creates chunks out of resulting annotations.

It helps instantiate classification processors, and perform document level operations from their
output.

260 - Configuration

Similar String to Part Converter

Similar String to Part Converter

Converts the signatures in a string format from a meta to a binary part.

Storage Service Document Processor

Queries the storage for any meta to attach to the document.

Multivalued pairs are pushed as multivalued metas.

For example:

• The storage key "nb_comment" is attached as "nb_comment" meta on the document.

• The storage key "tags[]" i attached as "tags" multivalued meta on the document.

UTF8 Checker

Checks that the text passing through is valid UTF-8.

Emits a warning with the document URI and the context name if input is malformed.

Optionally deletes invalid chunks.

Configuration - 261

Appendix - Configure Semantic Processors

Appendix - Configure Semantic Processors

This appendix describes how to use and configure semantic processors in the analysis pipeline.

About Semantic Processors

Acronym Detector

Chunker

Compound Words Splitter

Fast Rules Matcher (Rule-Based)

Lemmatizer

Named Entities Matcher

NGram Extractor

Normalizer

Ontology Matcher (Resource-Based)

Phonetizer

Proximity

Related Terms

Rules Matcher (Rule-Based)

Semantic Extractor

Semantic Query Analysis

Snowball Stemmer

Part of Speech Tagger

About Semantic Processors

This appendix assumes that you already have these semantic building blocks in place, and so
focuses on how to manually configure semantic processors directly in the analysis pipeline.

Remind that the Analysis pipeline processing is made of several stages:

• The Document processing, performed using Document Processors. See Appendix - Configure
Document Processors.

• The Semantic processing stage, performed using the Semantic Processors described in this
appendix.

262 - Configuration

Acronym Detector

• The mapping stage, consisting of mapping DocumentChunk and Semantic annotations to
index fields.

It involves a list of Semantic Processors, which process each DocumentChunk of each document
sequentially, except those for which Semantic Processing is disabled in the mapping.

The Semantic Processing stage segments text into 'tokens' and then processes text as a flow of
tokens. Semantic annotations are produced for each token.

Acronym Detector

This processor detects acronyms like "U.N.", "I.M.F" or "F.I.F.O" and extracts them in lowercase:
"un", "imf", and "fifo".

The annotation tag for the acronym detector is acronym.

Specify:

• a list of separators

• whether to index the normalized version of the annotation

• a comma-separated list of context names of the document chunks for which this processor is
applied (optional)

Chunker

A chunker detects syntactical groups in a token stream. This processor has no interest in itself,
and is mostly used as a preprocessing for advanced syntactical processing.

This processor has a high impact on performance.

It creates output annotations:

• gadv – for adverbial group

• gadj – for adjectival group

• gnoun – for noun group

• gverb – for verbal group

• gprep – for prepositional group

Configuration - 263

Compound Words Splitter

Compound Words Splitter

The Compound Words Splitter processor splits CamelCase, quiteCamelCase and
underscored_case words into separate words.

Example

Input Output

SearchServer Search Server

simpleSearchServer simple Search Server

simple_value simple value

To allow searching for these words individually, you must use Tokenize annotations option.
It creates tokens for each root word of the compound word. You need it to index values since
annotations are not tokenized (same behavior as the spellchecker).

For example:

Input Output

SearchServer • Search

• Server

simpleSearchServer • simple

• Search

• Server

simple_value • simple

• value

When to Use

The use cases where this processor is useful are manifold. Among others, we could use it for:

• Agglutinated data coming from a database. For example, agglutinated names like JohnSteed,
EmmaPeel, JohnGambitt, etc.

• Source code to search for variables and class and function names. Searching is more
convenient when these compound names are split into multiple words, for example, when you
want the query search to retrieve a document containing SearchServer.

264 - Configuration

Dependencies

Note: If you need to index "real" compound words without uppercase and underscores (for
example, wheelchair, editor-in-chief, etc.) use a standard tokenization. For more information,
see Customizing the Tokenization Config.

Dependencies

Add a Normalizer processor in the analysis pipeline if you do not want to index exact forms only,
but also support lowercase and normalized forms for uncompound words.

Fast Rules Matcher (Rule-Based)

The Fast Rules Matcher processor provides faster rule processing than the Rules Matcher but with
fewer options for defining rules.

One of the advantages of this processor is the efficient algorithm that searches documents literally
on the fly, using little memory.

When to Use

Using this processor, you can define rules that support the following matches:

• simple Boolean operators AND, OR, and NOT

• proximity and location operators NEAR, BEFORE, AFTER, SPLIT, BUTNOT

• prefixes: text:"foo" AND title:"bar"

• different word forms, such as normalized, phonetic, and so forth.

• regular expressions: title:/fo+/

• numerical operators: file_size<10 AND text:"foo bar"

• dates, with the same supported formats as the Date Formatter document processor (RFC 822,
RFC 850, asctime, ISO 8601, YYYY/MM/DD-HH:MM:SS). Supported formats are:

◦ YYYY/MM/DD-HH: MM:SS

◦ YYYY/MM/DD-HH: MM

◦ YYYY/MM/DD-HH

◦ YYYY/MM/DD

◦ YYYY/MM

◦ YYYY

Configuration - 265

Dependencies

In the rules, dates must be enclosed within curly braces:
date:>={ 2015/02/02-00:15 }

Dependencies

If the matching rules for this processor depend on phonetic, stem, or lemma matching, you must
add the corresponding processor above this one in the pipeline.

For example, if your rules require phonetic forms, place the Phonetizer processor above this
processor in the analysis pipeline.

Rule Nodes

Configure the rules for your Fast Rules semantic processor in an XML file. The root node of the
XML file is FastRulesDefinition. It contains the catName attribute and a set of rules for each
value of category, Category node.

The Category node contains a value attribute and a set of rules, Rule node.

The Rule node contains the following attributes.

Fast Rules Matcher - Rule Node Attributes

Attribute Description

value A query. Only a subset of UQL is supported as outlined below.

lang Restricts the query to documents in a specific language.

If lang is xx, then apply to all documents.

exceptionRule Is equivalent to AND(NOT(value)).

Sample Fast Rules XML Files

Example with Boolean operators

<FastRulesDefinition xmlns="exa:com.exalead.mot.components.fastrules" catName="MyCategory" >
 <Category value="MachineLearning" >
 <Rule value="text:"clustering" AND (text:"algorithm" OR text:"analysis"
 OR text:"learning")" exceptionRule="false" />
 </Category>
 <Category value="Hardware/Cluster" >
 <Rule value="text:"clustering" AND text:"load balancing"" exceptionRule="false" />
 </Category>
</FastRulesDefinition>

266 - Configuration

Supported Queries

Supported Queries

A query specified as a value. Only the following subset of UQL is supported:

• AND, OR, NOT

• BUTNOT

◦ For example, New BUTNOT "New York".

◦ Note this is different from New AND (NOT "New York"), which eliminates all documents
containing "New York" from the search. By contrast, New BUTNOT "New York" still
returns documents containing New York if they also contain the word new elsewhere in the
document.

• BEFORE[/N], AFTER[/N], NEAR[/N]

◦ N by default = 16

◦ For example, New BEFORE York means returns documents where New occurs no more
than 16 words (the default distance) before York.

◦ New BEFORE/4 York returns documents where New occurs no more than 4 words before
York.

• A SPLIT B, where B must be a terminal node, such as a string, a regular expression, or an
annotation.

For example, to search a CSV file you could use (A AND B) SPLIT "," returns documents
that contain occurrences of both A and B that are not separated by a comma.

Important: With SPLIT, the more complex the left-side expression, the greater the
performance impact. In general, searching for regular expressions is more efficient than
searching for text. However, when used with the BUTNOT, BEFORE, AFTER, NEAR, and SPLIT
operators, regular expressions no longer have a performance advantage over text.

Rule Syntax

• ContextName ':" \"TextExpr\" |

• ContextName ":" \"TextExpr\" "{"TextLevel"}" |

• ContextName ":" /RegularExpr/ |

• ContextName ":" /RegularExpr/ "{"TextLevel"}"; |

• ContextName ":" @Tag@

• ContextName ":" <comparison operator>42

Configuration - 267

Rule Syntax

Where:

• ContextName: : the context name, or meta, where the expression or regexp must be
applied, like text: or title:.

• \"TextExpr\" : any textual expression like "database administrator"

• {TextLevel}: the matching level, which can be:

◦ {e} exact

◦ {l} lowercase

◦ {n} normalized

◦ {p} phonetized

◦ {s} stem

◦ {a} singular lemmas

◦ {m} singular masculine lemmas

◦ Default value is exact {e}.

• /RegularExpr/: any posix regular expression (without replacement expressions)

• @Tag@: the name for the attribute type

• <comparison operator> can be one of:

◦ =

◦ < (<)

◦ <= (<=)

◦ > (>)

◦ >= (>=)

Example 2. Samples

<!-- search the "url" context for all addresses that contain "wikipedia.org/wiki" and also contain the word
 "Thé" in
 the "title" context, which is lowercase, or case-insensitive, but does require the accent on the "e" -->
url:/.*wikipedia.org\/wiki/ AND title:"Thé"{l}
<!-- Search the "title" context for "Paris" as long as it’s not used in the expression "Paris Hilton" -->
title:"Paris"{e} BUTNOT title:"Paris Hilton"{n}
<!-- searches the "text" context for the normalized words "Orange" and "Company" -->
text:"Orange"{n} AND text:"Company"{n}
<!-- searches the "text" context for "Optical Zoom" in exact case and "camera" in normalized text, or
 searches the "title" context
 for "camera" in normalized text -->
(text:"Optical Zoom" AND text:"camera"{n}) OR title:"camera"{n}
<!--searches the "text" context for "people" Named Entities annotations that occur within 4 words of

268 - Configuration

Create the Fast Rules Resource File

 "New York" -->
text:@NE.people@ NEAR/4 "New York"
<!-- search the "price" context for less than 42 -->
price:<=42.0

Create the Fast Rules Resource File

Create a Resource File from the Administration Console

The most convenient method consists in creating an empty resources file in the Administration
Console and defining its content with the Business Console. See Create a Resource File from the
Administration Console .

To Compile a Resource File from the Command Line

1. Create a rule XML file and save it in a temporary directory. For an example, see Sample Fast
Rules XML Files.

2. Compile the Fast Rules XML file.

a. Go to <DATADIR>/bin/

b. Start the following cvadmin command:
cvconsole cvadmin> linguistic compile-fastrules input="<PATH TO RULES XML FILE>"
output="<PATH TO OUTPUT FILE>"

3. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

4. Drag the Fast Rules Matcher processor to the required position in the Current processors list.

5. For Resource directory, enter the path to the compiled fast rules file.

Map the Annotation to a Category Facet

Map an Annotation to a Category

1. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

2. On the Mappings tab, click Add mapping source.

◦ Name: Enter the annotation name that you created in the rules file, for example,
MyCategory for the sample file above.

◦ Type: select Annotation.

3. (Optional) In Input from field of the mapping, restrict the mapping so it only applies to a subset
of comma-separated metas (also known as contexts) associated with this annotation.

4. Click Add mapping target and add a category target.

Configuration - 269

Lemmatizer

5. Modify the category mapping properties. For example, the Create categories under this
root property must be modified to Top/MyCategory in our example.

6. Go to Search > Search Logics > Your_Search_Logic > Facets and add a category group.

a. Click Add facet and enter the name to display in the Mashup UI Refinements panel.

b. For Root, enter the value you have entered for Create categories under this root in step
4, for example, Top/MyCategory.

7. Click Apply.

Lemmatizer

A Lemmatizer produces lemmas for each noun and adjective in the document contexts. A lemma
is the semantic root of a word that has different inflections. For example, a lemma of geese is
goose.

Use the Lemmatizer to match singular/plural and masculine/feminine versions of words.

The output from the Lemmatizer is typically used by other semantic processors in the document
analysis chain.

When to Use

There are two use cases for the lemmatizer query expansion module:

• If you have configured the Ontology Matcher, Rules Matcher, Fast Rules Matcher, or Semantic
Extractor for lemma matches, you must define a Lemmatizer before it in the document analysis
pipeline.

• To perform lemma query expansion for languages tokenized by the Basis Tech (Extended
Languages) tokenizer, you must configure the Lemmatizer semantic processor, and follow
some additional steps for tokenization.

Configure Lemmatization Manually

Adapt the steps in Configure Phonetization Manually, replacing the Phonetizer processor with the
Lemmatizer processor.

Named Entities Matcher

The Named Entities Matcher is used for named entity detection, typically people, organizations,
places, and events.

See Named Entities Classes and Subclasses for a list of detected entities.

270 - Configuration

When to Use

When to Use

The primary goal of named entities extraction is to enrich document with valuable labels. These
labels are self-sufficient.

For example, when mapped to facets, they provide useful navigation entry points. But they may
also be used as input for further processing such as relation discovery or to highlight some
relevant keywords.

Which Entities are extracted?

The Set of rules to use option defines the resource that is used to produce the annotations. Each
value matches a different resource.

The default value ne triggers the extraction of people, organizations, places, and events. It is the
only resource that is entirely pre-configured.

For all other resources, you must map allowed NE annotations to categories (see the tooltip
corresponding to each resource to know which annotations can be mapped).

See Named Entities Classes and Subclasses for a list of detected entities.

Note: The value ne-all triggers the extraction of all types of entities. The value ne-basic2
triggers the extraction of extra entities.

Filtering Options

You can also use the following options:

• Filter out dubious NEs using part-of-speech – to discard NE annotations for parts of
text made of a name followed by a verb or an adverb with the first letter in uppercase.
This filter is useful if your documents contain a lot of titles with several capitalized words
(what is called "Title Case" or "Headline Style"). It applies to NE.person, NE.place and
NE.organization.

For example, let us consider the text "John Make":
"Make" is tagged as a "verb" token by the part-of-speech tagger embedded within this
processor, and therefore "John Make" is identified as dubious, and the NE.person annotation
is discarded.

• Use resource of known words to disambiguate NE candidates – This option is only
available for English and French. Beware, this option may be very restrictive and is mainly
useful to avoid getting too much Named Entity "noise".

Configuration - 271

Named Entities Classes and Subclasses

It uses a precompiled dictionary resource of known words to disambiguate named entities
candidates (the precompiled resource files, known_words.fr and known_words.en are
located under <INSTALLDIR>/resource/all-arch/namedentities). These known
words are all types of words of a language, nouns, verbs, adverbs, articles, etc.
For example, if this option is selected, "J. Brown" for "James Brown" is not detected as a
Named Entity. The initial "J." + the adjective "Brown" is considered as too ambiguous to be
considered as a Named Entity.
Yet Disambiguation does not ignore title abbreviations. For example, "Miss Smith", "Mr Smith",
"Dr Brown" is detected as Named Entities. It also works if a firstname initial stands between
the title abbreviation and the known word, for example, "Dr J. Brown" is detected as a Named
Entity too.

Note: These filters involve additional processing, which makes the global process consume
more resources.

Example of Named Entities with Filters

Text Filter using POS Use Known words both filters No filter

J. Brown NE.person no annotation no annotation NE.person

J. Told NE.person no annotation no annotation NE.person

Mr Brown NE.person NE.person NE.person NE.person

Mr Told no annotation NE.person no annotation NE.person

Mr J. Brown NE.person NE.person NE.person NE.person

Mr J. Told NE.person NE.person NE.person NE.person

Teddy Brown NE.person NE.person NE.person NE.person

Teddy Told no annotation NE.person no annotation NE.person

Named Entities Classes and Subclasses

These Named Entities classes and subclasses are based on several standard schemas defined
on http://schema.org.

List of Named Entities Classes and Subclasses Detected by the Named Entity Matcher

NE Type Annotations Description Examples

People NE.person Rule-based matching
and an ontology of first
names, titles.

"John Smith"

272 - Configuration

Named Entities Classes and Subclasses

NE Type Annotations Description Examples

subclasses:

NE.famousperson Exact name matching
based on an ontology
and rules

"Albert Einstein"

NE.partialperson Patterns in a rules
matcher

"Mr Smith" or "J.
Smith"

NE.organization Based on ontology and
rules

"EXALEAD"

"Independant Human

Right Commission"

subclasses:

NE.organization.corporation "EXALEAD"

"Walt Disney

Company"

"Burger King"

NE.organization.governmentorganization "NATO"

"Department of

Defense"

"The Supreme

Court"

NE.organization.nongovernmentorganization "Greenpeace"

"Sea Sheperd

Conservation

Society"

NE.organization.educationalorganization "Harvard"

"MIT"

"Science-Po Paris"

NE.organization.sportsteam "Arsenal"

"PSG"

"Lakers"

Organization

NE.organization.miscellaneousorganization "PADI"

Configuration - 273

Named Entities Classes and Subclasses

NE Type Annotations Description Examples

"Ju-Jitsu

Association"

Place NE.place Ontology-based
matching

"New Orleans"

subclasses:

NE.place.city "Cambridge"

NE.place.country "United Kingdom"

NE.place.state "California"

NE.place.otheradministrativearea "Greater London"

NE.place.landform "Mediterranean

Sea"

"The Highlands"

NE.place.civicstructure "Madison Square

Garden"

"Royal Albert

Hall"

NE.event Rule-based matching "2nd New York Jazz

Festival"

"London 2012"

subclasses:

NE.event.cultural "Avignon Theater

Festival"

"Asian Regional

Meeting"

"Cuba's Bishops

Conference"

Event

NE.event.military "Falklands War"

"World-War-II"

"Battle of

Waterloo"

274 - Configuration

Named Entities Classes and Subclasses

NE Type Annotations Description Examples

NE.event.natural "Hurricane

Katrina"

"Blizzard of 1993"

NE.event.political "French

presidential

election"

"Inauguration of

Barack Obama"

NE.event.religious "Easter Monday"

"Aïd el Kebir"

"Pessah"

NE.event.social "Independence Day"

"World Day for

Migrants and

Refugees"

NE.event.sport "2008 Summer

Olympics"

"Football World

Cup"

"Moto GP

Championship"

NE.event.security "Suicide bombing"

"Spinboldak

attack"

Date There are several annotations,
see below

Rule-based matching

 NE.date Normalized to European
numerical standard "day
month year" with two-
digit days and months

"14 06 1982"

"05 12 2003"

Configuration - 275

Named Entities Classes and Subclasses

NE Type Annotations Description Examples
 NE.date.full If found, the normalized

day of the week is
prepended

"Mon 13 02

1977" (English)

"Lun 13 02

1977" (French)

 NE.date.uk, NE.date.us For English text, two
annotations are set
for ambiguous dates.
Use the annotation
NE.date.uk for British
texts and NE.date.us
for American texts

NE.money Rule-based matching
and ontology for
currencies.

"$2.73"

"4,5€"

"three hundred

million dollars"

subclasses: The following subclasses
aim at simplifying
currency conversions

currency.unity dollar US

Price

currency.quantity 150

French postal
address

NE.address.fr Rule-based matching
and ontology of French
cities

"10 place de la

Madeleine, 75008

Paris"

French phone
number

NE.phone.fr Rule-based matching "(+33)6.82.33.15.12"

"05 64 222 222"

Time, duration,
and time ranges
in French

NE.time Rule-based matching "13h45"

"3 h 56 min 12

sec"

"de 7h03 à 17h28"

Email NE.email Rule-based matching john.smith@gmail.com

URL NE.url Rule-based matching "https://

www.exalead.com"

276 - Configuration

Extract Your Own Named Entities

NE Type Annotations Description Examples

IP v4 address NE.ip Rule-based matching "192.168.204.120"

Credit card NE.creditcard Generated by Basis Tech
tokenizer and rule-based
matching

"378282246310005"

(American Express)

Note:

The following formats
are not supported:

• Australian
BankCard:
5610591081018250

• Some VISA
Number pattern:
4222222222222

• Dankort (PBS):
76009244561

• Dankort (PBS):
5019717010103742

• Switch/Solo
(Paymentech):
6331101999990016

For an example of Named Entities processing, see Test the Semantic Processing of your Analysis
Pipeline.

Extract Your Own Named Entities

The rules for the Named Entity matcher are packaged in the product. Depending on the entity
type, matching is based on:

• a predefined ontology,

• predefined rules,

• or a combination of the two.

To enrich matches for certain entities, you can add your own Ontology Matcher and Rules Matcher
processor to the analysis pipeline. The following table helps you defining the best configuration.

Extract entities with... when... for example

rules • Entities are either numerical or
textual and values are countless.

dates, phone numbers, emails,
URLs, addresses, prices, etc.

Configuration - 277

Set Block Lists and Allow Lists for Named Entities Extraction

Extract entities with... when... for example

• Context can be identified. For
example, in "$100", the "$"
symbol shows us that 100 is a
price.

• Some parts of your entities are
already annotated by the Named
Entities Matcher or another
resource.

ontology resources • Entities are textual and values
can be listed (not infinite)

• A resource already exists
(employees, categories)

• The context does not help to
identify them

• Listing them is not a big
challenge

• You need to normalize output
values.

• first names, cities, days, months,
etc.

• To normalize group of entities
like: USA, United States,
United States of America,
Etats Unis, Estados
Unidos -> in United States
of America

both rules and ontology
resources

The number of values to extract is
countless but parts of these entities
are a clue to recognize it

Mr Obama

We need:

• a resource to annotate Mr,
Mister, Miss, etc.

• a rule to extract persons’ names
when we have an annotation
next to a capitalized word.

Set Block Lists and Allow Lists for Named Entities Extraction

Block List People's Names

1. In the Administration Console, add an Ontology Matcher to the semantic pipeline after the
Named Entities Matcher.
a. Expand the Ontology Matcher configuration panel, and click Create new to create a new

ontology resource.

278 - Configuration

NGram Extractor

b. Click Apply.

c. Click Edit.
The Business Console opens to let you configure the ontology resource.

2. Create a blocklist.person ontology annotation that lists all the names you do not want to
index.

a. Click Add annotation, and give it a name, for example, blocklist.person.

b. For this annotation, click Add display form, enter the name to block list in Match text form
and click Add text form.

c. Repeat the previous substep for all the names you want to block list.

d. Click Go Live.

3. Create an xml file in your DATADIR/resource directory, for example
myannotationmanager.xml and edit the file to copy the following code:
<AnnotationManager name="blocklist remover" xmlns="exa:com.exalead.linguistic.v10"

ignoreInvalidOperations="true">

 <Remove annotation="NE.person" ifMatchWith="blocklist.person" />

</AnnotationManager>

4. Go back to the Administration Console, and add an Annotation Manager to the semantic
pipeline after the Ontology Matcher.
a. Expand the Annotation Manager.
b. Click Browse and select the path of the xml file.

c. Click Apply.

5. Reindex all data.

Test Your Block List Configuration

1. In the Business Console, select Semantic > Resources.

2. Select your ontology block list.

3. Use the Test tab to test the semantic pipeline behavior.

a. Enter one of the block listed names in the text field.

b. The Annotations panel displays the blocklist.person tag.

NGram Extractor

An NGram Extractor extracts between min and max length word-grams.

This processor has no interest in itself, and mostly serves as a preprocessing for spell checking or
suggestions.

Configuration - 279

Normalizer

It is supported by all languages.

Normalizer

We usually put the normalizer right after the tokenizer in analysis pipelines. The normalizer
computes lowercase and unaccentuated (normalized) forms for each alphanumeric token.

For each alphanumeric token, you must have in output: a LOWERCASE annotation and one or two
NORMALIZE annotations.

All languages where there is a distinction between lowercase vs uppercase and accentuated vs
unaccentuated.

Moreover, normalization exceptions are defined for:

• German

• Spanish

• French

• Italian

And normalization alternatives are defined for:

• German

For example, in German, grüne (green) has an alternative normalized form gruene. You get the
following annotations:

• LOWERCASE grüne

• NORMALIZE grune

• NORMALIZE gruene

Ontology Matcher (Resource-Based)

The Ontology Matcher is a semantic processor used for detecting expressions, or text forms in
documents.

Detected text forms are then tagged with an annotation name and a corresponding display form.
If you map this annotation to a category field, you can see its display forms as a new category in
your list of facets. It gathers all the documents containing the text forms you linked to the display
form.

280 - Configuration

Dependencies

Dependencies

If the matching rules for this processor depend on phonetic, stem, or lemma matching, you must
add the corresponding processor above this one in the pipeline.

For example, if your rules require phonetic forms, place the Phonetizer processor above this
processor in the analysis pipeline.

Rules for Ontology Matching

The Ontology Matcher detects expressions. Each expression belongs to an annotation package,
which can be seen as a namespace.

• Results are tagged by annotations spanning the range of tokens that has been matched.

• Each annotation package creates an annotation tag.

• Each tagged expression can have several text forms.

The rules for the Ontology Matcher are defined in an XML file saved in a resource directory. They
are specified during the configuration of the Ontology Matcher semantic processor in the analysis
configuration.

Sample Ontology Matcher XML File

In this example, we use the Ontology Matcher to create an annotation, with value
my.annotation for a document when there is a reference to the brand Coca-Cola.

<Ontology xmlns="exa:com.exalead.mot.components.ontology">
 <Pkg path="my.annotation">
 <Entry display="Coca-Cola">
 <Form level="exact" />
 </Entry>
 <Pkg path="subannotation">
 <Entry display="Albert Einstein" lang="en">
 <Form value="Albert E." level="normalized" />
 </Entry>
 </Pkg>
 </Pkg>
 <Pkg path="my.second.annotation">
 <Entry display="Recherche et Développement" lang="fr">
 <Form level="exact" distance="0" />
 <Form level="lowercase" distance="1" />
 <Form level="normalized" distance="2" />
 <Form value="R&D" level="normalized" distance="3" />
 <Form value="R & D" level="exact" distance="4" />
 </Entry>

Configuration - 281

Ontology Rules Syntax

 </Pkg>
</Ontology>

These Ontology rules would create the following annotations:

Input: "Always Coca-Cola..." Result: The annotation created is displayForm="Coca-Cola"
tag="my.annotation" level="exact" distance= "0"

Input: "always coca-cola..." Result: No annotation is created since the match level is set to exact
and "Coca-Cola" != "coca-cola"

Input: "the famous albert e." (lang=en) Result: The annotation created is
displayForm="Albert Einstein" tag="my.annotation.subannotation" level=
"normalized" distance= "0"

Input: "le célèbre albert e." (lang=fr) Result: No annotation is created since the token is tagged
as French.

Input: "recherche et développement" Result: The annotation created is displayForm=
"Recherche et Développement" tag= "my.second.annotation" level="lowercase" distance=
"1"

Input: "R&D" Result: The annotation created is displayForm= "Recherche et
Développement" tag= "my.second.annotation" level="normalized" distance= "3"

Ontology Rules Syntax

An annotation package is characterized by a path and can contain:

• Subannotations whose path are concatenated using the "." separator.

• A set of expressions to detect.

For example:

<Pkg path="subannotation">
 <Entry display="Albert Einstein" lang="en">
 <Form value="Albert E." level="normalized" />
 </Entry>
</Pkg>

Display Forms

An expression, or display form, is characterized by a value and an optional language. When a
language is specified, only tokens of this language are used for detection. For example,

<Entry display="Coca-Cola"> <Form level="exact" /></Entry>

A display form can have one or more matches with text forms. A text form contains a value, a
normalization level, and an optional distance. For example,

<Form value="Albert E." level="normalized" />

282 - Configuration

Multilevel Ontology Example

The distance attribute can be used for scoring the annotation depending on which alternative
text form has matched. When the text form’s value is not specified, the display form for the
associated expression is used instead.

Available Matching Normalization Levels

The level attribute specifies which form must be matched. Certain levels rely on other semantic
processors, which you must place above the Ontology Matcher in the analysis pipeline.

Ontology Matcher Level Attribute and Possible Values

Level Description

exact Matches using exact form (the token).

lowercase Matches using the lowercase form.

Requires a Normalizer.

normalized Matches using the normalized form.

Requires a Normalizer.

lemmaSingularMasculineMatches using the singular/masculine/
normalized form.

Requires a Lemmatizer.

stem Matches using the stemmed form.

Requires a Snowball Stemmer

phonetic Matches using the phonetic form.

Requires a Phonetizer.

Multilevel Ontology Example

<Ontology xmlns="exa:com.exalead.mot.components.ontology">
 <Pkg path="organization">
 <Entry display="company/computer/maker/Lenovo Group">
 <Form value="Lenovo Group" level="exact" />
 <Form value="Lenovo" level="exact" />
 </Entry>
 <Entry display="company/computer/maker/Dell Inc">
 <Form value="Dell Inc" level="exact" />
 <Form value="Dell" level="exact" />
 </Entry>
 <Entry display="company/computer/maker/Hewlett Packard Co">
 <Form value="Hewlett Packard Co" level="exact" />
 <Form value="Hewlett Packard" level="exact" />

Configuration - 283

Create the Ontology Matcher Resource File

 <Form value="HP" level="exact" />
 </Entry>
 </Pkg>
 <Pkg path="IT">
 <Entry display="company/computer/IT/IBM Corp">
 <Form value="IBM" level="exact" />
 <Form value="International Business Machines" level="lowercase" />
 <Form value="IBM Corp" level="exact" />
 <Form value="International Business Machines Corporation" level="lowercase" />
 </Entry>
 </Pkg>
</Ontology>

Create the Ontology Matcher Resource File

Create a Resource File from the Administration Console

The most convenient method consists in creating an empty resources file in the Administration
Console and defining its content with the Business Console. See Create a Resource File from the
Administration Console .

To Compile a Resource File from the Command Line

This procedure describes how to manually create and compile your resources from the command
line.

1. Create a rule XML file and save it in a temporary directory. For an example, see Sample
Ontology Matcher XML File.

2. Compile the ontology rules XML file:

a. Go to <DATADIR>/bin/

b. Open the cvadmin command tool and start the following command.
cvconsole cvadmin> linguistic compile-ontology input=”<PATH TO ONTOLOGY XML FILE>”
output=”<PATH TO OUTPUT DIR>”

3. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

4. Drag the Ontology Matcher to the required position in the Current Processors list, expand it
and:

a. For Resource directory, enter the path to the compiled ontology file.

b. Select the parameters Restrict language and Keep longest match
For more information about available parameters, see in the Exalead CloudView XML
Configuration Reference Guide.

284 - Configuration

Map an Annotation to a Category Facet

Map an Annotation to a Category Facet

Once your Ontology Matcher resource file is defined, you can map an annotation to a category
field. You are then able to see its display forms as a new category in your list of facets. It gathers
all the documents containing the text forms you linked to the display form.

1. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

2. On the Mappings tab, click Add mapping source.

a. Name: Enter the annotation name that you created in the rules file, for example,
my.annotation for the sample file above.

b. Type: select Annotation.

3. (Optional) In Input from field of the mapping, restrict the mapping so it only applies to a subset
of comma-separated metas (also known as contexts) associated with this annotation.

4. Click Add mapping target and add a category target.

5. Modify the category-mapping properties.

For example, the Create categories under this root property could be modified to Top/Product
to contain a Coca-Cola category (corresponding to the Coca-Cola display form).

6. Go to Search > Search Logics >Your_Search_Logic > Facets and add a category group.

a. Click Add facet and enter the name to display in the Mashup UI Refinements panel.

b. For Root, enter the value you have entered for Create categories under this root in step
5, for example, Top/Product.

7. Click Apply.

Phonetizer

A Phonetizer can improve spell-checking at search-time, by building a phonetic form for each word
in the contexts specified.

When to Use

This semantic processor is a prerequisite for the following scenarios:

• To perform search-time phonetic expansion using the Phonetic query expansion module, you
must extract phonetic forms from the relevant fields at index time. This creates the dictionary
used by the phonetic expansion module at search-time.

Typically, you would set up phonetic extraction through the data model. See Phonetize a Field
Created from a Data Model Property.

Configuration - 285

Phonetize a Field Created from a Data Model Property

• If you have configured the Ontology Matcher, Rules Matcher, Fast Rules Matcher, or Semantic
Extractor for phonetic matches, you must add a Phonetizer processor above it in the analysis
pipeline as described in Configure Phonetization Manually.

Phonetize a Field Created from a Data Model Property

• In Data Model > Properties for the class name, expand the property to find out which
semantic type this property uses.

• Next to the Semantic type list, click the icon to edit the semantic type.

This takes you to the appropriate section on the Semantic Types tab.

• Select Extract phonetic forms. This adds a Phonetizer semantic processor to your analysis
pipeline.

• Click Apply.

• Reindex the documents that need to phonetic extraction.

• On the Home page, locate the appropriate connectors and click Scan.

Extracted phonetic forms are saved to the dictionary, so they can be accessed at search time for
phonetic expansion. For details, see Configuring Query Expansion.

Configure Phonetization Manually

Follow this procedure when you need to extract phonetic forms that need to be used by other
processors, such as the Ontology Matcher.

• In the Administration Console, select Index > Data Processing > Pipeline name > Semantic
Processors.

• Drag the Phonetizer processor to the pipeline.

• In the pipeline, expand the Phonetizer:

◦ Language: specify a comma-separated list of language ISO codes. Leave blank to process
all languages.

◦ Input from: specify a comma-separated list of document context names to be processed.
Leave blank to process all input contexts.

• Drag the processor that requires the extracted phonetic forms so it is below the Phonetizer in
the analysis pipeline.

• Expand this dependant processor:

◦ Language: specify the same comma-separated list of language ISO codes as specified for
Phonetizer. Leave blank to process all languages.

286 - Configuration

Proximity

◦ Input from: specify the same comma-separated list of document context names as
specified for Phonetizer. Leave blank to process all input contexts.

• Finish configuring the dependant processor as described in:

◦ To Compile a Resource File from the Command Line.

◦ Configure the Semantic Extractor.

◦ Create the Fast Rules Resource File.

◦ Create a Rules Matcher Resource File.

Proximity

The Proximity processor is a MOT processor that spots pieces of text where a number of
annotations appear close to each other.

The behavior is similar to that of a NEAR operator in query language, with more options to express
distance constraints.

How Is the Best Match Selected?

When faced with the choice of the best match, that is to say, when several candidate matches
overlap, the following criteria are used:

The shortest match in terms of token is preferred. For example, searching for A NEAR B in the
text A A B B selects A [A B] B.

The greater the sum of the lengths of element annotations the better. For example, if more than
one annotation A appear on a token, the longest is chosen.

Configure the Proximity Processor

The configuration includes:

• A list of <ProximityElement> defining the set of annotations to search for. These elements
have the following attributes:

◦ annotation: the annotation tag

◦ value: the annotation display form to match. Regular expressions can be used by
enclosing the string in slashes.

◦ mandatory (default true): when set to false, the processor can report matches where
this annotation is missing.

Configuration - 287

Related Terms

◦ name: a name that can be referenced in the output annotation format using $name. Names
must be made of characters in [0-9a-zA-Z].

• An output annotation annotation tag and an optional displayForm string defining a format
where named elements can be referenced to build the output display form. If displayForm is
undefined, the output annotation does not have any value.

• An ordered Boolean attribute forcing the annotations to be matched in their definition order
when set to true. If false, any permutation of the annotations list is allowed to match.

• An allowElementOverlap Boolean attribute (default= false) allowing the annotations of
elements to overlap when set to true.

• A number of nonmutually exclusive distance constraints:

◦ sentenceScope (default false) – if true, each match is to be contained in a sentence,
no match spans several sentences.

◦ paragraphScope (default false) – if true, each match is to be contained in a
paragraph, no match spans several paragraphs.

◦ windowSize (default 2048, max 8192) – maximum size of a match in terms of token.

◦ minDistance (default none, max 4096) – the minimum distance between two elements in
terms of token.

◦ maxDistance (default none, max 4096) – the maximum distance between two elements
in terms of token.

Proximity processor XML configuration file sample

<Proximity xmlns="exa:com.exalead.linguistic.v10" annotation="output" displayForm="when:$date who:$people."
 ordered="false"
windowSize="100" sentenceScope="true" >
 <ProximityElement annotation="NE.date" value="/[1-5] 201./" mandatory="true" name="date" />
 <ProximityElement annotation="NE.famouspeople" value="Olivier Panis" name="people" />
</Proximity>

Related Terms

Related terms are a list of nouns or adjectives separated by link words, and shared by at least N
documents of your corpus (N=5 by default). This setting can be configured in Index > Linguistics
> Dictionaries > Your_Search_Logic > Related Terms.

An internal, language-specific resource file that cannot be edited identifies these links.

Related terms are flagged at index time as semantic annotations, based on the configuration of the
Related Terms Extractor semantic processor.

288 - Configuration

Required Settings

Note: You can also add text directly to the dictionary using the dedicated annotation
relatedTermCustom when defining annotations (Kind or Name field).

Required Settings

For the Related Terms Extractor you must specify:

Setting Description

Allow list Sends the specified expression to the dictionary as a possible related
term.

Block list Blocks the specified expression from displaying as a related term in the
Refinements panel.

Related terms min. span The minimum number of words (excluding stop words) in a generated
related term. This parameter is used only when Extract new related
terms is enabled. The default is 2.

Related terms max. span The maximum number of words (excluding stop words) in a generated
related term. This parameter is used only when Extract new related
terms is enabled. The default is 3.

Max. related terms per
doc

The maximum number of related terms per doc; the default is 64.

Keep longest match Keeps only the longest match. For example, if you have 5 tokens
('a', 'b', 'c', 'd', 'e') and 4 related terms 'a', 'a-c',
'b-c-d' and 'd-e', this option only keeps 'b-c-d' and removes all other
related terms; the default is true.

Optional Settings

You can also specify these optional settings:

• Input from (optional)

a comma-separated list of context names of the document chunks for which this processor is
applied.

• Additional attributes that do not appear in the Administration Console. For a full list and
descriptions, see "RelatedTermsSynthesisConfig" in the Exalead CloudView XML Configuration
Reference Guide.

To set these options, you must do one of the following:

Configuration - 289

Search-Time Configuration

◦ <DATADIR>/config/analysis.xml, OR

◦ In the API Console, go to Indexing > setAnalysisConfigList.

Search-Time Configuration

For related terms to display on the Refinements panel at search time, they must meet the following
criteria:

• Not be shared by more than X% of your hits (X=25 by default).

• Be in at least Y hits (Y=3 by default).

• Have a corpus frequency of at least Z (Z=0 by default).

To configure related terms behavior at search time

• In the Administration Console, select Search > Search Logics > Your_Search_Logic >
Facets.

• Under Related terms (at the bottom), select Enable.

• Adjust the options that appear to control which related terms appear in the Refinements panel
at search-time.

Rules Matcher (Rule-Based)

The Rules Matcher allows you to define complex rules for matching patterns against a token
stream. You can use this processor when you need to define proximity matching rules or define
complex rules involving Opt or Iter.

Unlike the Fast Rules Matcher, the Rules Matcher does not support numerical operators or
matching on prefixes.

Results are tagged by annotations spanning the range of tokens that have been matched. At
indexing time, these annotations are mapped to category or index fields.

Dependencies

If the matching rules for this processor depend on phonetic, stem, or lemma matching, you must
add the corresponding processor above this one in the pipeline.

For example, if your rules require phonetic forms, place the Phonetizer processor above this
processor in the analysis pipeline.

290 - Configuration

Basics of Creating Rules

Basics of Creating Rules

Rules matching is based on an XML file that lists patterns to identify. It is defined using regexp-like
expressions.

• The XML file may contain several rules. Each rule has a priority and a specific annotation.

• Use priority to disambiguate multiple matches for the same content.

The best match is determined by the criteria below, applied in this order:
1. Leftmost match
2. Longest match
3. Highest priority value, where 0 = lowest priority.
4. The order in which the rules are defined in the rules file.

• The annotation marks the matched tokens.

For example, a Named-Entity matcher could tag people's names with the annotation (NE,
people) and then the Rules Matcher tags the first names with (sub, 1) and the last names with
(sub, 2) thus allowing match normalization.

Note: For an explanation of the available Boolean and operators, see Rules Syntax.

Sample Rules Matcher XML File

In this example, we want to identify email addresses, long dates, and short dates in French and
English. We use the Rules Matcher to create an annotation for a document when it identifies an
email address, based on the character sequence defined in the Rules XML file.

Important: This example also relies on a day names ontology provided by the Named Entities
matcher: <Annotation kind="exalead.nlp.date.days"/>. For this example to work, you
must place the Named Entities matcher before the Rules Matcher processor.

<TRules xmlns="exa:com.exalead.mot.components.transducer">
 <!-- 1st rule tags emails with the annotation NE.email -->
 <TRule priority="0">
 <MatchAnnotation kind="NE.email"/>
 <Seq>
 <TokenRegexp value="[0-9A-Za-z_]+"/>
 <Noblank/>
 <Iter min="0" max="4">
 <Or>
 <Word value="-" level="exact"/>
 <Word value="." level="exact"/>
 </Or>
 <Noblank/>

Configuration - 291

Sample Rules Matcher XML File

 <TokenRegexp value="[0-9A-Za-z_]+"/>
 <Noblank/>
 </Iter>
 <Word value="@" level="exact"/>
 <Noblank/>
 <TokenRegexp value="[0-9A-Za-z_]+"/>
 <Noblank/>
 <Iter min="0" max="6">
 <Or>
 <Word value="-" level="exact"/>
 <Word value="." level="exact"/>
 </Or>
 <Noblank/>
 <TokenRegexp value="[0-9A-Za-z_]+"/>
 <Noblank/>
 </Iter>
 <Word value="." level="exact"/>
 <Noblank/>
 <Or>
 <TokenRegexp value="[A-Za-z][A-Za-z]"/>
 <Word value="gov"/>
 <!-- government entities in the US -->
 <Word value="com"/>
 <!-- commercial entities -->
 <Word value="net"/>
 <!-- network providers -->
 <Word value="org"/>
 <!-- non-profit organizations -->
 <Word value="edu"/>
 <!-- educational institutions -->
 <Word value="info"/>
 <!-- informative websites -->
 <Word value="biz"/>
 <!-- business -->
 <Word value="pro"/>
 <!-- business use by qualified professionals -->
 <Word value="name"/>
 <!-- individuals' real names, nicknames, pseudonyms -->
 <Word value="aero"/>
 <!-- aviation-related businesses -->
 <Word value="asia"/>
 <!-- region of Asia, Australia, and the Pacific -->
 <Word value="cat"/>
 <!-- Catalan language and culture -->
 <Word value="coop"/>
 <!-- cooperatives -->
 <Word value="int"/>
 <!-- international treaty-based organizations -->

292 - Configuration

Sample Rules Matcher XML File

 <Word value="jobs"/>
 <!-- employment-related sites -->
 <Word value="mil"/>
 <!-- US Department of Defense -->
 <Word value="tel"/>
 <!-- publishing contact data -->
 <Word value="museum"/>
 <!-- museums -->
 <Word value="travel"/>
 <!-- travel industry -->
 </Or>
 </Seq>
 </TRule>
 <!-- 2nd rule tags dates with the annotations NE.date.full and NE.date.compact -->
 <TRule priority="9">
 <!-- All that's been matched by the captures, French way -->
 <MatchAnnotation kind="NE.date.full" value="%1 %2 %3 %4"/>
 <!-- Don't use day of week -->
 <MatchAnnotation kind="NE.date.compact" value="%2/%3/%4"/>
 <!-- matches dates like Samedi 31 janvier, 2004 or 16th of November 2003 -->
 <Seq>
 <!-- 1st capture: optional week day -->
 <Opt>
 <Sub no="1">
 <!-- Day names ontology, taken from Named Entities matcher -->
 <Annotation kind="exalead.nlp.date.days"/>
 </Sub>
 <Opt>
 <Word value=","/>
 </Opt>
 <Opt>
 <Word value="the"/>
 </Opt>
 </Opt>
 <!-- 2nd capture: day number/ordinal -->
 <Sub no="2">
 <Or>
 <!-- day ordinal : 16, 28, 15th, 1st,3rd ... -->
 <Annotation kind="exalead.nlp.date.ordinals"/>
 <!-- day number with no ordinals: 16, 28, 1 ... -->
 <TokenRegexp value="0?[1-9]"/>
 <TokenRegexp value="[12][[:digit:]]" />
 <TokenRegexp value="3[01]" />
 </Or>
 </Sub>
 <Opt>
 <Or>
 <Word value="of"/>

Configuration - 293

Rules Syntax

 <Word value="-"/>
 </Or>
 </Opt>
 <!-- 3rd capture: month name -->
 <Sub no="3">
 <Annotation kind="exalead.nlp.date.months"/>
 </Sub>
 <Opt>
 <Word value="-"/> </Opt>
 <!-- 4th capture: year -->
 <Sub no="4">
 <Or>
 <!-- year like 06 -->
 <TokenRegexp value="[[:digit:]]{2}"/>
 <!-- full year [1000, 2999] -->
 <TokenRegexp value="[12][[:digit:]]{3}" />
 </Or>
 </Sub>
 </Seq>
 </TRule>
</TRules>

Rules Syntax

Booleans

Booleans express constraints on a single token. These constraints can be combined in a
tree using the classic operators AND, OR, and NOT. The individual leaf conditions must be
met to continue matching. These conditions can be about the format of the token, its possible
annotations, its type or language, etc.

Even if Booleans express constraints on a single token, the annotation may match more than
one token. A match on a token bearing a specific annotation results in a match of all the tokens
that are delimited by the annotation. This can be more than one token long. This is valid for the
conditions concerning the keywords annotation and path (See table below). All others match
at most one token.

Boolean Operators Description

Boolean OR An Or matches if at least one of its sub expressions matches.

The length of the annotation matched is the longest of the sub expression
matches.

Boolean AND An And matches a token if all its sub expressions match.

294 - Configuration

Rules Syntax

Boolean Operators Description

The length of the annotation matched is the longest of all sub expression
matches.

Boolean NOT A Not matches a token if its sub expression does not match.

The length of the annotation matched is 1.

Boolean NOR A Nor matches a token for the combined Boolean operators Not Or.

The length of the annotation matched is 1.

Boolean Atoms Description

TokenRegexp A TokenRegexp matches if the exact anchored token string is matched.
This is the default behavior. It is, however, possible to define the match as
normalized or case-insensitive. The following regexp expressions are not
implemented:

• assertions like \b, \B, ?=, ?!, ?<=, ?<!

• back references \1, \2, ...

• support for UNICODE like \u0020 or \p{name}

• nongreedy repeat operators like ??, *?, +?

• octal notation like \0333

For example,
<TokenRegexp value="0?[1-9]|[12][[:digit:]]|3[01]"/>

Word A Word matches if its value matches the normalized form of the token string.
This is the default behavior. It is, however, possible to define the match as
"exact" or "case-insensitive".

For example,
<Word value="-" level="exact"/>

Annotation An Annotation matches if the token bears an annotation matching the
specified kind and possibly a nonrequired value.

For example,
<And>
 <Annotation kind="some"/>
 <Annotation kind="other"/>
</And>

Path A Path matches a path value in an ontology. The implementation relies on
annotations emitted by an OntologyMatcher somewhere upstream in the
analysis pipeline.

Configuration - 295

Rules Syntax

Boolean Atoms Description

AnyToken AnyToken matches any token.

Noblank An assertion matching a nonblank token. Its use is restricted to the root of a
Boolean expression.

Digit A Digit matches a token whose kind is TOKEN_NUMBER (set by the
tokenizer for tokens made of a sequence of one or more digits). This is
semantically equivalent to using the regular expression [0-9]+ but is more
efficient since the work has already been done by the tokenizer.

Alpha Alpha matches a token made of uppercase or lowercase letters.

Alnum Alnum matches a token made of uppercase/lowercase letters or digits.

Paragraph paragraph matches a token whose kind is TOKEN_SEP_PARAGRAPH (set
by the tokenizer).

TokenLanguage <TokenLanguage> matches a token with a specific language id. This allows
you to write rules, which are triggered for certain languages only.

Punct A Punct matches a token whose kind is TOKEN_SEP_PUNCT (set by the
tokenizer).

Dash A Dash matches a token whose kind is TOKEN_SEP_DASH (set by the
tokenizer).

Sentence A Sentence matches a token whose kind is TOKEN_SEP_SENTENCE (set by
the tokenizer).

TokenKind A TokenKind matches a token whose kind matches the specified value (set
by the tokenizer). Allowed values are:

• SEP_PARAGRAPH

• SEP_SENTENCE

• SEP_PUNCT

• SEP_QUOTE

• SEP_DASH

• NUMBER

• ALPHANUM. Note, this means alphabetical and numerical, not
alphabetical or numerical (use <Alnum> instead)

• ALPHA

296 - Configuration

Rules Syntax

Operators

Rules operators resemble those of standard regular expressions but with an XML syntax. Only the
<near> operator has been added to the usual set.

Operators Description

Concatenation <Seq> is a concatenation pattern.

Disjunction <Or> is a disjunction pattern.

Proximity <Near> matches subpatterns at a maximum distance of n nonblank tokens.

By default, the order is free but may be imposed by setting the Boolean
attribute ordered to true. This pattern matches the longest possible
match.

Use the slop attribute to set the number of nonblank tokens allowed
between A and B (default 0).

Option <Opt> matches its subpattern zero or one time.

Bounded Repetition <Iter> matches the sequence of its subpatterns between min and max
times. The maximum is 128.
<Iter min="0" max="6">
 <Or>
 <Word value="-" level="exact"/>
 <Word value="." level="exact"/>
 </Or>
 <Noblank/>
 <TokenRregexp value="[0-9A-Za-z_]+"/>
 <Noblank/>
</Iter>

Capture <Sub> defines a function to tag subparts of an annotation (kind, value) for
later retrieval. For example, the day of the week is annotated (sub, 1), the
day of the month (sub, 2), the month (sub, 3), and the year (sub, 4). By
concatenating subs in increasing order, we can get normalized dates.

Pattern referencing Each operator can have a name (attribute name) used later for referencing
the operator <PatternRef>.

Pattern reuse The operator <TImport> allows the reuse of existing patterns from a file
(attribute file name). To be reusable, a pattern must have a name.

Including Rules The operator <TInclude> works like a #include in C/C++. It adds to the
current TRules set all the TRule objects found in the specified file (attribute
file name).

Configuration - 297

Rules Best Practices

Rules Best Practices

Do the following:

• Use the <Digit> operator to match tokens made of a sequence of digits instead of a regular
expression. Indeed, it uses the token kind computed by the tokenizer and is therefore more
efficient.

• Use a normalizer; it is likely that you need a normalizer somewhere upstream in the analysis
pipeline because <Word> and <TokenRegexp> operators may match against the lowercase
or normalized forms of tokens.

• Use the <Noblank> operator if you do NOT want to skip spaces. The rules matcher skips
spaces and tabs so that the rules are not littered with hundreds of references to blanks. It
is however possible to assert that there is no blank token between two tokens at a precise
position in the stream with the operator <Noblank>.

Avoid the following:

• Using the <Near> operator too often. It uses repeat operators, and so matches the longest
possible match. This can be costly in terms of compilation time and RAM consumption, so you
must try to keep A and B as simple as possible and limit NEAR overlapping.

Caveats

The Rules Matcher has the following caveats:

• It does not report overlapping or embedded matches; the earliest and longest match is
reported. If there are ambiguities, the tokens matched by the highest-priority rules are kept.
If there are two or more rules with similar priorities, the first rule in the declaration order has
highest priority. For the repeat operators (<Opt>, <Iter>) and <Near>, the longest possible
match is preferred.

• The operator <Sub> allows for sub expression matches retrieval. It has two attributes kind
and value defining the annotation emitted each time the sub expression matches. These
"numerical subs" are useful in match normalization. They are defined so that concatenating
the text they have matched in increasing order of their value yields normalized matches. For
example, people's names detection rules could mark first names with (sub, 1) and last names
with (sub, 2) thus giving equal results after concatenation for "John Smith" and "Smith John".
Of course, these submatch annotations are only emitted when the overall pattern matches.

• During the compilation, the RulesMatcher performs a number of optimizations, in particular
for Boolean ORs that are, whenever possible, replaced with a single regular expression that
indicates if any of the conditions in the list match. For example, the following example is

298 - Configuration

Limitations

automatically rewritten to the second simplified expression, which is more efficient. The same
thing is done with words <word> are transformed to regular expressions.

<Or>

 <TokenRegexp value="0?[1-9]"/>

 <TokenRegexp value="[12][[:digit:]]" />

 <TokenRegexp value="3[01]" />

</Or>

<TokenRegexp value="0?[1-9]|[12][[:digit:]]|3[01]"/>

• The <And> operator does not impose that lengths of submatches be equal. A match is found
if all its subpatterns match, irrespective of the length of the matches. The following example
matches even if one annotation does not have the same length as another annotation,
provided that they are both present on the same token. The match length is the length of the
longest annotation. For example:

<And>

 <Annotation kind="some"/>

 <Annotation kind="other"/>

</And>

Limitations

The Rules Matcher has the following limitations:

• The window size is 200 tokens. This is the maximum length of a match.

• The upper bound for the operator <iter> must remain as low as possible as it is costly in
terms of resources. The maximum is limited to 128.

• UNICODE is not handled and matching is done on UTF-8 strings without specific processing
(at the byte level). Consequently:

◦ Accentuated characters do not match if they are used in case-insensitive or normalized
mode.

◦ The dot wildcard matches a byte and therefore not all UTF-8 characters.

Create a Rules Matcher Resource File

Create a Resource File from the Administration Console

The most convenient method consists in creating an empty resources file in the Administration
Console and defining its content with the Business Console. See Create a Resource File from the
Administration Console .

Configuration - 299

Map the Annotation to a Category Facet

To Compile a Resource File from the Command Line

1. Create a rule XML file and save it in the resource directory. For more information, see Basics of
Creating Rules.

2. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

3. Drag the Rules Matcher to the required position in the Current Processors list.

4. Enter the Resource file path.

Map the Annotation to a Category Facet

We now need to configure the Rules Matcher processor to map the NE.email annotation to a
category facet that represents the email address. This allows the document to be related to all
email addresses found in it.

1. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

2. On the Mappings subtab, click Add mapping source.

a. Name: Enter the annotation name that you created in the rules file, for example, NE.email
for the sample file above.

b. Type: select Annotation.

3. (Optional) In Input from field of the mapping, restrict the mapping so it only applies to a subset
of comma-separated metas (also known as contexts) associated with this annotation.

4. Click Add mapping target and add a category target.

5. Modify the category-mapping properties.

For example, the Create categories under this root property must be modified to Top/Email in
our example.

6. Go to Search > Search Logics > Your_Search_Logic > Facets and add a category group.

a. Click Add facet and enter the name to display in the Mashup UI Refinements panel.

b. For Root, enter the value you have entered for Create categories under this root in step
4, for example, Top/Email.

7. Click Apply.

Semantic Extractor

The Semantic Extractor performs the following:

• Extracts the following entities based on triggers and units.

300 - Configuration

Entities and Attributes

• Interprets matched entities with rewrite rules.

Entities and Attributes

The following entities are available:

Entity type Description

<TextEntity> extracts string values

<BooleanEntity> extracts Boolean values

<IntegerEntity> extracts integer values

<FloatingPointEntity>extracts floating point values

<RangeEntity> extracts ranged string values

<RegexpEntity> extracts string values following a pattern

Entities are defined with the following common attributes and sets of specific attributes:

Common Entity Attributes

Attribute Type Description

trigger or (s) string An optional left context triggering the entity detection.

triggers NamedObjectList An optional list of left contexts triggering the match

leftContext string Alias for trigger

leftContexts NamedObjectList Alias for triggers

annotation string The annotation set by the processor in case of a match

display string The annotation value in case of a match.

Each ? in your custom display form is replaced by the
matching value.

matchMode string The level used to match the feature: normalized,
lowercase, or exact

name string Unique entity reference. Only used by the GUI.

unit String An optional condition on right context

units NamedObjectList An optional list of conditions on right context

rightContext String Alias for unit

Configuration - 301

Entities and Attributes

Attribute Type Description

rightContexts NamedObjectList Alias for units

Text Entity Specific Attributes

Attribute Type Description

value string The values to match, separated with '|'

maxValueSize int Maximum number of tokens for the value

lang iso code Restricts matching to a specific input language.

Boolean Entity Specific Attributes

Attribute Type Description

yes string The value for true

no string The value for false

Integer and Floating Point Entity Specific Attributes

Attribute Type Description

step int If defined, normalizes the value to the nearest step.

default=0

min int Minimum value for a match.

default=-2147483648

max int Maximum value for a match.

default=2147483647

coefficient double The normalization coefficient used to multiply the
matched value.

default=1

precision int The floating-point precision in output.

default=0

handleOutOfBoundValuesBoolean If false, ignores values lower than min or greater than
max.

default=True

addExactValue Boolean If true, adds the original value (before normalization) in
an extra annotation TAG.exact

302 - Configuration

Rule Attributes

Attribute Type Description

default=False

truncateTrailingZerosBoolean If true, removes the trailing zeros after point.

default=False

Range Entity Specific Attributes

Attribute Type Description

dimension int Dimension count.

default=2

delimiter string Numbers delimiter.

default="x"

Regexp Entity Specific Attributes

Attribute Type Description

value string Perl-5 regular expression

endTrigger string An optional left context

endTriggers NamedObjectList An optional list of left contexts

Rule Attributes

A Rule is defined by the following attributes:

• name

• mode

• value (pattern)

• output string

• trustLevel

Dependencies

If the matching rules for this processor depend on phonetic, stem, or lemma matching, you must
add the corresponding processor above this one in the pipeline.

For example, if your rules require phonetic forms, place the Phonetizer processor above this
processor in the analysis pipeline.

Configuration - 303

Sample Semantic Extractor XML File

Sample Semantic Extractor XML File

The Semantic Extractor configuration is made of two nonmandatory parts: a list of entity definitions
and a list of rules. There are also two operators for macro definitions and inclusion of external
configurations.

<SemanticExtractorConfig xmlns="exa:com.exalead.mot.components.semanticextractor" xmlns:bee="exa:exa.bee">
 <!-- define macros usable in the rules' values -->
 <Define name="id" value="/REF-[[:alnum:]]+/{name=id}" />
 <Define name="near" value=":WORD{max=10,name=near}" />
 <!-- entities definition -->
 <TextEntity value="SD" annotation="sdcard" display="SD Card"/>
 <TextEntity annotation="reference" value="ref|reference|references" matchMode="normalized" />
 <IntegerEntity annotation="weight" unit="g" display="? grammes" step="100" min="0" max="2000" >
 <triggers>
 <bee:StringValue value="poids"/>
 <bee:StringValue value="weight"/>
 </triggers>
 </IntegerEntity>
 <TextEntity annotation="hddtype" value="SATA|SSD" matchMode="exact" />
 <IntegerEntity annotation="capacity" min="0" max="2000" step="100" unit="GB" display="? GB" />
 <FloatingPointEntity trigger="withPrecision" annotation="prec" precision="2" truncateTrailingZeros="true" />
 <RangeEntity trigger="resolution" delimiter="x" annotation="resolution" />
 <!-- rules definition --> <Rule name="type" value="capacity hddtype" output="Hard Drive" mode="match" />
 <Rule name="type" value="capacity hddtype{not} sdcard" output="Camera" mode="match" />
 <Rule name="reference_number" value="[reference #near #id]" output="$(id)" mode="match" />
</SemanticExtractorConfig>

Each matching entity generates a semantic annotation, which can be mapped using the standard
annotation mappings. Similarly, each matching rule generates a semantic annotation identified by
the rule's name.

Let us use the above sample to process the following text: "SD Card 4 GB". This generates the
following annotations:

• "sdcard", because the processor detected the expression "SD". It displays as "SD Card".

• "capacity", because the processor initially detected the integer "4". It displays as "4 GB" .

• "type", because the processor detected both the "sdcard" and "capacity" annotations, but did
not detect the "hddtype" annotation. It displays as "Camera".

304 - Configuration

Entities Syntax

Entities Syntax

Text

Extract values according to the triggers (left context), values and units (right context) you specified,
as defined by:

(trigger1 | trigger2 ...)? (separators)* VALUE_TO_EXTRACT (separators)* (unit1 | unit2 ...)?

A simple example:

<!-- match the expressions "SD card", "sd card", "SD CaRd", ... -->
<TextEntity value="SD card" annotation="sd_card" matchMode="normalized" />

To specify multiple value attributes, use the '|' character as a separator:

<!-- match the expression "SD card" or "Carte SD" -->
<TextEntity value="SD card|Carte SD" annotation="sd_card" matchMode="exact"/>

To restrict matching, use triggers to specify a left context:

<!-- match the expressions "Operating System: Mac OS X" or "Operating System: Windows XP" -->
<TextEntity trigger="Operating System" annotation="os" matchMode="normalized" value="Mac OS X|Windows XP" />

To specify multiple triggers:

<!-- match the expressions "Operating System: Mac OS X", "Operating System: Windows XP",
"Système d'exploitation: Mac OS X" or "Système d'exploitation: Windows XP" -->
<TextEntity annotation="os" matchMode="normalized" value="Mac OS X|Windows XP">
 <triggers>
 <bee:StringValue value="Operating System" />
 <bee:StringValue value="Système d'exploitation" />
 </triggers>
</TextEntity>

To specify how many tokens are used to build the value, omit the value attribute and you use the
maxValueSize attribute:

<!-- match the expressions "Operating System: something really unknown" -->
<TextEntity trigger="Operating System" annotation="os_unknown" matchMode="normalized" maxValueSize="10" />

Boolean

This condition performs a Boolean match. For example, this condition matches the expression "SD
card: YES".

<!-- match the expressions "SD card: YES" -->
<BooleanEntity trigger="SD card" annotation="sd_card" matchMode="exact" yes="YES" no="NO" />

Configuration - 305

Entities Syntax

Integers

The integer entity is often used with normalization. It uses the following attributes:

Integer Entity Attributes

Attribute Description

min The minimum value the extracted number must have.

max The maximum value the extracted number must have.

coefficient The coefficient applied to the extracted number, default: 1 (no coefficient).

precision The precision used to generate the display form (optional).

step The step used to generate the display form (optional).

handleOutOfBoundValuesGenerates display form with "<" or ">".

If false, skips numbers that are not in the [min-max] range.

default: true

addExactValue If true, adds the value of the extracted number before any normalization in
another annotation suffixed by ".exact"; default: false

<!-- match the expressions "Port USB: 2", and generate the display form "2" with an implicit display =?"-->
<IntegerEntity trigger="port usb" annotation="port_usb" matchMode="normalized" />
<!-- match the expressions "Size: 1 Ko", and generate the display form "1024 octet" -->
<IntegerEntity trigger="size" unit="Ko" annotation="size" matchMode="normalized" coefficient="1024"
display="? octet" />
<!-- match the expressions "HDD: 320 Go", and generate the display form "300-400 Go" -->
<IntegerEntity trigger="HDD" unit="Go" annotation="hdd_capacity" matchMode="normalized" min="0" max="2000"
step="100" display="? Go" />
<!-- match the expressions "HDD: 320 Go", and generate the display form "300-400 Go" + an exact
annotation with display form "320" -->
<IntegerEntity trigger="HDD" unit="Go" annotation="hdd_capacity" matchMode="normalized" min="0" max="2000"
 step="100" display="? Go" addExactValue="true" />

Floating-Point

<!-- match the expressions "Port USB: 2", and generate the display form "2" with an implicit
 display =?"-->
<IntegerEntity trigger="port usb" annotation="port_usb" matchMode="normalized" />
<!-- match the expressions "Size: 1 Ko", and generate the display form "1024 octet" -->
<IntegerEntity trigger="size" unit="Ko" annotation="size" matchMode="normalized" coefficient="1024"
display="? octet" />
<!-- match the expressions "HDD: 320 Go", and generate the display form "300-400 Go" -->
<IntegerEntity trigger="HDD" unit="Go" annotation="hdd_capacity" matchMode="normalized" min="0"
max="2000" step="100" display="? Go" />

306 - Configuration

Rules Syntax

<!-- match the expressions "HDD: 320 Go", and generate the display form "300-400 Go" + an exact
annotation with display form "320" -->
<IntegerEntity trigger="HDD" unit="Go" annotation="hdd_capacity" matchMode="normalized" min="0"
max="2000" step="100" display="? Go" addExactValue="true" />

<FloatingPointEntity> has the same attributes as the <IntegerEntity>, but use floats
instead of integers.

Ranged

The <RangeEntity> is used to extract ranged expressions.

Range Entity Attributes

Attribute Description

dimension The number of dimensions in your entity

delimiter The delimiter used to separate dimensions
<!-- match the expressions "Resolution: 800 x 600" -->
<RangeEntity trigger="resolution" annotation="resolution" matchMode="normalized" dimension="2" delimiter="x" />
<!-- match the expressions "Size: 42 x 12 x 32" -->
<RangeEntity trigger="size" annotation="size" matchMode="normalized" dimension="3" delimiter="x" />

RegExp

The <RegexpEntity> extracts expressions matching a pattern.

<!-- will match the expressions "Opening hours: 09:00 - 18:00" -->
<RegexpEntity trigger="Opening hours" annotation="opening" matchMode="normalized"
value="[[:digit:]]+:[[:digit:]]+ - [[:digit:]]+:[[:digit:]]+" />
<!-- will match the expressions "Start at: 09:00 am", "Start at: 01:30 pm" -->
<RegexpEntity trigger="Start at" annotation="start_at" matchMode="normalized"
value="[[:digit:]]{2}:[[:digit:]]{2}">
 <endTriggers>
 <bee:StringValue value="am" />
 <bee:StringValue value="pm" />
 </endTriggers>
</RegexpEntity>

Rules Syntax

Mode

The mode specifies if the rule is a positive one (value match) or an exception (value filter). A
matching exception prevents any rule from matching.

Configuration - 307

Rules Syntax

Pattern

A pattern is made of atoms and operators. An atom defines a basic matching element in a rule, it
can take the following forms:

• A reference to an entity through its annotation (country).

• A regular expression surrounded by slashes possibly capturing parts of a match (/
[pP].*(ern)/).

• A full-text string surrounded by quotes ("sequence of words").

• A reference to a MOT annotation (NE.people).

• An assertion enforcing match constraints:

◦ :WORD matches any word in a sequence.

◦ :ENDLINE matches carriage returns.

◦ :START matches at the beginning of the input text.

◦ :END matches at the end of the input text.

Each atom may have a set of options specified in curly braces immediately following it. That set is
a combination of 0 or more elements separated with commas.

Atom Options

Option Description

name allows the atom to be referenced in the output format of a rule through
$(country).

opt matching of this atom is not required.

not the pattern matches if this atom does not.

max maximum number of words allowed for a :WORD atom to match.

original use the matching text when building the output rather than the output value of an
entity or the display form of an annotation.

default defines a default value for an optional atom (option opt) to use when building
the output.

exact requires exact matching level.

lower requires lowercase matching level.

norm requires normalized matching level.

308 - Configuration

Macros

Option Description

skipPunct requires punctuation-insensitive matching

fuzzy requires approximative matching.

Atom Operators

Operator Description

AND Default operator. Matches atoms in any order and positions.

[] Matches the enclosed sequence of atoms in the order specified.

() Matches the enclosed atoms at the same position (cumulative constraints on a
single position).

Output

The final annotation has the name of the matching rule and the rule trust level if any (default is
100). The display form is defined with an output format that may contain:

• A reference to what has been matched by atom through its name ($(country)).

• A reference to a regular expression capture through the atom name and an array access
syntax specifying the capture number ($(regexp[0])).

• A carriage return \n.

• Any character sequence, which is used as-is in the output (the street is:$(street)
and the city is:$(city)).

If defined, the processor's parameter prefix forces the output annotation to be prefixed with its
value.

Macros

For often-used rule parts, use the <Define> element to write macros that you can then reference
in a rule value.

A macro has a name and a value. These are substituted each time the macro is referenced with a
#, followed by the macro’s name.

• This name can only contain the characters [a-z][A-Z][0-9].

• The macro can be used anywhere in a rule, such as inside a regular expression.

• To disable macro substitution, insert a backslash before the # symbol.

Configuration - 309

Create the Semantic Extractor Resource File

Create the Semantic Extractor Resource File

This section explains how to compile the semantic extractor’s resource file, and describes the
parameter options available in the Administration Console.

Create a Resource File from the Administration Console

The most convenient method consists in creating an empty resources file in the Administration
Console and defining its content with the Business Console. See Create a Resource File from the
Administration Console .

To Compile a Resource File from the Command Line

1. Create a rule XML file and save it in a temporary directory. For an example, see Sample
Semantic Extractor XML File.

2. Compile the XML file.

a. Go to <DATADIR>/bin/

b. Run the following cvadmin command:
cvconsole cvadmin> linguistic compile-semantic-extractor input="<PATH TO XML FILE>"
output="<PATH TO OUTPUT FILE>"

3. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

4. Drag the Semantic Extractor processor to the required position in the Current Processors
list, then specify the parameters:

Option Description

Resource directory
(required)

enter the URL to the compiled semantic extractor file. Use the format
data://, file://, or resource://.

Break on sentence maximum of one match per sentence, no match intersentence if true
(default false).

Break on paragraph maximum one match per paragraph, no match interparagraph if true
(default true).

Break on line maximum one match per line, no match interlines if true (default false).

Match all rules returns the matches for all rules if true, otherwise stops after the first
matching rule (default true).

310 - Configuration

Map the Annotation to a Category Facet

Map the Annotation to a Category Facet

1. In the Administration Console, select Index > Data processing > Pipeline name > Semantic
Processors.

2. On the Mappings subtab, click Add mapping sources.

a. Name: Enter the annotation name that you created in the rules file.

b. Type: select Annotation.

3. (Optional) In Input from field of the mapping, restrict the mapping so it only applies to a subset
of comma-separated metas (also known as contexts) associated with this annotation.

4. Click Add mapping target and add a category target.

5. Modify the Category Mappingproperties. For example, the Create categories under this root
property must be modified to Top/Megapixel in the example above.

6. Go to Search > Search Logics > Your_Search_Logic > Facets and add a category group.

a. Click Add facet and enter the name to display in the Mashup UI Refinements panel, for
example Megapixel.

b. For Root, enter the value you entered for Create categories under this root in step 4, for
example, Top/Megapixel.

7. Click Apply.

Semantic Query Analysis

Semantic query analysis is a special use case for the Semantic Extractor that allows you to
rewrite queries without having to write any custom code. This analyzer runs on the raw user query,
making use of a Semantic Extractor. The output is used as a new UQL query processed by the
search logic in the usual way.

Configure Semantic Query Analysis

The configuration consists of:

• a semantic extractor's compiled resource

• an optional list of semantic processors, which runs before the semantic extractor

• options to set the analyzer's behavior

Add a Semantic Query Analysis to Your Searcher

1. Go to Administration Console > Search Logics > Query Language tab.

2. In Semantic query analysis, select Enable.

Configuration - 311

Example 1: Define "Cheap" for an E-Commerce Site

3. In Resource directory, create a new semantic resource extractor or select an existing one.

4. In Semantic processors, select the semantic processors (if any) linked to the semantic
resource extractor selected previously.

5. In Language, select the languages for which the analyzer is activated.

6. In Unused word policy, select one of the following options:

◦ mandatory: all query words that have not been used by the matching rule to build the
output are added to the output query using a AND.

◦ optional: all query words that have not been used by the matching rule to build the output
are added to the output query using an OPT.

◦ remove: all query words that have not been used by the matching rule to build the output
are discarded.

You can also set the unused word policy at the rule level:

a. Select Single match mode.

b. In the Business Console, edit your rule and select the appropriate option for Unused word
policy. This rule setting overrides the Unused word policy set at the Semantic Query
Analysis level.

7. In Debug log file, enter the path to an HTML file for debug purposes.

8. Click Save and apply the configuration.

Configure Query Processing

You can add a list of comma-separated query names that defines which parts of the query are
processed. The default value is _default_. This means that by default processing is only
applied on the query entered by the user, and not on refinements and restrictions applied by query
expansion.

1. Open the API Console.

2. Click Manage.

3. Select search in the list.

4. In Configuration, select setSearchLogicList.
5. Search for queryNames.

6. Replace _default_ with the list of query names.

Example 1: Define "Cheap" for an E-Commerce Site

Let us say that you have an online store. You have an index of all product names and
characteristics, including a numeric price field, and you want to make sense of queries such as
cheap USB flash drive or inexpensive USB flash drive.

312 - Configuration

Example 1: Define "Cheap" for an E-Commerce Site

With the following configuration, you can rewrite such queries to USB AND flash AND drive
AND price<10.

Create a Resource File from the Administration Console

1. In the Resource directory field, click Create new and enter the name of your resource file.

2. Then you can define its content with the Business Console. For more information, see the
Exalead CloudView Business Console User's Guide.

Compile a Resource File from the Command Line

1. Create a semantic extractor configuration as shown below:
<SemanticExtractorConfig xmlns="exa:com.exalead.mot.components.semanticextractor"

xmlns:bee="exa:exa.bee">

 <!-- entities definition -->

 <TextEntity annotation="cheap" value="cheap|inexpensive|low cost|lowcost|affordable"

display="price<10" matchMode="normalized"/>

 <!-- rules definition -->

 <Rule name="cheap product rule" value="cheap{name=matched}" output="$(matched)" mode="match"/>

</SemanticExtractorConfig>

2. Compile the resource:

a. Go to <DATADIR>/bin/

b. Run the following cvadmin command:
cvconsole cvadmin> linguistic compile-semantic-extractor input="<PATH TO XML SOURCE>"
output="<PATH TO BINARIES DIRECTORY>"

Configure Semantic Query Analysis

1. Specify the Unused word policy parameter to mandatory. It rewrites cheap to price<10
and relies on the mandatory parameter to get a big AND.

The resulting syntax tree:

AND

 NUM: document_price OP_LT 10

 AND NATURAL

 ALPHA: text: usb k=2 (form: normalized)

 ALPHA: text: flash k=2 (form: normalized)

 ALPHA: text: drive k=2 (form: normalized)

Here is the final ELLQL query sent to the index:

#query{nbdocs=0, score.expr="@term.score * @proximity + @b", proximity.maxDistance=1000,

term.score=RANK_TFIDF}

(#and(#num(document_price,<,10)#and(#alphanum{source="MOT",seqid=0,groupid=0,k=2}(text,"usb")

#alphanum{source="MOT",seqid=1,groupid=0,k=2}(text,"flash")

#alphanum{source="MOT",seqid=2,groupid=0,k=2}(text,"drive"))))

Configuration - 313

Example 2: Define "Cheap" for Different Products

Example 2: Define "Cheap" for Different Products

Now that you understand the basic principle of semantic query analysis, let us look at an example
where you want to define different criteria for "cheap", depending on the product type. It does not
make sense for a query for "cheap tv set" to search for TVs with a price of 10€ or lower.

The solution is to create text entities for products, and associate a definition of "cheap" for that
particular product.

Configure the Semantic Extractor

1. Create a semantic extractor configuration as shown below:
<SemanticExtractorConfig xmlns="exa:com.exalead.mot.components.semanticextractor" xmlns:bee="exa:exa.bee">

 <TextEntity annotation="product" value="usb flash drive" display="10" matchMode="normalized"/>

 <TextEntity annotation="product" value="tv set" display="100" matchMode="normalized"/>

 <TextEntity annotation="product" value="computer|laptop" display="300" matchMode="normalized"/>

 <TextEntity annotation="cheap" value="cheap|inexpensive|low cost|lowcost|affordable"

matchMode="normalized"/>

 <Rule name="cheap product rule" value="cheap product{name=threshold,original=text}"

output="$(text) AND price<$(threshold)" mode="match"/>

</SemanticExtractorConfig>

◦ name=threshold defines $(threshold) as the product annotation's display form (the
price threshold)

◦ original=text defines $(text) as the input text annotated by product (the product
name as entered by the user)

Note: We could have built an ontology instead of writing TextEntities and add an ontology
matcher in the SemanticQueryAnalysisConfig, externalizing the information.

Configure Semantic Query Analysis

We now want to remove words matched by the text entity "cheap", since it is not referenced in the
output.

1. Specify the Unused word policy parameter to remove to get rid of them:

The resulting syntax tree for "cheap tv set" is:

AND

 AND NATURAL

 ALPHA: text: tv k=2 (form: normalized)

 ALPHA: text: set k=2 (form: normalized)

 NUM: document_price OP_LT 100

314 - Configuration

Snowball Stemmer

Snowball Stemmer

A Snowball Stemmer builds a stem, or root, for each word in the document contexts. The root is
determined by cutting off word endings. For example, a stem of geese is goose.

The output from the Snowball Stemmer is used by other semantic processors in the document
analysis chain.

When to Use

If you have configured the Ontology Matcher, Rules Matcher, Fast Rules Matcher or Semantic
Extractor for stem matches, you must define a Snowball Stemmer before it in the document
analysis pipeline.

Configure Stemming Manually

Adapt the steps in Configure Phonetization Manually, replacing the Phonetizer processor with the
Snowball Stemmer processor.

Part of Speech Tagger

The Part of Speech Tagger allows you to enable part of speech processing that is usually only
activated when you perform related terms processing.

How to use

Specify:

• the path to the part of speech resource file for the specific language to configure,

• a language for which the part of speech is activated that corresponds to the resource file
specified,

• a comma-separated list of context names of the document chunks for which this processor is
applied.

When to use

This processor is required by the Related Term processor.

Configuration - 315

Appendix - Semantic Resources Reference

Appendix - Semantic Resources Reference

Ontology

• com.exalead.mot.components.ontology.Ontology

• No documentation for this element.

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

matchOnSeparators boolean True If you want to skip separators, set
this Boolean to false

matchOnSeparatorsButstring If you want to skip only a set of
separators, specify them here
ex: matchOnSeparatorsBut="-_"
matches on separators but skip '-'
and '_'

• Nested elements:

Name Type Description

OInclude com.exalead.mot.components.ontology.OInclude*

Pkg com.exalead.mot.components.ontology.Pkg*

OInclude

• com.exalead.mot.components.ontology.OInclude

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.ontology.Ontology (as Ontology)

◦ com.exalead.mot.components.ontology.Pkg (as Pkg)

• Attributes:

316 - Configuration

Pkg

Name Type Default value Description

fileName string Path to external ontology to include

Pkg

• com.exalead.mot.components.ontology.Pkg

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.ontology.Pkg (as Pkg)

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

path string Package name, used as annotation
tag

disabled boolean

• Nested elements:

Name Type Description

OInclude com.exalead.mot.components.ontology.OInclude*

PkgOrEntry com.exalead.mot.components.ontology.PkgOrEntry*

Entry

• com.exalead.mot.components.ontology.Entry

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.ontology.Pkg (as Pkg)

• Attributes:

Name Type Default value Description

modifiedBy string

Configuration - 317

Form

Name Type Default value Description

modifiedAt nullablelong

display string Display form of the annotation

lang iso code Language of forms in this entry
when not specified

kind int Kind of the annotation

disabled boolean

• Nested elements:

Name Type Description

Form com.exalead.mot.components.ontology.Form*

Form

• com.exalead.mot.components.ontology.Form

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.ontology.Entry (as Entry)

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

value string Matching expression

level string Matching level

lang iso code Used to restrict a match to a specific
language

distance int Specifies the distance to apply to the
default annotation trustLevel (that
is,: 100-distance)

disabled boolean

318 - Configuration

FastRulesDefinition

FastRulesDefinition

• com.exalead.mot.components.fastrules.FastRulesDefinition

• A set of categories together with their associated rules

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

catName string The category name

• Nested elements:

Name Type Description

Category com.exalead.mot.components.fastrules.Category*

DateFormat com.exalead.mot.components.fastrules.DateFormat*

Category

• com.exalead.mot.components.fastrules.Category

• A set of rules and a category value for matching documents

• Parent elements:

◦ com.exalead.mot.components.fastrules.FastRulesDefinition (as
FastRulesDefinition)

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

value string The category value

• Nested elements:

Configuration - 319

Rule

Name Type Description

Rule com.exalead.mot.components.fastrules.Rule*

Rule

• com.exalead.mot.components.fastrules.Rule

• A rule expressing constraints on a document content

• Parent elements:

◦ com.exalead.mot.components.fastrules.Category (as Category)

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

value string A query defined with a subset of
Exalead User Query Language

exceptionRule boolean Makes the rule an exception rule
instead of a normal rule. When
any of the exception rules of a
category matches, the category is
not assigned to the document, even
if some of its normal rules match.

lang iso code xx Restrict this query to a specific
language

DateFormat

• com.exalead.mot.components.fastrules.DateFormat

• A date format definition conforming to C function strptime

• Parent elements:

◦ com.exalead.mot.components.fastrules.FastRulesDefinition (as
FastRulesDefinition)

• Attributes:

320 - Configuration

LemmaDictionary

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

value string The date format value

LemmaDictionary

• com.exalead.mot.components.lemmatizer.LemmaDictionary

• No documentation for this element.

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

lang iso code

• Nested elements:

Name Type Description

Lemma com.exalead.mot.components.lemmatizer.Lemma*

Lemma

• com.exalead.mot.components.lemmatizer.Lemma

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.lemmatizer.LemmaDictionary (as
LemmaDictionary)

• Attributes:

Name Type Default value Description

value string

pos string

trustLevel int 100

Configuration - 321

Inflected

• Nested elements:

Name Type Description

inflecteds com.exalead.mot.components.lemmatizer.Inflected*Inflected forms of the
word

Inflected

• com.exalead.mot.components.lemmatizer.Inflected

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.lemmatizer.Lemma (as inflecteds)

• Attributes:

Name Type Default value Description

value string Inflected form of the word.

number enum(singular,

plural,

unnumbered)

unnumbered Number of the inflected form

gender enum(masculine,

feminine,

neutral)

neutral Gender of the inflected form

NormalizationOverwrites

• com.exalead.mot.components.normalizer.NormalizationOverwrites

• No documentation for this element.

• Nested elements:

Name Type Description

NormalizationOverwritecom.exalead.mot.components.normalizer.NormalizationOverwrite*

NormalizationOverwrite

• com.exalead.mot.components.normalizer.NormalizationOverwrite

322 - Configuration

NormalizationAlternatives

• overwrite normalization for a specific letter, for example, umlaut exceptions: ä -> ae, ü -> ue, ö -
> oe ...

• Parent elements:

◦ com.exalead.mot.components.normalizer.NormalizationOverwrites (as
NormalizationOverwrites)

• Attributes:

Name Type Default value Description

lang string

origChr string

replaceString string

NormalizationAlternatives

• com.exalead.mot.components.normalizer.NormalizationAlternatives

• No documentation for this element.

• Nested elements:

Name Type Description

NormalizationAlternativecom.exalead.mot.components.normalizer.NormalizationAlternative*

NormalizationAlternative

• com.exalead.mot.components.normalizer.NormalizationAlternative

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.normalizer.NormalizationAlternatives (as
NormalizationAlternatives)

• Attributes:

Name Type Default value Description

lang string

origChr string

Configuration - 323

NormalizationExceptions

Name Type Default value Description

replaceString string

NormalizationExceptions

• com.exalead.mot.components.normalizer.NormalizationExceptions

• No documentation for this element.

• Nested elements:

Name Type Description

NormalizationExceptioncom.exalead.mot.components.normalizer.NormalizationException*

NormalizationException

• com.exalead.mot.components.normalizer.NormalizationException

• set normalization exception: for this word, the annotation is added with a trust level of 0 instead
of 100. This is useful to index thé, maïs, ... as lowercase word and as normalized words

• Parent elements:

◦ com.exalead.mot.components.normalizer.NormalizationExceptions (as
NormalizationExceptions)

• Attributes:

Name Type Default value Description

lang string

word string

RegexpMatches

• com.exalead.mot.components.regexpmatcher.RegexpMatches

• No documentation for this element.

• Attributes:

Name Type Default value Description

modifiedBy string

324 - Configuration

RegexpMatch

Name Type Default value Description

modifiedAt nullablelong

• Nested elements:

Name Type Description

RegexpMatch com.exalead.mot.components.regexpmatcher.RegexpMatch*Regular expressions
to recognize.

RegexpMatch

• com.exalead.mot.components.regexpmatcher.RegexpMatch

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.regexpmatcher.RegexpMatches (as
RegexpMatches)

• Attributes:

Name Type Default value Description

regexp string Regular expression to recognize.

annotation string Tag of the annotations to add on
matched tokens.

level enum(exact,

lowercase,

normalized)

normalized Level of the regular expression.
For example, a regexp with
level=lowercase matches case-
insensitively.

lang iso code xx Lang of the regular expression. The
regexp does not match token in
other languages. If lang=xx, token
may be matched, no matter the
language they are in.

displayForm string Value of the annotations to add on
matched tokens. By default, the
display form is that of the matched
tokens, but the user can override
it. Captures may be used. For

Configuration - 325

SemanticExtractorConfig

Name Type Default value Description
example if the regexp is "(foo)bar",
and the displayForm is "\1baz", then
annotations are added on "foobar"
with value "foobaz".

SemanticExtractorConfig

• com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

• No documentation for this element.

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

lettersForDist1 int 4 number of letters to enable
maxDist=1 (letter level)

lettersForDist2 int 8 number of letters to enable
maxDist=2 (letter level)

wordsForDist1 int 3 number of words to enable
maxDist=1 (word level)

wordsForDist2 int 5 number of words to enable
maxDist=2 (word level)

• Nested elements:

Name Type Description

AbstractEntity com.exalead.mot.components.semanticextractor.AbstractEntity*

Define com.exalead.mot.components.semanticextractor.Define*

Include com.exalead.mot.components.semanticextractor.Include*

Rule com.exalead.mot.components.semanticextractor.Rule*

326 - Configuration

Entity

Entity

• com.exalead.mot.components.semanticextractor.Entity

• backward compatibility (?), must be mapped to TextEntity by the builder

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

name string Unique entity reference. Only used
by the GUI.

modifiedBy string

modifiedAt nullablelong

type string

entity string

output string

matchMode string normalized

TextEntity

• com.exalead.mot.components.semanticextractor.TextEntity

• Matches strings

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

unit string An optional condition on right
context

rightContext string Alias for unit

Configuration - 327

TextEntity

Name Type Default value Description

trigger string An optional left context triggering the
match

leftContext string Alias for trigger

annotation string The annotation set in case of a
match

display string The annotation value in case of a
match

matchMode string normalized Match level

name string Unique entity reference. Only used
by the GUI.

modifiedBy string

modifiedAt nullablelong

value string The values to match, separated with
'|'

maxValueSize int 10 Maximum number of tokens for the
value

lang iso code xx Optional language constraint

• Nested elements:

Name Type Description

units exa.bee.StringValue* An optional list of
conditions on right
context

rightContexts exa.bee.StringValue* Alias for units

triggers exa.bee.StringValue* An optional list of left
contexts triggering the
match

leftContexts exa.bee.StringValue* Alias for triggers

328 - Configuration

BooleanEntity

BooleanEntity

• com.exalead.mot.components.semanticextractor.BooleanEntity

• Matches binary values true/false, yes/no, ...

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

unit string An optional condition on right
context

rightContext string Alias for unit

trigger string An optional left context triggering the
match

leftContext string Alias for trigger

annotation string The annotation set in case of a
match

display string The annotation value in case of a
match

matchMode string normalized Match level

name string Unique entity reference. Only used
by the GUI.

modifiedBy string

modifiedAt nullablelong

yes string The value for true

no string The value for false

• Nested elements:

Configuration - 329

IntegerEntity

Name Type Description

units exa.bee.StringValue* An optional list of
conditions on right
context

rightContexts exa.bee.StringValue* Alias for units

triggers exa.bee.StringValue* An optional list of left
contexts triggering the
match

leftContexts exa.bee.StringValue* Alias for triggers

IntegerEntity

• com.exalead.mot.components.semanticextractor.IntegerEntity

• Matches integral numbers

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

unit string An optional condition on right
context

rightContext string Alias for unit

trigger string An optional left context triggering the
match

leftContext string Alias for trigger

annotation string The annotation set in case of a
match

display string The annotation value in case of a
match

matchMode string normalized Match level

330 - Configuration

IntegerEntity

Name Type Default value Description

name string Unique entity reference. Only used
by the GUI.

modifiedBy string

modifiedAt nullablelong

step int If defined, normalizes the value to
the nearest step

min int -2147483648 Minimum value for a match

max int 2147483647 Maximum value for a match

coefficient double 1 The normalization coefficient used to
multiply the matched value

precision int The floating-point precision in output

handleOutOfBoundValuesboolean True If false, ignores values lower than
min or greater than max

addExactValue boolean If true, adds the original value
(before normalization) in an extra
annotation TAG.exact

truncateTrailingZerosboolean If true, removes the trailing zeros
after point

• Nested elements:

Name Type Description

units exa.bee.StringValue* An optional list of
conditions on right
context

rightContexts exa.bee.StringValue* Alias for units

triggers exa.bee.StringValue* An optional list of left
contexts triggering the
match

leftContexts exa.bee.StringValue* Alias for triggers

Configuration - 331

FloatingPointEntity

FloatingPointEntity

• com.exalead.mot.components.semanticextractor.FloatingPointEntity

• Matches floating-point numbers

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

unit string An optional condition on right
context

rightContext string Alias for unit

trigger string An optional left context triggering the
match

leftContext string Alias for trigger

annotation string The annotation set in case of a
match

display string The annotation value in case of a
match

matchMode string normalized Match level

name string Unique entity reference. Only used
by the GUI.

modifiedBy string

modifiedAt nullablelong

step double If defined, normalizes the value to
the nearest step

min double -2147483648 Minimum value for a match

max double 2147483647 Maximum value for a match

coefficient double 1 The normalization coefficient used to
multiply the matched value

332 - Configuration

RangeEntity

Name Type Default value Description

precision int 2 The floating-point precision in output

handleOutOfBoundValuesboolean True If false, ignores values lower than
min or greater than max

addExactValue boolean If true, adds the original value
(before normalization) in an extra
annotation TAG.exact

truncateTrailingZerosboolean If true, removes the trailing zeros
after point

• Nested elements:

Name Type Description

units exa.bee.StringValue* An optional list of
conditions on right
context

rightContexts exa.bee.StringValue* Alias for units

triggers exa.bee.StringValue* An optional list of left
contexts triggering the
match

leftContexts exa.bee.StringValue* Alias for triggers

RangeEntity

• com.exalead.mot.components.semanticextractor.RangeEntity

• Matches n-dimension integral numbers

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

unit string An optional condition on right
context

Configuration - 333

RegexpEntity

Name Type Default value Description

rightContext string Alias for unit

trigger string An optional left context triggering the
match

leftContext string Alias for trigger

annotation string The annotation set in case of a
match

display string The annotation value in case of a
match

matchMode string normalized Match level

name string Unique entity reference. Only used
by the GUI.

modifiedBy string

modifiedAt nullablelong

dimension int 2 Dimension count

delimiter string x Numbers delimiter

• Nested elements:

Name Type Description

units exa.bee.StringValue* An optional list of
conditions on right
context

rightContexts exa.bee.StringValue* Alias for units

triggers exa.bee.StringValue* An optional list of left
contexts triggering the
match

leftContexts exa.bee.StringValue* Alias for triggers

RegexpEntity

• com.exalead.mot.components.semanticextractor.RegexpEntity

334 - Configuration

RegexpEntity

• Matches a regular expression

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

trigger string An optional left context triggering the
match

leftContext string Alias for trigger

annotation string The annotation set in case of a
match

display string The annotation value in case of a
match

matchMode string normalized Match level

name string Unique entity reference. Only used
by the GUI.

modifiedBy string

modifiedAt nullablelong

value string Perl-5 regular expression

endTrigger string An optional left context

• Nested elements:

Name Type Description

triggers exa.bee.StringValue* An optional list of left
contexts triggering the
match

leftContexts exa.bee.StringValue* Alias for triggers

endTriggers exa.bee.StringValue* An optional list of left
contexts

Configuration - 335

Define

Define

• com.exalead.mot.components.semanticextractor.Define

• Macro definition

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

name string

value string

Include

• com.exalead.mot.components.semanticextractor.Include

• Includes an external SemanticExtractorConfig rules file

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

• Attributes:

Name Type Default value Description

path string The absolute path to the
SemanticExtractorConfig XML file.

Rule

• com.exalead.mot.components.semanticextractor.Rule

• A semantic extraction rule.

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.SemanticExtractorConfig

(as SemanticExtractorConfig)

336 - Configuration

Synonyms

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

id string Unique rule reference. Only used by
the GUI.

name string Rule name.

mode enum(match,

filter)

match Rule mode.

pattern string Rule pattern

output string Rule output name.

unusedWordPolicy string Unused query word policy. If
defined, overrides general value
when this rule fires

trustLevel int 100 Rule trust level. A percentage
showing this rule's relevance
compared to others.

language string Which language the rule must be
applied to.

value string Rule value.

Synonyms

• com.exalead.mot.qrewrite.v10.Synonyms

• The Synonyms feature allows you to define synonym resources

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

equivalenceClass boolean True A synonym set is defined with
a master expression and a set

Configuration - 337

Synonyms

Name Type Default value Description
of associated expressions (an
expression is defined by many
words with a space as separator)
originalExpr = {alternativeExpr1,,
alternativeExprN}.When query is
parsed we expand originalExpr
with {alternativeExpr1, ...,
alternativeExprN}. When
equivalenceClass Boolean
is set to true, we also
expand: - alternativeExpr1 by
originalExpr, alternativeExpr2, ...,
alternativeExprN - alternativeExpr2
by originalExpr, alternativeExpr1,
alternativeExpr3, ...,
alternativeExprN - ... -
alternativeExprN by originalExpr,
alternativeExpr1, ...,
alternativeExprN-1

matchOnSeparators boolean True If false, synonym matching is
punctuation-insensitive.

stopwordsResource string resource:///

stopwords/

ontology.bin

Path to the compiled ontology
containing stopwords used at build
time when generating permutations.

permutations boolean If true, adds for each synonym
some extra forms made of words
permutations after removing
stopwords.

addStopwordFreeFormsboolean If true, adds for each synonym an
extra form from which stopwords
have been removed.

• Nested elements:

Name Type Description

SynonymSet com.exalead.mot.qrewrite.v10.SynonymSet*

338 - Configuration

SynonymSet

SynonymSet

• com.exalead.mot.qrewrite.v10.SynonymSet

• A set of synonym terms.

• Parent elements:

◦ com.exalead.mot.qrewrite.v10.Synonyms (as Synonyms)

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

originalExpr string String to match in user query

level enum(exact,

lowercase,

normalized)

normalized Term level of these expressions.

lang iso code Only match the original expression
in this language.

equivalenceClass enum(true,

false,

SynonymSetToSynonym,

SynonymToSynonymSet)

 override equivalenceClass Boolean
if null or different from true/false,
keep Synonyms.equivalenceClass
value

• Nested elements:

Name Type Description

Synonym com.exalead.mot.qrewrite.v10.Synonym* The list of synonyms
of the original
expression.

Synonym

• com.exalead.mot.qrewrite.v10.Synonym

• No documentation for this element.

• Parent elements:

Configuration - 339

TRules

◦ com.exalead.mot.qrewrite.v10.SynonymSet (as SynonymSet)

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

alternativeExpr string Synonym string: can be a multiword
expression (separated by space
only)

level enum(exact,

lowercase,

normalized,

custom,

sameasset)

sameasset display level

customLevel byte (only when level == "custom") when
level = "custom", this customLevel is
used

distance int distance applied to this synonym

lang string if not null, override language of
SynonymSet

TRules

• com.exalead.mot.components.transducer.TRules

• A set of transducer rules

• Attributes:

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

340 - Configuration

Seq

Seq

• com.exalead.mot.components.transducer.Seq

• Abstract class common to all patterns whose children have to be interpreted as a sequence.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

Configuration - 341

Iter

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Iter

• com.exalead.mot.components.transducer.Iter

• @b iter pattern ...

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

342 - Configuration

Iter

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

Configuration - 343

Star

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

min int

max int 128

greedy boolean True

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Star

• com.exalead.mot.components.transducer.Star

• @b star pattern == iter(min=0, max=this.max, greedy=true)

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

344 - Configuration

Star

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Configuration - 345

Plus

Name Type Default value Description

max int 2147483647

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Plus

• com.exalead.mot.components.transducer.Plus

• @b plus pattern == iter(min=1, max=this.max, greedy=true)

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

346 - Configuration

Opt

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

max int 2147483647

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Opt

• com.exalead.mot.components.transducer.Opt

Configuration - 347

Opt

• @b opt pattern == iter(min=0, max=1, greedy=true)

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

348 - Configuration

Sub

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Sub

• com.exalead.mot.components.transducer.Sub

• @b sub pattern denotes submatches that are retrieved.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

Configuration - 349

Sub

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

350 - Configuration

Or

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

no int

kind string sub

value string

trustLevel int 100

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Or

• com.exalead.mot.components.transducer.Or

• @b or pattern matches ...

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

Configuration - 351

Or

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

352 - Configuration

Near

Near

• com.exalead.mot.components.transducer.Near

• A BINARY near matching subexpressions in any order at a max distance defined by slop in
terms of nonblank tokens

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

Configuration - 353

Noblank

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

slop int

ordered boolean

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Noblank

• com.exalead.mot.components.transducer.Noblank

• Assert that there is no space between two tokens.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

354 - Configuration

Noblank

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

Configuration - 355

PatternRef

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

PatternRef

• com.exalead.mot.components.transducer.PatternRef

• Abstract class common to pattern that matches a word or an annotation.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

356 - Configuration

PatternRef

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Configuration - 357

And

And

• com.exalead.mot.components.transducer.And

• Abstract class common to pattern that matches a word or an annotation.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

358 - Configuration

Not

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

Not

• com.exalead.mot.components.transducer.Not

• Abstract class common to pattern that matches a word or an annotation.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

Configuration - 359

Not

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

360 - Configuration

Nor

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern

Nor

• com.exalead.mot.components.transducer.Nor

• Abstract class common to pattern that matches a word or an annotation.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

Configuration - 361

Nor

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

362 - Configuration

TokenKind

• Nested elements:

Name Type Description

RulePattern com.exalead.mot.components.transducer.RulePattern*

TokenKind

• com.exalead.mot.components.transducer.TokenKind

• Matches a specific token kind as set by the tokenizer Allowed values are: SEP_PARAGRAPH
SEP_SENTENCE SEP_PUNCT SEP_QUOTE SEP_DASH NUMBER ALPHANUM (** Warning
**, this means alpha and num, not alpha or num) ALPHA.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

Configuration - 363

Paragraph

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

value string

Paragraph

• com.exalead.mot.components.transducer.Paragraph

• Matches a token with kind SEP_PARAGRAPH

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

364 - Configuration

Paragraph

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

Configuration - 365

Sentence

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Sentence

• com.exalead.mot.components.transducer.Sentence

• Matches a token with kind SEP_SENTENCE

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

366 - Configuration

Sentence

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Configuration - 367

Dash

Dash

• com.exalead.mot.components.transducer.Dash

• Matches a token with kind SEP_DASH

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

368 - Configuration

Punct

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Punct

• com.exalead.mot.components.transducer.Punct

• Matches a token with kind SEP_PUNCT

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

Configuration - 369

Punct

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

370 - Configuration

Digits

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Digits

• com.exalead.mot.components.transducer.Digits

• Matches a token with kind NUMBER

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

Configuration - 371

Alnum

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Alnum

• com.exalead.mot.components.transducer.Alnum

• Matches a token made only of letters or digits (case-insensitive)

372 - Configuration

Alnum

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

Configuration - 373

Alpha

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Alpha

• com.exalead.mot.components.transducer.Alpha

• Matches a token made only of letters (case-insensitive)

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

374 - Configuration

Alpha

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

Configuration - 375

TokenLanguage

TokenLanguage

• com.exalead.mot.components.transducer.TokenLanguage

• Matches a token with specified language

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

376 - Configuration

AnyToken

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

value string

AnyToken

• com.exalead.mot.components.transducer.AnyToken

• Matches any word.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

Configuration - 377

AnyToken

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

378 - Configuration

TokenRegexp

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

TokenRegexp

• com.exalead.mot.components.transducer.TokenRegexp

• Matches a regexp.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

Configuration - 379

TokenRegexp

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

value string Regular expression to recognize.

level enum(exact,

lowercase,

normalized)

exact Level of the regular expression.
For example, a regexp with

380 - Configuration

Word

Name Type Default value Description
level=lowercase matches case-
insensitively.

Word

• com.exalead.mot.components.transducer.Word

• Matches a word.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

Configuration - 381

Annotation

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

value string Word to recognize.

level enum(exact,

lowercase,

normalized)

normalized Level of the word. For example, a
word with level=lowercase matches
case-insensitively.

Annotation

• com.exalead.mot.components.transducer.Annotation

• Matches an annotation kind and possibly its display form if specified.

• Parent elements:

382 - Configuration

Annotation

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

Configuration - 383

Ctx

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

kind string

value string

useDisplayForm boolean True

required boolean

error enum(ignore,

warn, error)

warn

Ctx

• com.exalead.mot.components.transducer.Ctx

• backward compatibility classes

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

384 - Configuration

Ctx

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

kind string

Configuration - 385

AnnotationRegexp

Name Type Default value Description

value string

useDisplayForm boolean True

required boolean

error enum(ignore,

warn, error)

warn

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

AnnotationRegexp

• com.exalead.mot.components.transducer.AnnotationRegexp

• Matches an annotation with specified kind and whose display form matches the specified
regular expression. If defined, "capture" contains an output format a la sed used for generating
the final match annotation

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

386 - Configuration

AnnotationRegexp

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

anchor boolean

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

Configuration - 387

TRule

Name Type Default value Description

modifiedAt nullablelong

kind string Annotation kind that the annotation
regular expression is tested against.

value string Regular expression of the
annotation.

level enum(exact,

lowercase,

normalized)

exact Matching level, can be normalized,
lowercase, or exact.

useDisplayForm boolean True Activate this option to use the
display form of this annotation to
build the final output annotation.

required boolean

error enum(ignore,

warn, error)

warn

capture string Output format in sed format used to
generate the final match annotation

TRule

• com.exalead.mot.components.transducer.TRule

• A transducer rule

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

388 - Configuration

TRule

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

Configuration - 389

MatchAnnotation

Name Type Default value Description

modifiedBy string

modifiedAt nullablelong

kind string

value string

trustLevel int 100

• Nested elements:

Name Type Description

MatchAnnotation com.exalead.mot.components.transducer.MatchAnnotation*

RulePattern com.exalead.mot.components.transducer.RulePattern

MatchAnnotation

• com.exalead.mot.components.transducer.MatchAnnotation

• Match generation An annotation kind and a format

• Parent elements:

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

• Attributes:

Name Type Default value Description

kind string

value string %0

trustLevel int -1

TInclude

• com.exalead.mot.components.transducer.TInclude

• Include an XML rules file

• Parent elements:

390 - Configuration

TInclude

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

Configuration - 391

TImport

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

filename string

TImport

• com.exalead.mot.components.transducer.TImport

• Import an XML rules file so that rules and patterns defined in it can be referenced by a
PatternRef. This is not quite equivalent to a TInclude, which contains at least a TRule. Here,
the TRule is not created.

• Parent elements:

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.And (as And)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.DisjunctivePattern (as
DisjunctivePattern)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Iter (as Iter)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Near (as Near)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

◦ com.exalead.mot.components.transducer.Nor (as Nor)

392 - Configuration

TImport

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Not (as Not)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Opt (as Opt)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Or (as Or)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Plus (as Plus)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.Seq (as Seq)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.SequentialPattern (as
SequentialPattern)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Star (as Star)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.Sub (as Sub)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRule (as TRule)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

◦ com.exalead.mot.components.transducer.TRules (as TRules)

• Attributes:

Name Type Default value Description

priority int

name string Optional name of the pattern (used
for pattern references).

modifiedBy string

modifiedAt nullablelong

filename string

Configuration - 393

Remove

Remove

• com.exalead.linguistic.v10.Remove

• Removes the specified annotations, possibly when some condition is met

• Attributes:

Name Type Default value Description

annotation string Tag of the annotations to be
removed

ifMatchWith string Removes the annotation if the
annotated text span matches that of
this one

ifOverlapWith string Removes the annotation if it
overlaps with this one

displayFormsMustMatchboolean If ifMatchWith is TRUE, removes the
annotation only if both display forms
match

Copy

• com.exalead.linguistic.v10.Copy

• Copies a source annotation along with its display form and display kind to a target annotation.

• Attributes:

Name Type Default value Description

annotation string The source annotation to be copied

target string The target annotation

unless string Copies the source annotation unless
this annotation is present

KeepLongestLeftMost

• com.exalead.linguistic.v10.KeepLongestLeftMost

394 - Configuration

AnnotationProcessed

• When several annotations overlap, it keeps the longest (removes all others); if there are
several longest annotations, then keep the leftmost ones. For example, there are 5 tokens "tow
truck driver license requirements" and 3 annotations on "tow truck driver", "truck driver license
requirements" and "license requirements" with the same tag. It keeps the annotation on "truck
driver license requirements" and removes the other two.

• Attributes:

Name Type Default value Description

annotations string List of comma-separated
annotations to process

interTags boolean Keep the longest-leftmost among all
the tags. If FALSE, one annotation
per tag is kept.

• Nested elements:

Name Type Description

AnnotationProcessedcom.exalead.linguistic.v10.AnnotationProcessed*Alternative way
to specify the list
of annotations to
process

AnnotationProcessed

• com.exalead.linguistic.v10.AnnotationProcessed

• Alternative way to specify the list of annotations to be processed by the operation
KeepLongestLeftMost

• Parent elements:

◦ com.exalead.linguistic.v10.KeepLeftMostLongest (as
KeepLeftMostLongest)

◦ com.exalead.linguistic.v10.KeepLongestLeftMost (as
KeepLongestLeftMost)

• Attributes:

Name Type Default value Description

name string

Configuration - 395

KeepLeftMostLongest

KeepLeftMostLongest

• com.exalead.linguistic.v10.KeepLeftMostLongest

• When several annotations overlap, it keeps the leftmost (removes all others); if there are
several leftmost annotations, then keep the longest ones. For example, there are 5 tokens "tow
truck driver license requirements" and 3 annotations on "tow truck driver", "truck driver license
requirements" and "license requirements" with the same tag. It keeps the annotations on "tow
truck driver" and "license requirements".

• Attributes:

Name Type Default value Description

annotations string List of comma-separated
annotations to process

interTags boolean Keep the leftmost-longest among all
the tags. If FALSE, one annotation
per tag is kept

• Nested elements:

Name Type Description

AnnotationProcessedcom.exalead.linguistic.v10.AnnotationProcessed*Alternative way
to specify the list
of annotations to
process

KeepFirst

• com.exalead.linguistic.v10.KeepFirst

• Selects the first N occurrences or values of an annotation and remove all others

• Attributes:

Name Type Default value Description

annotation string The annotation to find

contexts string Keeps the first N annotation
occurrences/values in each of these
contexts

396 - Configuration

SelectMostFrequentValue

Name Type Default value Description

howMany int 1 How many annotation occurrences/
values are kept

what enum(occurrences,

values)

occurrences Defines what must be kept: first N
annotation 'occurrences' or 'values'.

SelectMostFrequentValue

• com.exalead.linguistic.v10.SelectMostFrequentValue

• Selects the N most frequent values of a given annotation and annotates the document with
them.

• Attributes:

Name Type Default value Description

annotation string The annotation to find

documentAnnotationstring Annotates the document with this
annotation instead of the selected
annotation

truncate boolean Keeps only one value when there
are multiple candidates

howMany int 1 How many values must be kept

SelectMostFrequentAnnotation

• com.exalead.linguistic.v10.SelectMostFrequentAnnotation

• Selects the most frequent annotation and annotates the document with it.

• Attributes:

Name Type Default value Description

annotations string Selects among these annotations

documentAnnotationstring Annotates the document with this
annotation

Configuration - 397

SelectByContexts

SelectByContexts

• com.exalead.linguistic.v10.SelectByContexts

• Selects annotations appearing in the first context of a list sorted by decreasing priority.
For example, selecting an annotation from (title, text) looks up title context and then, if the
annotation is not found, text context.

• Attributes:

Name Type Default value Description

annotation string The annotation to find

contexts string The contexts to select the
annotation from, sorted by
decreasing priority

documentAnnotationstring Annotates the document with this
annotation

firstOnly boolean Selects only the first occurrence of
the annotation

StringValue

• exa.bee.StringValue

• No documentation for this element.

• Parent elements:

◦ com.exalead.mot.components.semanticextractor.RegexpEntity (as
endTriggers)

◦ com.exalead.mot.components.semanticextractor.BooleanEntity (as
leftContexts)

◦ com.exalead.mot.components.semanticextractor.FloatingPointEntity (as
leftContexts)

◦ com.exalead.mot.components.semanticextractor.IntegerEntity (as
leftContexts)

◦ com.exalead.mot.components.semanticextractor.RangeEntity (as
leftContexts)

398 - Configuration

StringValue

◦ com.exalead.mot.components.semanticextractor.RegexpEntity (as
leftContexts)

◦ com.exalead.mot.components.semanticextractor.SimpleEntity (as
leftContexts)

◦ com.exalead.mot.components.semanticextractor.TextEntity (as
leftContexts)

◦ com.exalead.mot.components.semanticextractor.ValuedEntity (as
leftContexts)

◦ com.exalead.mot.components.semanticextractor.BooleanEntity (as
rightContexts)

◦ com.exalead.mot.components.semanticextractor.FloatingPointEntity (as
rightContexts)

◦ com.exalead.mot.components.semanticextractor.IntegerEntity (as
rightContexts)

◦ com.exalead.mot.components.semanticextractor.RangeEntity (as
rightContexts)

◦ com.exalead.mot.components.semanticextractor.TextEntity (as
rightContexts)

◦ com.exalead.mot.components.semanticextractor.ValuedEntity (as
rightContexts)

◦ com.exalead.mot.components.semanticextractor.BooleanEntity (as
triggers)

◦ com.exalead.mot.components.semanticextractor.FloatingPointEntity (as
triggers)

◦ com.exalead.mot.components.semanticextractor.IntegerEntity (as
triggers)

◦ com.exalead.mot.components.semanticextractor.RangeEntity (as
triggers)

◦ com.exalead.mot.components.semanticextractor.RegexpEntity (as
triggers)

◦ com.exalead.mot.components.semanticextractor.SimpleEntity (as
triggers)

◦ com.exalead.mot.components.semanticextractor.TextEntity (as triggers)

Configuration - 399

StringValue

◦ com.exalead.mot.components.semanticextractor.ValuedEntity (as
triggers)

◦ com.exalead.mot.components.semanticextractor.BooleanEntity (as units)

◦ com.exalead.mot.components.semanticextractor.FloatingPointEntity (as
units)

◦ com.exalead.mot.components.semanticextractor.IntegerEntity (as units)

◦ com.exalead.mot.components.semanticextractor.RangeEntity (as units)

◦ com.exalead.mot.components.semanticextractor.TextEntity (as units)

◦ com.exalead.mot.components.semanticextractor.ValuedEntity (as units)

• Attributes:

Name Type Default value Description

value string

400 - Configuration

Appendix - ELLQL Language

Appendix - ELLQL Language

ELLQL (for EXALEAD Low Level Query Language) exposes all advanced features of the
EXALEAD search and index stacks.

Internally, all UQL (for User Query Language) queries entered by users are transformed into
ELLQL. ELLQL is mostly used by custom programs to enrich user queries. In the Administration
Console, you can write ELLQL in the Search Logics > Search Logic Name > Query Template
tab. You can also directly enter ELLQL in search fields, using the eq parameter instead of the q
parameter (used for UQL queries).

ELLQL Language Features

Simple Operators

Compound Operators

ELLQL Language Features

Structure of the Language

ELLQL queries look like this:

#operator{options}(argument)

where:

• operator - specifies the type of the field on which the query is applied. For example,
operator may have one of the following values (all possible values are described afterward):
#alphanum, #num, #category, etc. operator may also represent the way fields are
compounded (#and, #near, etc.). .

• options - related to the operator. They may be written as a comma-separated list of values or
key=value. options are optional.

• argument - may be any kind of string composed of: lower/upper case letters, digits, and
underscore. The only restriction is that an argument cannot begin with a digit. For simple
queries, argument generally represents the name of the field and the value of the query.
argument may also be a query itself, and in that case, we talk of a compound operator.

Options

The following option is applicable to all ELLQL nodes:

Configuration - 401

Simple Operators

hl=0 - deactivates search result highlighting and summary for a specific node and its children if
any.

An operator operator may take as option any (key, value) pair, in the form of key=value,
where:

• key formatting is the same as for operator arguments (see above)

• and value may be a numerical value (int or float) or a string

Then, two cases may occur:

• key is a known option of operator. In that case, operator uses the (key, value) pair to
perform its action. Known options are listed afterward for each operator. While these known
options differ from one operator to another, the (slice, int) option is common to every
operator. It restricts the scope of the query to a specific slice for the current node.

• key is not known. (key, value) is then called by a node property and may be used for scoring
operations.

Simple Operators

Fields Search

Each type of field is associated with a query operator.

Alphanumeric Fields Operators

Alphanum

Syntax Options Examples

#alphanum{alphanum_options}

(field, "term")
• k=int (required) - specifies

on which field matching
mode (indexing level)
the operator is applied.
k may take any value
that is described within
the Linguistic.xml
configuration file.

Classical ones are the
following:

◦ 0 - exact indexing level,

Search the term house in the
title normalized field (k=2)

#alphanum{k=2}(title,

"house")

Search the term house in the
title normalized field (k=2),
knowing that there are only
3 documents in the corpus
containing the term house

#alphanum{k=2, nbdocs=3}

(title, "house")

402 - Configuration

Fields Search

Syntax Options Examples

◦ 1 - lowercase indexing
level,

◦ 2 - normalized indexing
level. Note: In the
Administration Console,
the default value for
every new field is 2, but
you are free to define
your own values in the
Linguistic.xml file.

• nbdocs=int - specifies
the number of documents
that contain the term.
This value is then used
to compute IDF (Inverse
Document Frequency),
which is required to calculate
the TFIDF values used for
ranking.

Note: This value is generally
automatically set when
ELLQL is generated from
UQL queries.

• source=value - used by
the debugger to specify
the node's origin. It may
be really helpful when
debugging complex ELLQL
expressions.

Anumpattern

Possible patterns:

• prefix/suffix/substring search

• missing characters search, for example, ?i?e must match bite and rime. In that case,
? is called the missing character marker.

Configuration - 403

Fields Search

• full pattern search, for example, *?i*?e must match bite, rime, resize,
linearize, but not image nor wheelie. * is the wildcard.

Syntax Options Examples

#anumpattern{options}

(field, "term")
• all the alphanum_options

• type={prefix,

suffix, substring,

missingChars,

fullPattern} - default is
fullPattern

• mcmarker=CHAR - default is
?

• wildcard=CHAR - default is
*

• missingchars

Note: pattern search is activated
for a prefix handler when
enabled at the data model level

Search all terms with substring
lot, for example, lottery,
Camelot, slotted, in the
text normalized field (k=2):

#anumpattern{k=2,type="substring"}

(text, "lot")

Search all terms with missing
chars ?i?e, for example, rime,
rite, mime, in the title
normalized field (k=2):

#anumpattern{k=2,type="missingChars"}

(title, "?i?e")

or:

#anumpattern{k=2,type="missingChars",

mcmarker="X"}(title,

"XiXe")

Numerical Fields

Num

Syntax Options Examples

#num{num_option}(field,

operator, value)

Since fields may be multivalued,
the num_option allows you
to customize the comparison
policy.

The following options are
accepted:

• any - If any value matches
the condition.

• all - If all values need to
match the condition.

• Search for documents with a
size greater than 100.

#num(document_file_size,

>, 100)

• Search for documents where
the prices field value is
contained between $2.50
and $9.99.

#num(prices, <=>,

2.5, 9.99)

404 - Configuration

Fields Search

Syntax Options Examples

• none - If no value has to
match the condition.

operator possible values:

• Comparison operators: <,
<=, >, >=, == or = (equals
to), !=

• Range operator that
requires two values: the
syntax then becomes
#num{num_options}

(field, <=>,

from_value, to_value).

• Search for documents where
one of the values of the
prices multivalued field is
equal to $5.

#num{any}(prices, ==,

5)

• Search for documents where
all the values of the prices
multivalued numerical field
are under $5.

#num{all}(prices, <=,

5)

Around

Syntax Options

#around{around_option}

(field, value)

Search for document where the
field value is around the value
argument.

• Same options as #num apply

• Additional options are
lowerBound and upperBound,
with defaults to negative infinity
and positive infinity. Only values
within these bounds can be
returned.

• The generic name option allows
you to calculate the difference,
diff, between the value and
the returned value. For example,
if #around{name=NAME}
(field, 10) returns 5, then
NAME.diff = -5.

Search any value of field around
50 ranged between 0 and 100.
The resulting diff between the
found value and 50 is stored in the
around.diff.
#around{lowerBound=0,upperBound=100,
name="around"}(field, 50)
<Hit>
[...]
 <metas>
 <Meta name="field">
 <MetaString name="value">75</MetaString>
 </Meta>
 </metas>
 <infos>
 <HitInfo key="ranking.around.diff"
value="25"/>
 <infos>
</Hit>

Configuration - 405

Fields Search

Attrnum

Syntax Use Example

#attrnum{options}(field,

operator, value)

Allows you to search
NumericalFields that are not
searchable but only retrievable
and RAM-based.

Search for a numerical field with
a value greater than 100

#attrnum(myfield, > ,

100)

#attrnum{options}

(field, <=>, from_value,

to_value)

Allows you to search for ranges
on NumericalFields; where
field is the name of numerical
field, from_value is the start
value, and to_value the end
value of the range.

Search for fields where the
prices field value is contained
between $2.50 and $9.99

#attrnum(myfield, <=>,

2.5, 9.99)

#attrnum{options}(field,

meta, operator, value)

Allows you to search
DynamicNumericalFields

that are not searchable but only
retrievable and RAM-based.

Search for documents where
the "myfield" dynamic numerical
field has a "mymeta" meta with
a value greater than 100

#attrnum(myfield,

mymeta, > , 100)

#attrnum{options}(field,

meta, <=>, from_value,

to_value)

Allows you to search
for ranges on
DynamicNumericalFields;
where field is the name of
dynamic numerical field, meta
is the name of meta to compare,
from_value is the start value,
and to_value the end value of
the range.

Search for documents where
the "myfield" dynamic numerical
field has a "mymeta" meta with
a range of values between 20
and 100

#attrnum(myfield,

mymeta, <=> , 20, 100)

Category Fields

Category

Syntax Example

#category{options}(field,

"value")

Search documents in the Top/Source/default
category:

#category(categories, "Top/Source/default")

406 - Configuration

Fields Search

Uid Fields

Uid

Syntax Use

#uid{options}(field,

"value1" "value2" "value3")

Search for documents where the Uid field value is one
of value1, value2, value3. All possible values are
listed separated with quotes.

Geographical Search

Geographical search may be applied as soon as fields of type point are stored in the index.

Distance

Syntax Use

#distance{options}

(field, lat, lng,

distance_in_meters)

Retrieve all the documents with a field describing a
position (a point) within distance_in_meters meters
from (lat, lng)

Example:

The following search area:

is expressed with:#distance(field, 1, 2, 1)

Configuration - 407

Fields Search

Within

Syntax Use

#within{options}(field,

polygon)

Search for positions stored in the field that are
contained within the polygon

Simple polygon: (lat1,lng1;
lat2, lng2; lat3, lng3, ...)

Multiple polygons: [polygon1
polygon2 ...]

When specifying more than one polygon, the search zone
is composed of subtracting zones described by polygons
polygon2, polygon3, etc. to polygon1

Important: When two polygons share a common segment,
the behavior is undefined.

Examples:

• The following search area:

is expressed with:#within(field, (0, 1; 1, 1; 1, 0; 2, 2; 1, 3; 0, 1))

• The following area:

408 - Configuration

Fields Search

is expressed with:#within(field, [(0, 1; 1, 1; 1, 0; 2, 2; 1, 3; 0, 1) (1,
2; 1, 1.5; 1.5, 1.5; 1, 2)])

• Two overlapping polygons produce a symmetric difference as illustrated with:

expressed as:#within(field, [(0, 0; 2, 0; 2, 1; 0, 2) (1, 1; 2, 1; 2, 3;
1, 3)])

Important: When two polygons share a common segment, the behavior is undefined.

Configuration - 409

Specials

Specials

• #true{options}() - returns all documents (#all in UQL becomes #true in ELLQL)

• #false{options}() - returns nothing

• #did{options}(5 10 45) - returns the specified DIDs (here 5, 10 and 45)

Delimiters

Some operators allow you to detect delimiters within a document.

• #page{options}(field) - page delimiter

• #paragraph{options}(field) - paragraph delimiter

• #sentence{options}(field) - sentence delimiter

They are mostly used with the #split operator, that is itself the expansion of the split prefix
handler.

For example, if you define a split prefix handler of type insentence, you can then enter a
query such as insentence:(texta AND textb). This query corresponds to the search of
documents where texta and textb appear within the same sentence in the text field.

This UQL query is expanded as:#split(#and(#alphanum(text, "a") #alphanum(text,
"b")), #sentence(text))

Compound Operators

All these operators hold other operators. The options of these operators, called below
internal_options, can be used, for example, for scoring purposes:

• positions.merge:

◦ KEEP - the positions of all children operators are never merged.

◦ MERGE - the positions of all children operators are merged when they are the same.

• <nodePropertyName>.policy={ADD,MAX,MIN} - specifies how the node properties of
children are merged.

• *.policy= - specifies the same policy for all node properties.

410 - Configuration

Unary Operators

Unary Operators

Syntax Use Examples

#not{internal_options}

(query)

Returns the documents that do
not match the query

Retrieve all the documents
that do not contain toto
#not(#alphanum(text,

"toto"))

#opt{internal_options}

(query)

Makes optional query parts (only
useful for ranking)

-

#autocache{internal_options}

(query)

Caches the documents returned
by query, and uses the cache
for next queries. The scoring
information associated to
each document in the cache is
discarded.

• Load all the documents in
the cache and return the
documents:

#autocache{expectedSize=LARGE}

(#category(categories,

"Top/Source/

default"))

• Use the cache:

#autocache(#category(categories,

"Top/Source/

default"))

#at(position, query) Only works on alphanum fields.

It applies query at an exact
position in the field. The position
is expressed in terms of indexed
tokens; which means that
usually this position does not
take into account spaces,
punctuation, etc.

position can be a positive
value from 0, or a negative
value (backward position, with
-1 meaning the last position).

When the position is
negative, only #alphanum of
#anumpattern can be used.

• Retrieve all the documents
beginning with toto:

#at(0, #alphanum{k=2}

(text, "toto"))

• Retrieve all the documents
ending with toto:

#at(-1,

#alphanum{k=2}(text,

"toto"))

• Retrieve all the documents
with toto as third word:

#at(2, #alphanum{k=2}

(text, "toto"))

Configuration - 411

Binary Operators

Syntax Use Examples

Important: Be careful when
using #at with a text field
since by default, several
contexts are mapped into
text (including title,
htmlcontext, etc.)

• Retrieve all the documents
with exactly one word:

toto (the same toto at
the end and the beginning
of the document):#at(0,
#at(-1,

#alphanum{k=2}(text,

"toto")))

#filter{internal_options}

("virtual_expr", query)

Returns the results of query
only if "virtual_expr" is
true.

-

Binary Operators

Syntax Use Examples

#butnot{internal_options}

(search_query,

avoid_query)

Returns all the documents
matching at least one
search_query with different
positions that avoid_query

New BUTNOT "New York" is:

#butnot(#alphanum{k=2}

(text, "New"),

#seq(#alphanum{k=2}

(text, "New")

#alphanum{k=2}(text,

"York")))

#split{internal_options}

(search_query,

separator_query)

Applies search_query,
taking care that all results
are contained in a same
separator_query (that may
be a page, a sentence, or a
paragraph)

Searching for A & B in the same
page may be written in as:

#split(#and(#alphanum{k=2}

(text, "A")

#alphanum{k=2}(text,

"B")), #page(text))

#innerjoin{internal_options}

(join_id, lead_query,

filter_query)

Inner join has a few
specific node options
(internal_options) in
addition to common options:

joinPolicy

• BITSET_JOIN - Join with a
compact bitset. Be careful,

Return the emails with foo
in the subject and a PDF in
attachment:

#innerjoin(mail,

#alphanum{k=2}

(subject, "foo"),

412 - Configuration

Binary Operators

Syntax Use Examples
its size is limited to 1GB. If
the limit is reached, users
does not get any results.
Yet, the error is reported in
the Indexing Server log as:
"Key for innerjoin is too large
for a bitset policy, unable to
execute the query.". To solve
this issue, consider changing
to SPARSESET_JOIN.

• SPARSESET_JOIN - Default
value. Join with a sparse
bitset.

• MERGE_JOIN - Compute all
matching dids at initialization.
Ranking keys are not
propagated in this mode.

<rankingKeyName>.join={JOIN_LEFT,JOIN_RIGHT,JOIN_LEFT_RIGHT}

- specifies how the ranking key
value is merged.

• JOIN_LEFT - Default
value. The ranking key is
propagated from (and only
from) left member of join
node.

• JOIN_RIGHT - For a given
join id, the ranking key is
merged from all documents
that match right member
according to the innerjoin
ranking key merge policy.

• JOIN_LEFT_RIGHT - For a
given join id, the ranking key
is merged from left member
and all documents that match
right member according to

#category(attachement_file_type,

3))

Configuration - 413

Nary Operators

Syntax Use Examples
the innerjoin ranking key
merge policy.

Nary Operators

Syntax Use Examples

#seq{internal_options}

(query1 query2 ...)

Searches for a sequence. Each
query must have its position
following the previous query

"New York" is:

#seq(#alphanum{k=2}

(text, "New")

#alphanum{k=2}(text,

"York"))

#and{internal_options}

(query1 query2 ...)

Searches for documents
matching all the queries

New York is:

#and(#alphanum{k=2}

(text, "New")

#alphanum{k=2}(text,

"York")

New and York can be at any
position in the document.

#or{internal_options}

(query1 query2 ...)

Searches for documents
matching at least one query

banana OR apple is:

#or(#alphanum{k=2}(text,

"banana") #alphanum{k=2}

(text, "apple")

#bor{internal_options}

(query1 query2 ...)

Searches for documents
matching at least one query.

To be used only for a fast OR on
many documents (no expansion,
no ranking)

banana BOR apple is:

#bor(#alphanum{k=2}

(text, "banana")

#alphanum{k=2}(text,

"apple")

#fuzzyand{fuzzyand_option,

internal_options}(query1

query2 ...)

Searches for documents
matching at least X
queries, where X is
determined according to the
fuzzyand_option.

The score is adjusted according
to the number of matching
queries.

-

414 - Configuration

Proximity Operators

Syntax Use Examples

fuzzyand_option can be:

• either maxFailure=X which
means that up to X queries
can fail,

• or minSuccess=X means
that at least X queries are
expected to succeed.

#consecutive{internal_options}

(query1 query2 ...)

Executes the queries in order
(query1, then query2, etc.) and
acts as an OR.

However, when a timeout
occurs, the first queries are
more likely to have been fully
completed than the last queries.

-

Proximity Operators

Syntax Use

#prox{internal_options}

(query1 minDistance12

maxDistance12

query2 minDistance23

maxDistance23 ...

maxDistance(N-1)N queryN)

Each position of query i must be between
minDistance(i-1)i and maxDistance(i-1)i
positions from the query (i-1)

minDistance and maxDistance are signed, which
enables several matching strategies for #prox(A
minDistance maxDistance B):

• minDistance>0, maxDistance>0 - B is between
minDistance and maxDistance positions after A.

• minDistance=maxDistance=distance>0 - B is
exactly at distance positions after A. This can also be
written in a more concise way as #prox(A distance
B).

• minDistance<0, maxDistance<0 - B is between
minDistance and maxDistance positions before A.

• minDistance=maxDistance=distance<0 - B is
exactly at distance positions before A. This can also be

Configuration - 415

Proximity Operators

Syntax Use
written in a more concise way as #prox(A distance
B).

• minDistance<0, maxDistance>0 - B is near A.

If all min (resp. max) distances are the same, the operator
can be written in a more concise way, by specifying the
distance before all query nodes:

#prox{internal_options}(minDistance

maxDistance, query1 query2 ...)

These operators can use an optional sameposok option to
indicate that a distance of 0 between children matches.

416 - Configuration

Appendix - Search API Parameters

Appendix - Search API Parameters

This page lists all parameters that can be used:

• in the commands of the Exalead CloudView Search API

• directly as parameters to the HTTP mount points, when using directly the HTTP REST API

• from the Search Clients (see SearchAPIClient)

Note: The .NET clients handle many of the Search API commands by the built-in properties.
Others can be specified using custom parameters.

For reference documentation, see the related API javadoc and .NET reference documentation
delivered in the SDK. For programmer documentation, see the Exalead CloudView Programmer's
Guide.

Common notations:

• Many Search API parameters take a "KV map" as an argument. A KV map is a list of key
values, written in the form: key:val,key2:val2.

• For each "Boolean" argument, the following values are accepted (case-insensitive): 0, 1, true,
false, yes, no, disabled, enabled.

The search Command

This Search API command performs searches on the Exalead CloudView index. It is available at
http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/search. You can use it from
the Java SearchClient and the .NET SearchClient classes.

Global Parameters

sl or logic

• String, monovalued.

• Must reference a valid logic, defined in the search logics list.

Example: print the query ast and not the ellql

q=job&sl=sl0
q=job&logic=sl0

st or target

Configuration - 417

Global Parameters

• String, monovalued.

• Must reference a valid search target

Example: print the query ast and not the ellql

q=job&st=st0
q=job&target=st0

c or context

The context contains the encoded version of previous arguments to chain queries.

d or debug

Turns on various debugging flags for this query.

Value is a comma-separated list of the following parameters:

Parameter Description

query Logs query parsing and execution info

synthesis Logs synthesis info

ph Logs partial hit info (for example, scoring/collapsing keys)

fh Logs full hit info (metas, hit categories)

ast Puts the query ast in answer info

ellql Puts the ellql in answer info (enabled by default)

context Puts the context in answer info (enabled by default)

executor Puts the executor in answer info. When a query execution requires
several executions (disjunctive facets refinements, spell) they are all
displayed.

all All of the above

qp:int queryprocessing debug level (0 to 3=all)

Note: You can disable flags using the - prefix.

Example: print the query ast and not the ellql

d=ast,-ellql

Example: print everything except the logs full hit info (fh)

d=all,-fh

418 - Configuration

Global Parameters

Example: print everything except the context (context)

d=all,-context

hit_infos; hit_info, hi

Puts additional info in the hit to debug the ranking. The following info is supported:

Parameter Description

ast Computes the index AST for each hit.

rankings Displays the ranking keys for each hit.

all All of the above

Note: You can disable flags using "-" prefix.

Example: search for word "vacation" and enable ranking info for ast. You can cumulate the
options.

q=vacation&hi=ast
q=vacation&hi=ast,rankings

applicationId

In V6.x, you can create multiple applications using the Mashup Builder. This parameter is the
Mashup application ID passed by the API client.

Important: It is also required by the Business Console, since the Business Logic is directly
embedded as a prelinguistic Business Processor into the Search Server.

To trigger the Business Processor at runtime, you have to pass the applicationId parameter
and optionally, the stagingMode parameter:

Parameter Description

applicationId Represents your application identifier (for example, "default")

stagingMode Accepts two values:

• true - to use the application configuration and compile the
Business Console resources at query time (so you do not have to
apply your configuration).

• false - to use the application configuration and precompiled
Business Console resources.

Examples:

Configuration - 419

Sorting and Grouping Parameters

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/search?

q=test&applicationId=default&stagingMode=false - The Business Processor uses
the "default" application configuration and precompiled resources.

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/search?

q=test&applicationId=default&stagingMode=true - The Business Processor uses
the "default" application configuration and compile resources at query-time.

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/search?

q=test&applicationId=default - The Business Processor will use the "default"
application configuration and precompiled resources.

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/search?q=test - The
Business Processor is not triggered.

Checkpoints

The list of checkpoint values to retrieve on each slice, stored in the answer's slice info.

Value is a comma-separated list of checkpoint names.

Origin

This parameter has no impact on query treatment. However, it is logged in the search.csv file
and can help you identify the origin of the query, when you analyze user queries using the search-
reporting reporter with a CSV publisher. It is useful for better traceability and debugging.

Sorting and Grouping Parameters

s or sort

Sort is declared through several parameters:

Parameter Description

sort=STRING Comma-separated list of asc([sort id]) or desc([sort id]),
that defines the order of the hits.

s=STRING Same as sort.

sort.[sort

id].expr=STRING

An existing index field, an existing virtual field or a symbolic name,
used to compare hits. Set to [sort id] by default.

sort.[sort

id].lsb=INTEGER

Position of the least significant within [0,63] to be considered. For
integer field only. 0 by default.

420 - Configuration

Sorting and Grouping Parameters

Parameter Description

sort.[sort

id].msb=INTEGER

Position of the most significant within [lsb,63] to be considered. For
integer field only. 63 by default.

sort.[sort

id].limit=INTEGER

Maximum number of byte used to compare character string. 0 means
that the strings are compared till the end. 0 by default.

sort.[sort

id].min=INTEGER

If the field is an integer, only keeps hits for which the expr is at least
INT.

Example: sort alphabetically by region and then by price

s=asc(document_region),desc(document_price)

Example: sort alphabetically by increasing price, decreasing score and then by increasing file size.
'myprice' and 'myscore' are '[sort id]' [sort id] can not contain any space, or comma, or closing
parenthesis, nor point. If such characters are required, use the expanded syntax.

s=asc(myprice),desc(myscore),asc(document_file_size)
s.myprice.expr=price-discount
s.myscore.expr=@term.score*@proximity*#round(document_double,4)

Example: sort by color index defined on 4 bits in the index field document_bitfield.

s=asc(color)
s.color.expr=document_bitfield
s.color.lsb=12
s.color.msb=15

is the same as: s=asc(document_bitfield[12:15])

The following syntax is also supported for backward compatibility. It allows only mono field sort.

• s=field - Sort descending on field.

• s=-field - Sort ascending on field.

• s=field[lsb,msb] - Sort descending on field, restricted to a given bitrange.

• s=-field[lsb,msb] - Sort ascending on field, restricted to a given bitrange.

Group

Theses parameters control the GroupBy feature.

Parameter Description

group=[group

id], ...

Comma-separated list of one or more [group id]. Each element
stands for an independent group passed on the result set.

Configuration - 421

Sorting and Grouping Parameters

Parameter Description

group.[group

id].by=[criterion

id], ...

Comma-separated list of one or more field names or expressions used
to group hits. Set to [group id] by default.

group.[group

id].by.[criterion

id].expr=STRING

Field name or expression used to group hits. Set to [criterion id]
by default.

group.[group

id].by.[criterion

id].lsb=INTEGER

Position of the least significant within [0,63] to be considered. For
integer field only. 0 by default.

group.[group

id].by.[criterion

id].msb=INTEGER

Position of the most significant within [lsb,63] to be considered. For
integer field only. 63 by default.

group.[group

id].by.[criterion

id].limit=INTEGER

Maximum number of byte used to compare character string. 0 means
that the strings are compared till the end. 0 by default.

group.[group

id].aggregation=[aggr

id],...

Comma-separated list of one or more aggregation names.

group.[group

id].aggregation.

[aggr

id].function=POLICY

Score actions that combine the ranking value for a group. POLICY is
one of SUM, MAX, MIN, AVG, STDDEV, CONCAT. MAX by default.

group.[group

id].aggregation.

[aggr

id].expr=STRING

Field name or expression that contain the data to be aggregated. Set
to [aggr id] by default, you can omit it when expr is equal to the
[aggr id]

group.[group

id].aggregation.

[aggr

id].separator=STRING

Sequence on characters placed in-between the concatenated values.

group.[group

id].aggregation.

[aggr

id].aggregationField=STRING

Name of the field or expression where the aggregation result is written.
It can then be used to be displayed (combined with add_hit_meta) or
to perform sort (combined with sort) for example.

422 - Configuration

Sorting and Grouping Parameters

Parameter Description

group.[group

id].topn=INTEGER

Number of hits to keep for each group.

group.[group

id].sort=STRING

Defines the order of hits within each group to keep the top n best. See
sort=.

group.[group

id].s=STRING

Same as group.[group id].sort. See sort=.

group.[group

id].sort.[sort

criterion id].*

Sort criterion parameters. See sort=.

By default, a group pass has a single group dimension defined with expr set to [group
identifier]. [group id] and [criterion id] can neither contain comma, nor point. If
such characters are required in the expression, use the expanded syntax.

Example: Keep one document for each state. The best one is selected according to the ranking
sort, the others are discarded.

group=document_region

Example: Keep the five best documents for each state.

group=document_region
group.document_region.topn=5

Example: Same as previous, but uses a label to identify the group rather than the field name.

group=byRegion
group.byRegion.by=document_state
group.byRegion.topn=5

Example: Keep the best noted hit per region, sort regions per hit count, and display the count. This
example relies on the constant virtual expression 1.

group=document_region
group.document_region.aggregation=1
group.document_region.aggregation.1.function=SUM
group.document_region.sort=desc(document_note)
sort=desc(1)
add_hit_meta=1

is the same as:

add_virtual_field=count:1
group=document_region
group.document_region.aggregation=count
group.document_region.aggregation.count.function=SUM
group.document_region.sort=desc(document_note)

Configuration - 423

Sorting and Grouping Parameters

sort=desc(count)
add_hit_meta=count

Example: Keep no more than five hit per region, and no more that eight times the same product.
This configuration creates two independent collapsing passes. The result set may contain fewer
than 5 hits per region because document_product_name removes hits of the groups made by
document_region pass.

group=document_region,document_product_name
group.document_region.topn=5
group.document_product_name.topn=8

Example: Keep one record for each firstname, lastname pair, select most recently updated hit,
and get the average note in document_note and the total expense in total_expense. Finally
results are sorted alphabetically.

group=byPerson
group.byPerson.by=document_firstname,document_lastname
group.byPerson.s=desc(document_lastupdatedate)
group.byPerson.aggregation=document_note,document_price
group.byPerson.aggregation.document_note.function=AVG
group.byPerson.aggregation.document_price.function=SUM
group.byPerson.aggregation.document_price.aggregationField=total_expense
sort=asc(document_lastname),asc(document_fisrtname)
add_hit_meta=document_note
add_hit_meta=total_expense

Collapsing (DEPRECATED)

collapsing parameters are supported for backward compatibility. Prefer group parameters.

Parameter Description

collapsing Comma-separated list of group identifiers. Each element stands for an
independent collapsing passed on the result set.

For each group, the following collapsing.[group
identifier].* parameters are available

collapsing.[group

identifier].expr=STRING

Field name or expression used to group hits. Set to [group
identifier] by default.

collapsing.[group

identifier].lsb=INTEGER

Position of the least significant within [0,63] to be considered. For
integer field only. 0 by default.

collapsing.[group

identifier].msb=INTEGER

Position of the most significant within [lsb,63] to be considered. For
integer field only. 63 by default.

424 - Configuration

User Query

Parameter Description

collapsing.[group

identifier].limit=INTEGER

Maximum number of byte used to compare character strings. 0 means
that the strings are compared till the end. 0 by default.

collapsing.[group

identifier].nbhits=INTEGER

Number of hits to keep for each group.

collapsing.[group

identifier].action.

[virtual

expression]=POLICY

Score actions that combine the ranking values for a group. POLICY
can be add, max, min or best. For each grouping key, there can be
one action for each ranking element. best by default.

Example: Keep one document for each state. The best one is selected according to the ranking
sort, the others are discarded.

collapsing=document_region

Example: Keep the five best documents for each state.

collapsing=document_region
collapsing.document_region.nbhits=5

Example: Same as previous but uses a label to identify the group rather than the field name.

collapsing=byRegion
collapsing.byRegion.expr=document_state
collapsing.byRegion.nbhits=5

Example: Keep one hit per region, sort regions per hit count, and display the count. This example
relies on the constant virtual expression 1.

collapsing=document_region
collapsing.document_region.action.1=add
sort=desc(1)
add_hit_meta=1

Example: Keep no more than five hits per region, and no more that eight times the same product.
This configuration creates two independent collapsing passes. The result set may contain fewer
than 5 hits per region because document_product_name remove hits of the groups made by
document_region pass.

collapsing=document_region,document_product_name
collapsing.document_region.nbhits=5
collapsing.document_product_name.nbhits=8

User Query

q or Query

Configuration - 425

User Query

• string in UQL format

• Parameter name can be in the form q.X to define a named query.

Example:

q=olympic games
query=olympic games

eq or ellql_query

• string in ELLQL format

• Parameter name can be in the form eq.X to define a named query.

Example: search for olympic games in text field

eq=#alphanum(text, "olympic games")

qt or query_template

• String, in the form of an ELLQL tree, defining how to combine the named queries

• Default value: #and(#query(_default_) #query(restriction) #query(security)
#query(refine))

• If a named query does not exist, it is replaced by a !NoOp() node and therefore ignored.

Security, enforce_security

• Adds a security token, multivalued.

• Used to increase the auto-built disjunction in the "security" named query.

• By default, security tokens generate category lookups on the "security" field.

• enforce_security=true|false globally enables or disables security.

Example: search for word "secured" in text field with security enabled and security token provided

q=secured&enforce_security=true&security=unix:user:10125

l or lang

• string, monovalued

• The global query ISO language.

• This parameter does not restrict searches to documents in this language. It only controls the
language used for computing linguistic expansions, spell checking, and summarization.

Example: search for word "vacation" in text field in English language

q=vacation&l=en

426 - Configuration

UQL Interpretation

r or refine

• Adds a refinement.

• The combination of refines which creates a named query called "refines".

Example: search for word "vacation" in text field and refine on source category "corpus"

q=vacation&r=f/source/corpus

cr or cancel_refine

Cancels a refinement completely.

Example: search for word "vacation" in text field, refine on source category "corpus" and cancel
this refine

q=vacation&r=f/source/corpus&cr=f/source/corpus

zr or zap_refine

Removes a refinement and refines on the father, if applicable. For example, if we have refinement
on "Top/MyPath/A/B/C", zapping this refinement replaces it with a refinement on "Top/MyPath/A/B"

Example: search for word "vacation" in text field, refine on source category "corpus" and zap this
refine.

q=vacation&r=f/source/corpus&zr=f/source/corpus/english

handle_unknown_refine_as_false

If true, when a r=f/unknownfacet/refine is specified, returns 0 results rather than an error.
Default: false

UQL Interpretation

dp or default_prefix

Sets the default prefix handler. The default value is the one specified in the search
logic. Can be restricted to a particular named query using dp.NAMED_QUERY_NAME or
default_prefix.NAMED_QUERY_NAME.

Example: search for word "vacation" and set default prefix handler to "title", so "vacation" is
searched in the title field.

q=vacation&dp=title

qec,query_expansion_config

Configuration - 427

Limits Parameters

Sets the QueryExpansionConfig for a given prefix.

The argument name can be specified as:

Parameter Description

qec=SPEC Sets the QEC of the default prefix

qec.PREFIX=SPEC Sets the QEC on a given prefix

qec.ALL=SPEC Sets the QEC on all semantic prefixes

q.QUERY.qec=SPEC Sets the QEC on a named query

q.QUERY.qec.PREFIX=SPECSets the QEC on a given prefix only on a named query

The argument value (SPEC) is specified as a QEC specification.

Note: Specifications are cumulative.

Examples:

• name=spellslike spec=phonetic

• name=text spec=synonyms1

• name=spells2 spec=phonetic{m=3}

• text:spellslike:foo will do phonetic + synonyms1

• text:spellslike:spell2:foo will do phonetic{m=3} + synonyms1

pal or patterns_all_languages

Sets whether pattern expansions are performed in all languages (Boolean parameter).

Limits Parameters

Limits

Defines search limits. This parameter is specified as a KV Map.

The basic keys are:

• max_fetched_hits

• max_fetched_hits_per_slice

• max_query_time

• max_total_time

• hits_sampling

428 - Configuration

Hit Meta Parameters

Advanced keys are:

• max_kept_hits

• main_heap_flush_interval

• slice_heap_flush_interval

• interrupt_grace_delay

• full_grace_delay

Detailed documentation of these parameters can be found in SearchLogic / LimitsConfig in XML
Configuration Reference

Example: Override timeout and limits

limits=max_total_time:0&limits=max_query_time:n&limits=max_fetched_hits_per_slice:0

Timeout

Shortcut for the limits parameter. When you want to set a timeout, unlike the max_total_time
parameter, the timeout=X parameter also sets the value of max_query_time parameter.

• timeout=INT - Sets the global timeout. Query timeout is 75% of the global value.

• timeout=INT,INT - Sets the query and global timeouts.

nhits

Shortcut for limits=max_kept_hits:INT

hf or full_hits,nresults

Number of full hits. hf=0 disables full hits fetch.

b or start

First full hit index. For example, to search on the:

• first page: b=0&hf=10

• second page: b=10&hf=10

Hit Meta Parameters

use_logic_hit_metas

• true/false - (Optional) Removes all metas defined in the search logic. Default is true.

Configuration - 429

Hit Meta Parameters

• metaname1,metaname2,metaname3 - Keeps only this list of metas. Be careful they must
exist in search logic unless allow_unknown_hit_meta is true.

allow_unknown_hit_meta

Allows you to set an unknown meta in the list provided in use_logic_hit_metas , which is
silently discarded. Default is false.

add_hit_meta

Add a new hit meta to the query result. Use multiple add_hit_meta clauses to add multiple
metas. The value is a list of key:value separated by commas:

key:value Description

name:string The name of the meta

index_field:stringName of the index field used to retrieve the meta value from, when different
from the meta name. Default is name.

multi_field:stringName of the index multiple fields (a.k.a. csv field) used to retrieve the values.

dynamic_field:stringName of the index dynamic field used to retrieve the values.

context_name:stringFor dynamic_field use only, specify the context to extract from the dynamic
field. If empty, it is assumed that context_name has name value

highlight:booleanWhen true, the meta value is highlighted in the summary. false by default.

summarize:booleanfalse by default.

select_values:booleanThis parameter only works for value and alphanum fields.

It allows you to configure the number of values displayed for metas in hit
content. This is typically useful to restrict the number of values retrieved from
multivalued fields when you do not want to clutter hit content with too many
values for a given meta.

You can specify a min and a max values to this operation with the
min_values and max_values attributes. For example, if a multivalued
foo field has 10 values, 5 of which matching the query, you can display N of
these values in a new bar meta by adding the following Search API HTTP
parameters:
add_hit_meta=name:bar,index_field:foo,select_values:true,max_values:N

This operation uses the query to determine whether a given value
is a match or not, you therefore have to add another parameter like

430 - Configuration

Hit Meta Parameters

key:value Description
<property_name>:<value_to_match> to your query to select only the
values matching value_to_match for the property_name meta.

Note: If the property has no value matching value_to_match, you lose a
search result.

Note: index_field, multi_field, dynamic_field are exclusive. By default the meta value
is extracted from an index_field with the same name as the meta. Dynamic fields, and multi
fields contain multiple keys and values, the values matching the meta name are returned.

There is a compact syntax for add_hit_meta that supports only index_fields and
highlighting:

• name - Name of the index field

• name,hl - Name of the index field, highlight:Boolean

Example: Simplified syntax

add_hit_meta=document_field_name,hl

is the same as: add_hit_meta=index_field:document_field_name,highlight:true

Example: Extracts color and value from the dynamic property named
document_dynamic_field.

add_hit_meta=dynamic_field:document_dynamic_field,name:color&
add_hit_meta=dynamic_field:document_dynamic_field,name:value

Example: You could also extract color from the dynamic property named
document_dynamic_field and output its value in meta named property using a virtual
expression:

add_hit_meta=dynamic_field:document_dynamic_field,name:property,context_name:color

To use a virtual expression in a hit meta:

• hit_meta.name.expr=expr - where name can contain any character, and expr is a virtual
expression.

Add meta specific operation:

• First, you have to define the type of your operation, using the following syntax:
(add_)hit_meta.META_NAME.operation.OPERATION_ID.type

• Then, you can associate properties to a given operation:
(add_)hit_meta.META_NAME.operation.OPERATION_ID.property.OPERATION_PROPERTY

The following tables list available properties associated by type:

Configuration - 431

Hit Meta Parameters

Type Properties

custom • class_id:string - the fully-qualified name of the class
performing the operation

• YOUR_KEY:string - a KV passed to your operation

date_format output_format:string - default is %m/%d/%Y

highlight • facet_ids:string

• extra_prefix_handlers:string

printf output_format:string

snippet Makes a single value of a meta shorter when at least one of the
meta's values matches. The typical use case for snippet is long,
mono-valued, text metas. For short, multi-valued string metas, use
select_values.

This operation uses the query to determine whether a given value
is a match or not, you therefore have to add another parameter like
<property_name>:<value_to_match> to your query to select only
the values matching value_to_match for the property_name meta.

Note: If the property has no value matching value_to_match, you
lose a search result.

• min_length:int - default is 1

• max_length:int - default is 150

• max_sentence_segment_length:int - default is 150

• max_sentence_segments:int - default is 3

• split_on_sentence:boolean - default is true

• remove_duplicate_segments:boolean - default is false

• if_meta:string - is a fallback meta if one of the
if_metas_match:string meta matches the query. When both
parameters are used, if a match is found, the summary is filled with
the if_Meta value.

• if_metas_match:string - allows you to specify a comma-
separated list of metas to test against the user query

• highlight_facet_ids:string

• highlight_extra_prefix_handlers:string

432 - Configuration

Hit Meta Parameters

Type Properties

standard_decoding • encoding:string - accepted values are url or idna

time_format • output_format:string - default is %m/%d/%Y %H:%M:%S

truncate • max_length:int

• strict:boolean - default is false

Example: Adds a meta hello from the field document_polite with a truncate processor named
truncate_hello with max_length=10, strict=true

add_hit_meta=name:hello,index_field:document_polite&
hit_meta.hello.operation.truncate_hello.type=truncate&
hit_meta.hello.operation.truncate_hello.property.max_length=10&
hit_meta.hello.operation.truncate_hello.property.strict=true

add_hit_metas

Extract all values from a multivalued field. It applies to multi fields (a.k.a. csv fields) and dynamic
fields. The value is a key:value list separated by comma.

For dynamic fields only, you can also:

• Select a subset of contexts if you specify match rules (available rules: "exact", "prefix", "suffix",
"substring"). You have to use them as key, the associated value being the pattern you are
looking for.

Note: You can associate several rules. In this case, the hit meta is displayed if its name
matches at least one rule.

• Specify the name of the meta that receives all the content of the dynamic field. If not set, for
each pair key:value stored in the field, a meta named as the key is created.

Parameter Description

multi_field:string Name of the index field used to retrieve the meta
names and values. Used by default.

dynamic_field:string[,ruleA:pattern,ruleB:pattern,ruleC:pattern]

[,name:string]

Name of the index field used to retrieve the meta
names and values, optional match rules, optional
output meta name.

Simplified syntax when the type of field is not specified multi_field is assumed.

Example: simple syntax

add_hit_metas=document_csv_field

Configuration - 433

Faceting Parameters

is the same as: add_hit_metas=multi_field:document_csv_field

Example: dynamic field (displays all contexts)

add_hit_metas=dynamic_field:document_dynamic_field

Example: dynamic field with exact match rules (displays toto_first and toto_second but not
toto_third)

add_hit_metas=dynamic_field:document_dynamic_field,exact:toto_first,exact:toto_second

Example: dynamic field with prefix rules (displays toto_first and toto_second but not
titi_first)

add_hit_metas=dynamic_field:document_dynamic_field,prefix:toto_

Example: dynamic field with name (if dyn_[first:value1 first:value1] and
dyn_[second:value2 second:value2] are stored, displays metagroup:value1,value2)

add_hit_metas=dynamic_field:document_dynamic_field,prefix:dyn_,name:metagroup

remove_hit_meta

In the search logic, metas are identified by their names in the HitConfig object. When you
remove a meta, this removes all sources and all processors attached to this meta. Value = meta
name

add_highlight

Highlights an existing meta. Value = meta name

add_summary

Summarizes an existing meta. Value = meta name

hit_meta_order

Comma-separated list specifying in which order to display metas. Applicable only to CSV output.

All metas not present in the list are displayed after the metas present in the list.

Note: The following metas are not affected and are always displayed first, in the following order:
did, url, buildGroup, source, slice, score, mask, sort

Faceting Parameters

Synthesis

• enabled/disabled

434 - Configuration

Faceting Parameters

• Defaults to search logic config value.

synthesis_hits

• Number of hits used for category synthesis.

• Defaults to the value in the search logic.

use_logic_facets

Specifies the search logic facets to use and disables all other facets. For the specified facets, the
configuration is read in the search logic.

• true - keeps all (default value)

• false - removes all

• facet_id1,facet_id2,...,facet_idN - keeps only this list of facets

remove_facet

One argument: facet_id.

f.* or facet.*

Creates a facet. Facets are specified as multiple parameters, like facet.FACET_ID.key=value
where FACET_ID is the facet id (_a-zA-Z0-9).

Keys for ALL facets

Key Description

type Specifies the facet type (default is category), which can be:

• category (aka "cat")

• value

• date

• dyndate

• num_explicit (Numerical explicit ranges)

• num_fixed (Numerical fixed ranges)

• num_dynamic (Numerical dynamic ranges)

• geo

• autotile

• multi

Configuration - 435

Faceting Parameters

Key Description

• 2D or matrix

• enum

min_docs:long Min number of docs that have the facet value (default is 1)

max_elements:uint Max number of categories (default is 0=unlimited)

max_per_slice Specifies the max number of different facets returned by a single slice.

in_hits:boolean Default is true

in_synthesis:booleanDefault is true

sort Specifies the sorting function (default is count), which can be:

• aggregation - Sorts the categories using the aggregation function
specified with the sort_agg_fun: string key (see below).
Default sorting direction is descending.

• alphanum - Sorts the categories lexicographically. The category
path is used here, not the title. Default sorting direction is
ascending.

• count - Sorts the categories by decreasing order, with the number
of documents matching the query and having this facet.

• date - Sorts the categories by:

◦ Default with decreasing year, increasing month, increasing day

◦ Reverse (with -date) with increasing year, decreasing month,
decreasing day

• explicit - Sorts the categories using an explicit order. Use a
comma-separated list of values.

• Lat - Sorts the categories by latitude, using the average of points.

• Lng - Sorts the categories by longitude, using the average of points.

• Num - Tries to parse the category path as an integer, and sorts
decreasingly. If the category is prefixed by a number it parses
the prefix. In case of failure, it fallbacks to lexicographical sorting.
Default sorting direction is ascending.

• range - If the categories are ranges in the form [a;b], it sorts the
categories per increasing midrange value. Default sorting direction
is ascending.

436 - Configuration

Faceting Parameters

Key Description

• relevancy - Sorts the categories by decreasing relevance.
Relevance is defined by taking into account both the number of
documents matching the query and having this facet, and the total
number of documents having the facet. The idea is to use a method
of ponderation similar to the classical TF-IDF.

To reverse the sorting order, prefix the sorting function with -, for
example, -aggregation.

sort_agg_fun:

string

Sort aggregation function id. (requires sort=aggregation)

explicit_sort_order_values:

string

Comma-separated list of values defining the explicit sort order.

Note: You also need to configure properly sort parameter to use this
feature.

implem Implementation must be cpu, mem or auto. (default is auto)

refinement_policy:stringRefinement policy exclusive, disjunctive or norefine. (default
is exclusive)

Keys for category facets

Key Description

form:string exact/lowercase/normalized (default is normalized)

root:string Required

field:string Category field (Required)

max_depth:uint Max depth from refine (default is 0=unlimited)

max_depth_from_root:uintDefault 0=unlimited

max_per_level:uint Default 100

Example: Standard facet with aggregation - Use this for the default Exalead CloudView index
schema, which includes a categories field.

f.common_facet.type=category
f.common_facet.root=Top/ClassProperties/facetmut3
f.common_facet.field=categories
f.common_facet.aggr.total=SUM(doc_int1)

Configuration - 437

Faceting Parameters

Example: Dedicated facet with aggregation - Use this if you have added another category type
field (in this case, stdf3) to your index schema.

f.stdf3.type=category
f.stdf3.root=Top
f.stdf3.field=stdf3
f.stdf3.aggr.total=SUM(doc_int1)

Keys for value facets

Key Description

vroot: string (Required)

field (Required) the value field to use.

Example:

f.valf3.type=value
f.valf3.vroot=Top/
f.valf3.field=valf3
f.valf3.aggr.total=SUM(doc_int1)
f.cod_ente.type=value
f.cod_ente.vroot=Top/
f.cod_ente.field=cod_ente
f.cod_ente.aggr.total=SUM(anno_ruolo)

Keys for optimized enum facets

Key Description

vroot:string (Required)

enum_facet_[if:string

if:string]

(Required) enum facet identifier

Keys for date facets

Key Description

vroot:string (Required)

expr:string (Required)

start:string CONSTANT virtual expression that evaluates to the time when the
synthesis starts

end:string CONSTANT virtual expression that evaluates to the time when the
synthesis ends

before_start:bool Creates a virtual category for all dates before start (default is false)

438 - Configuration

Faceting Parameters

Key Description

after_end:bool Creates a virtual category for all dates after end (default is false)

year:bool Creates a virtual category for each (default is true)

year_desc:bool Defines sort order for year (default is true)

month:bool Creates a virtual category for each month (default is true)

month_desc:bool Defines sort order for month (default is false)

week:bool Creates a virtual category for each week (default is false)

week_desc:bool Defines sort order for week (default is false)

day:bool Creates a virtual category for each day (default is true)

day_desc:bool Defines sort order for day (default is false)

hh:bool Creates a virtual category for each hour (default is false)

hh_desc:bool Defines sort order for hour (default is false)

mm:bool Creates a virtual category for each minute (default is false)

mm_desc:bool Defines sort order for minute (default is false)

ss:bool Creates a virtual category for each second (default is false)

ss_desc:bool Defines sort order for second (default is false)

max_depth:int Default is 0

max_depth_from_root:intDefault is 0

Keys for dynamic date facets

Key Description

vroot:string (Required)

expr:string (Required)

missing_intervals:booleanGenerates the missing intervals ensuring the dates are contiguous

year_fmt:string Defines year-based generated category format

quarter_fmt:string Defines quarter-based generated category format

month_fmt:string Defines month-based generated category format

week_fmt:string Defines week-based generated category format

Configuration - 439

Faceting Parameters

Key Description

day_fmt:string Defines day-based generated category format

hour_fmt:string Defines hour-based generated category format

min_fmt:string Defines minute-based generated category format

sec_fmt:string Defines second-based generated category format

enable_year:boolean Enables the year level

enable_quarter:booleanEnables the quarter level

enable_month:booleanEnables the month level

enable_week:boolean Enables the week level

enable_day:boolean Enables the day level

enable_hour:boolean Enables the hour level

enable_min:boolean Enables the minute level

enable_sec:boolean Enables the second level

enable_iso8601:booleanEnables the iso8601 norm for date representation

Virtual numerical facets are used to organize search results in ranges.

Numerical range facets

Key Description

num_explicit Create ranges manually

num_fixed Create ranges that are the same size

num_dynamic Create ranges automatically

Generic keys for numerical range facets

Key Description

vroot:string (Required)

expr:string (Required) see Virtual Expression Syntax reference page.

range (0 to N times) min,max,title, for example "-1,1,my title"

min:double Default is 0

max:double Default is 2^63

440 - Configuration

Faceting Parameters

Key Description

lsb:int Default is 0

msb:int Default is 63

default_precision:intDefault is 2

num_fixed specific keys

Key Description

rsize:double Range size (def 0=one range per distinct value).

below_min:bool Creates a range for values below min.

above_max:bool Creates a range for values above max.

fmt_range Sets the range title format.

fmt_above Sets the above title format.

fmt_below Sets the below title format.

fmt_single Sets the singleton title format.

num_dynamic specific keys

Key Description

fmt_range Sets the range title format.

nb_ranges:int The maximum number of ranges to output (dynamic).

policy:enum The policy to generate the ranges.

adjust_ranges:bool Tries to adjust the ranges on multiples of 10 (deprecated).

more_accurate:bool Better linear/geometrical ranges, but slower (deprecated).

mrsize:bool Size of each bin used to compute cardinality.

exclusiveRightBracket:boolIn the case of dynamic ranges, this parameter determines if the facet
is exclusive or inclusive from the right side (true means [a,b[, and
false means [a,b])

Example: Define custom price ranges and titles for each range

f.price.type=num_explicit
f.price.vroot=Top/Price
f.price.expr=document_dbl1
f.price.range=0,1000,0to1000euros
f.price.range=1000,2000,1000to2000euros

Configuration - 441

Faceting Parameters

f.price.range=2000,4000,Tooexpensiveforyou

Keys for geographic facets

Key Description

vroot:string (Required)

field:string (Required) the point field to use for synthesis

domain (0 to N times) a domain specification:

• DiskDomain: disk(''x'',''y'',''radius'')'',title'' -
matches all points within the specified radius of point (x,y).

• PolygonDomain:
poly(''x1'',''y1'';x2,y2;..;''xn'',''yn'')'',title''

- matches all points in the polygon defined by the specified points.

Keys for Auto-Tile geographic facets

Key Description

vroot: string (Required)

field (Required) the PointField to use

xmin, xmax, ymin,

ymax

Parameters defining the facet with X and Y coordinates for the global
geographic query. xmax and ymax define the Max envelope of the
geographic facet.

xbin, ybin Parameters defining the size of the tile (with X and Y absolute
coordinates) within the global geographic query scope.

Keys for 2D or matrix facets

Key Description

id1:string (Required)

id2:string (Required)

vroot: string (Required)

ds: boolean With dimension switch (default is false)

sec_sort: string Secondary sort function. Same syntax as sort. (default is
count)

sec_sort_agg_fun: stringSecondary sort aggregation function id

442 - Configuration

Faceting Parameters

Key Description

sec_explicit_sort_order_values:

string

Comma-separated list of values defining the secondary explicit
sort order

f.mycompany_facet1.type=value
f.mycompany_facet1.vroot=Top/
f.mycompany_facet1.field=mycompany_facet1

f.mycompany_facet2.type=value
f.mycompany_facet2.vroot=Top/
f.mycompany_facet2.field=mycompany_facet2

f.mat.type=matrix
f.mat.vroot=Top/
f.mat.id2=mycompany_facet1
f.mat.id1=mycompany_facet2
f.mat.aggr.total=SUM(mycompany_int1)
f.mycompany_facet1.max_elements=10
f.mycompany_facet2.max_elements=10

Keys for multidimension facets

Key Description

vroot: string (Required)

additional_tree_representation:

bool

Generate the tree representation

additional_tree_representation_ds:

bool

Generate the tree representation with the extra dimension
separator

f.id.dim.prop Specifying MultiFacetDimensions for
MultiDimensionFacets can be done with the
f.id.dim.prop syntax where:

• id - is the id of the MultiDimensionFacet

• dim - is the (0-based) dimension for which to add a
MultiFacetDimension

• prop - is the property name to set, and can be: id,
sort, max_elements, sort_agg_fun

f.id.aggr.aggId=FCT(xpr) Adds an aggregation function with id aggId and
expression expr

FCT = SUM, AVG, MIN, MAX, ...
f.heat_consump_apt.type=multi

Configuration - 443

Dynamic Search Target

f.heat_consump_apt.vroot=Top/heat_consump_apt
f.heat_consump_apt1.id=location_code
f.heat_consump_apt2.id=heating_type
f.heat_consump_apt.additional_tree_representation=true
f.heat_consump_apt.aggr.conso=SUM(consumption_statement)
f.heat_consump_apt.in_hits=false

Dynamic Search Target

st.* or target.*

Defines a search target. The search target is specified with multiple parameters, like
st.TARGET_NAME.key=value or target.TARGET_NAME.key=value where TARGET_NAME is
the search target name (_a-zA-Z0-9).

The following keys are supported by all search targets:

• type:string - "local", "simple"

• watch_dog_connect_timeout_ms:int

• watch_dog_read_timeout_ms:int

The local search target supports the following key: build_groups:string

The simple search target requires the definition of target slices. Target slices are specified with
multiple parameters, like st.TARGET_NAME.target_slices.TARGET_ID.key=value or
target.TARGET_NAME.target_slices.TARGET_ID.key=value where TARGET_NAME is
the search target name (_a-zA-Z0-9) and TARGET_ID is a number (0-9). The following keys are
supported:

• build_groups:string

• slices:string

• instances:string

• power:int

Examples:

st=my_dynamic_search_target
st.my_dynamic_search_target.type=local
st=my_dynamic_search_target
st.my_dynamic_search_target.type=local
st.my_dynamic_search_target.watch_dog_connect_timeout_ms=1000
st.my_dynamic_search_target.watch_dog_read_timeout_ms=5000
st.my_dynamic_search_target.build_groups=bg0
st=my_dynamic_search_target
st.my_dynamic_search_target.type=simple
st.my_dynamic_search_target.target_slices.0.build_groups=bg0

444 - Configuration

Textual Relevance Parameters

st=my_dynamic_search_target
st.my_dynamic_search_target.type=simple
st.my_dynamic_search_target.watch_dog_connect_timeout_ms=1000
st.my_dynamic_search_target.watch_dog_read_timeout_ms=5000
st.my_dynamic_search_target.target_slices.0.build_groups=bg0
st.my_dynamic_search_target.target_slices.0.slices=0,1
st.my_dynamic_search_target.target_slices.0.instances=my_instance
st.my_dynamic_search_target.target_slices.0.power=0
st.my_dynamic_search_target.target_slices.1.build_groups=bg1
st.my_dynamic_search_target.target_slices.1.slices=42
st.my_dynamic_search_target.target_slices.1.instances=my_instance
st.my_dynamic_search_target.target_slices.1.power=1

Textual Relevance Parameters

Relevance

Boolean parameter to enable all relevance computation.

Globally disabling relevance computation disables the following features:

• term scoring

• proximity scoring

• sorting

• node properties

• using ranking elements for faceting

• using ranking elements for facet aggregations

• retrieving ranking elements

Note: If your query contains grouping, either by a Search API parameter or in the product
configuration set in the Administration Console > Search Logic, the relevance feature is forced to
true.

Note: If your query contains a refinement on a disjunctive facet, the relevance feature is forced to
true.

proximity_max_distance

Maximum distance for proximity matching.

ts (term score)

Sets the term score algorithm. Value must be one of the available algorithms:

Configuration - 445

Unranked search mode

• NO_RANKING

• RANK

• TFIDF

• IDF

• RANK_IDF

• RANK_TFIDF

• BM25

• BM25F

• CUSTOM - for this term score algorithm, you must define ts.expr to specify the custom
expression.

Unranked search mode

Streaming

Boolean parameter. If true, all sorts and all limits are ignored.

The answer is NOT cacheable, and is streamed. It is efficient as the synthesis and full hits are
computed on-the-fly. It is therefore especially adapted to fetch large results sets without much
memory consumption.

In streaming mode, you must iterate over all returned hits, so do not use the getHits() method
but getHitsIterator() instead, and read hits using the hasNext and next subcalls.

Note: In streaming mode, the hf parameter does not control the maximum total number of
returned full hits, but the maximum number of returned hits per slice. Therefore, with 4 slices,
streaming=true, hf=2000, up to 8000 hits can be returned.

allow_skip_nhits

Boolean parameter. If true, Exalead CloudView stops counting hits that match the query as soon
as possible. The nhits value is allowed to be incorrect.

This advanced parameter must be used for high performance unranked exports without synthesis.

Search Logic Editing

Search API parameters are the preferred way to change the search logic at query time.

446 - Configuration

Search Logic Editing

Yet, when modifications made to the search logic are not covered by standard Search API
parameters, the *search logic editing* (a.k.a. sle) can be used as a generic way to set, add, or
remove values in the search logic.

Unlike Search API parameters, the sle upward compatibility is not guaranteed. Any change made
to the search logic during product upgrade may affect the sle.

Add an sle

It is possible to add one or more sle to the search URL with the following query parameters:

• set:[path]=[new value] - where path identifies the object field or list element to be
replaced by the new value. The previous value is deleted.

Example: The following example set the performMAX Boolean of the query prefix handler
named profiles to true
sle=set:uQLConfig.queryPrefixHandler[name="profiles"].performMAX=true

• add:[path]=[new list element] - where path identifies the list element before which
the new value is inserted. The list element and any subsequent elements are shifted to the
right.

Example: Add a full text prefix handler
sle=add:uQLConfig.queryPrefixHandler=FullTextPrefixHandler

(name="t",indexFields="title",dictionaryName="dict0",matchingMode="normalized")

• remove:[path] - where path identifies the list element to be removed. The element is
deleted and any subsequent elements are shifted to the left.

Example: Remove the first operation of meta named "title"
sle=remove:hitConfig.meta[name="title"].metaSpecificOperation[0]

Value serialization

value serialization depends on the type.

Value type Description

null The null value

boolean true and false

integer Digits optionally preceded by a minus sign. For example, 314, -5

double Floating point value. For example, 3.14, -.5, 1.23E9

string Sequence of characters between double quotes. Double quotes have to
be escaped with \". For example, "abc", "say \"hello\""

Configuration - 447

Search Logic Editing

Value type Description

list Sequence of values separated by commas, between brackets. For
example, [1, 42, 5], ["a","c"]

object Serialization of a new object. For example,
SortBy(name="myobject",expr="title",limit=100,order="asc")

Note:

• values "5" and 5 are not equivalent. The first is a string whereas the second is an
integer.

• values "" and null are not equivalent. The first is an empty string whereas the
second is a null value.

sle Path

The *path* is an element sequence that identifies either an object field or a list element.

The XML representation of the search logic is not representative. There may be missing nodes or
case discrepancy.

The path must be built using the javadoc sdk/java-customcode/docs/api/com/exalead/
mercury/mami/search/v20/SearchLogic.html.

Parameter Description

hitConfig.meta[name="title"]Stands for the first element with name equal to "title" in the meta list of
the hitConfig object in the Search Logic.

virtualFieldDefinition[0]Stands for the first element of the virtualFieldDefinition list in the
Search Logic.

Object serialization

The *object serialization* is made of two parts: [class](key=value, ...)

• The java class identifier can either be the full qualified name of a java class using . as package
separator and '$' for inner classes. For convenience, the simple class name is accepted, and
the full name is deduced from the path.

For example, com.exalead.search.v30.VirtualFieldDefinition or
VirtualFieldDefinition

• The initializers is a comma-separated sequence of assignment.

For example,
SnippetOperation(highlightFacetIds="Event,Person",highlightExtraPrefixHandlers="soundslike,spellslike",

maxSentenceSegmentLength=210,maxLength=500)

448 - Configuration

Misc

Misc

use_logic_virtual_fields

• true/false - (Optional) Removes all virtual fields defined in the search logic. Default is true.

• vfname1,vfname2,vfname3 - Keeps only this list of virtual fields. Be careful, they must exist
in the search logic.

avf or add_virtual_field

name:url-escaped-expr

remove_virtual_field

One argument: name of the virtual field to remove. The virtual field can be used in a meta. It can
also replace an existing virtual field.

tz or timezone

One argument: time difference to apply in virtual operator #adjust_timezone(expr). Format:
[+-][00...12][00|15|30|45]

Example: add 4 hours and 30 minutes

timezone=+04:30

The example below is printed:

original_time: 2016/10/02 14:15:16
adjusted_time: 2016/10/02 08:15:16
hit_meta.original_time.expr=document_lastmodifieddate&
hit_meta.original_time.operation.time_formatter1.type=time_format&
hit_meta.adjusted_time.expr=#adjust_timezone(document_lastmodifieddate)&
hit_meta.adjusted_time.operation.time_formatter2.type=time_format&
timezone=-06:00

of or output_format

Output format specifier. The following formats are supported:

• flea - internal binary representation, used only by the Java Search Client

• xmlv10, xml - XML representation

• json - JSON representation

• csv - CSV representation (do not include synthesis)

Configuration - 449

The fetch, preview and thumbnail Commands

• atom - Atom representation

callback

JSONP support. If specified, and if the output_format parameter is set to JSON, wraps the
response in a function whose name is given by the parameter.

cache

Key/Value Description

g=boolean Must we get in cache? (default is 1)

s=boolean Must we search? (default is 1)

p=boolean Must we put in cache? (default is 1)

e=boolean Must we evict from cache before searching? (default is 0)

f=boolean Must we force insertion, even if cache is not accepting queries? (default is 0)

Alias Description

cache=no Query is not cached and does not looked up in cache --> g:0,p:0

cache=evict Runs the query from the index, evicts it from the cache if it was in cache -->
e:1,p:0

cache=only Only returns cached results. If there is no cached result, it returns an error -->
s:0

Note: Warm-up queries are sent with &cache=g:0,f:1.

query_implicit_sequence_operator or qiso

The default query operator. If a user enters this query: exalead cloudview (without quotes), by
default, it is parsed as "exalead AND cloudview".

• qiso=AND parses as "exalead AND cloudview"

• qiso=OR parses as "exalead OR cloudview"

The fetch, preview and thumbnail Commands

Theses commands are used to fetch, preview, or or generate a thumbnail for a document. You
can use them from the Java FetchClient. These commands are suppted by the .NET Fetcher
class using the built-in properties only.

450 - Configuration

About Thumbnails

About Thumbnails

Search Server actions to generate thumbnails

To generate thumbnails, the Search Server:

• Calls the connector fetcher to retrieve the original document from the data source.

• Calculates the thumbnails (it generally uses the convert to do that).

• Sends the document and the calculated thumbnails.

Behavior and tips

• The thumbnail always has the same proportion. If your document does not have the same
proportion, a margin will be added to the picture to fill missing gaps.

• The thumbnail is scaled to its MINIMUM value. Let us say you have witdh=90 and
height=1200, the width value is the one guiding the downscale.

• Be careful, if your BASEPORT+10 is accessible, anyone can generate thumbnails and if your
cache is not properly configured, someone malicious could spam thumbnail generations with
huge resolution values.

• The value of the source parameter does not necessarily have to be the same as the connector
used to index the document. Remind that the source parameter is required to specify a
fetcher to the thumbnails process. For example, you can use a JDBC connector to index your
documents, and also create a "dummy" Files connector to generate thumbnails as the JDBC
connector does not have a fetcher. This workaround is useful only if you have your own search
front end, not if you are using a Mashup UI application.

Global Parameters

Parameter Description

source:string The source connector name.

uri:string The URI of the document to fetch. The root used in the configuration of
the source connector (file system connector) is important.

For example, if the root in the connector is /data/user1/
workspace/customers/cv and you have a document named
myexample.doc, you must encode the uri parameter as follows: uri=
%2F%252Fdata%252Fuser1%252Fworkspace%252Fcustomers

%252Fcv%2Fmyexample.doc

Otherwise you get a bad file url root exception.

Configuration - 451

Fetch Parameters

Parameter Description

security:string Security token for the fetch request

enforce_security:booleanSpecifies whether security tokens must be enforced

all_parts:boolean Requests all parts of the document

part:string Selects the part of the document to retrieve

Fetch Parameters

It is available at http://SEARCH_API_HOST:SEARCH_API_PORT/fetch

Parameter Description

override_filename:booleanForces the file name in the Content-Disposition header

filename:string New file name to use

override_contenttype:booleanForces the MIME Content-type in the Content-Disposition header

contentType New MIME Content-type to use

Preview Parameters

It is available at: http://SEARCH_API_HOST:SEARCH_API_PORT/preview?
uri=uri_document&source=connector_name&q=%23all

Parameter Description

q:string User query string

l User query language

start_page:integer Page of the document to preview

pages:integer Number of pages of the document to render

rewrite_base:booleanBase HTTP path for links rewriting. You should set this to the base URL
under which you are proxying the preview request.

Thumbnail Parameters

It is available at http://SEARCH_API_HOST:SEARCH_API_PORT/thumbnail

452 - Configuration

The Search Results

Parameter Description

width:integer The width in pixels of the image generated. If not set, the default value
in the searchApi.xml is used.

height:integer The height in pixels of the image generated. If not set, the default value
in the searchApi.xml is used.

start_page:integer Use this parameter to specify the page of the document to thumbnail.
For example, a value of 1 is for page 1.

The Search Results

This section describes the main results of the Search command.

Result Description

estimated="true" When the synthesis or the number of results is not exact, because of
errors linked to timeout, limits or data sampling.

status="limited" When the query is stopped because it has reached the "heap sort"
limit. It occurs only when the limitation comes from the Search Server,
not from the slice.

status="timeout" When the query has been either partially or totally stopped because it
reached the timeout limit.

If the query status is not
error/timeout

• if the query returned fewer hits / partial synthesis because of the
use of max_fetched_hits, then:

◦ status="limited" in heap sort

◦ status="ok" in all other modes (local sort, unrankedsort, and
unrankedstream)

• if the query returned fewer hits / partial synthesis because of the
use of max_fetched_hits_per_slice, then:

◦ status="ok" in all modes because information of limited
answer is not communicated from the index to the Search
Server.

Configuration - 453

The spellcheck Command

The spellcheck Command

The spellcheck or sc command provides spell checking. It is available at http://
SEARCH_API_HOST:SEARCH_API_PORT/spellcheck.

You can use it from the java SpellCheckClient.

It supports all search command parameters. You can use:

• Boolean

• or the keys from the KV map:

◦ enabled:true

◦ use_with_refinements:true

◦ disable_after:10

◦ max_suggestions:1

◦ compute_nb_of_hits:true

◦ remove_weak_suggestions:true

◦ automatically_correct:false

The suggest Command

This command provides search suggest. It is available at:

• http://SEARCH_API_HOST:SEARCH_API_PORT/suggest/service/SUGGEST_NAME

• or http://SEARCH_API_HOST:SEARCH_API_PORT/suggest/dispatcher/
DISPATCHER_NAME

You can use it from the Java SuggestClient client. These commands are also supported by
the .NET Suggester class using the built-in properties only.

Parameter Description

q:string The input query

distance:integer The suggest dictionaries supports fuzzy matching at runtime. This sets
the maximum Levenshtein distance between the input string and the
suggestion. 0 means exact match.

454 - Configuration

The security Command

Parameter Description

minLenForDist1:integerOnly searches for distance 1 fuzzy matches if the original word
in the query is at least N characters long. This avoids too much
approximation on very short words. The best value is 3 characters.

minLenForDist2:integerOnly searches for distance 2 fuzzy matches if the original word
in the query is at least N characters long. This avoids too much
approximation on very short words. The best value is 6 characters.

logic:string Specify a Search Logic name.

exhaustive:boolean Displays exhaustive results.

recurse:boolean Suggests new matches on query words recursively.

autocomplete:booleanSuggests matches for the last word only.

output:string Output format:

• xml - returns a complete output, with text suggestions, score,
distance.

• json - returns text suggestions only. Other search output format
such as csv, flea, and atom, are not supported.

Note: The Accept HTTP header is also taken into account if output is
not specified.

security:string Allows you to take users' security tokens into account in the search
suggest. For example, &security=TOKEN1&security=TOKEN2...

Negative tokens must be preceded by ~. You can declare
positive and negative tokens one after the other, for example,
&security=TOKEN1&security=~TOKEN2

The security Command

This Search API command provides security checks. It is available at http://
SEARCH_API_HOST:SEARCH_API_PORT/security/SOURCE_NAME.

It can be used from the java SecurityClient. It also is supported by the .NET
AuthenticationClient class using the built-in properties only.

Parameter Description

login:string User login

Configuration - 455

The expansion Command

Parameter Description

password:string User password

checkPassword:booleanChecks the user password

The expansion Command

This Search API command provides query expansions. It is available at http://
SEARCH_API_HOST:SEARCH_API_PORT/expansion.

It supports all search command parameters.

The introspection Command

This Search API command provides search introspection. It is available at:

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/logics

- search logic introspection

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/

targets - search target introspection

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/

prefixes - prefix handlers introspection

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/sorts -
sort introspection

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/facets

- facets introspection

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/metas -
metas introspection

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/

expr_elements - all potential expressions introspection

• http://SEARCH_API_HOST:SEARCH_API_PORT/search-api/introspection/all - all
introspection

It supports all Search API command parameters.

456 - Configuration

Appendix - Virtual Field Expression Syntax

Appendix - Virtual Field Expression Syntax

Virtual fields allow you to compute values from many elements of the CloudView index. The
main purpose of a virtual field is to access stored index fields. For example, a virtual field called
revenue with expression price * quantity accesses the two fields and calculate the total
price.

You can then use virtual fields for multiple areas within your search application. For example, for a
given hit, virtual fields can calculate:

• A meta to display in the search client.

• The value for the hit in a dynamic numerical facet.

• The value for the hit in a facet aggregation.

• Ranking elements.

• A value to use for filtering queries. For example, you can define a numerical prefix handler,
total_price, allowing a user to make queries directly on the total price, such as
total_price: > 500

What Is a Virtual Field Expression

A virtual field expression is either:

• a constant (for example 3 or 42.0)

• a numerical index field (for example, my_int_field)

• a ranking key defined in the query, prefixed with @ (for example, @my_ranking_key)

• a call to a built-in function, which can have arguments that are valid virtual field expressions

• an n-ary numerical operator (n=1,2,3) applied to n virtual field expressions

Expression Types

Virtual field expressions are entered, and have either int or float types.

• int values are represented as 64-bit signed integers

• float values are 64-bit IEEE doubles

• Boolean values are represented as integers with true != 0.

The type of an expression is given by the following rules:

Configuration - 457

Numerical Operators

• A constant with decimal separator has float type.

• A constant without decimal separator has int type.

• Typed functions have an explicit type. The type of each such function is given in the
documentation below.

• Nontyped functions have a type that depends on the type of their arguments. If not otherwise
stated, a function with only integer arguments has int type, and a function with mixed or float
arguments has float type (for example, 4.2 + 4 is 8.2).

Numerical Operators

Numerical operators compose virtual field expressions to produce another valid virtual field
expression. They are, by order of decreasing precedence:

Operator Type Description

- unary Minus operator

! unary Logical not. Returns 1 if expr is zero, whatever its type.

~ unary bitwise not. Perform float-to-int conversion.

*, /, % binary Multiplication, division, modulo operators

+, - binary Addition, subtraction operators

<<, >> binary Left/right shift operators. These operators always perform
float-to-int conversion if given float arguments. Same
behavior as c++ signed shifts.

==, !=, >=, <=, >, < binary Comparison operators (Warning: = is NOT supported).

| (or), & (and), !^ (xor), ~
(not)

binary Bitwise operators. These operators always perform float-
to-int conversion if given float arguments.

&&, !|| binary Logical and operators. Evaluation is lazy, meaning that the
right side is not evaluated if the left size is false (resp.
true).

expr ? expr ternary expr if/then/else operators

?= binary Fallback operator.

If the expression on the left has a value, use that value.

Else, use the value of the expression on the right.
Evaluation is lazy.

458 - Configuration

Built-ins

Operator Type Description

For example, this is useful to define default values for
fields or ranking elements. Example: @proximity?=3 +
my_field?=2

Built-ins

In the following, expr represents an assessable virtual field expression. fd denotes a field
dependant type.

General Functions

Function Type Description

#did() int Returns the id of the current document

#slice() int Returns the current slice

Mathematic Functions

Function Type Description

#random() float Returns a uniform double between 0.0 and 1.0.

NOTE: A new value is generated for every invocation of
this function. For example, 2*random() is uniform, but
#random()+#random() is not, just as rolling two dice
and taking the sum results in more sevens than twos or
twelves.

#hash(expr) float Returns a hash of the expression in argument between
0.0 and 1.0

#round(expr) int Returns the value of the expression rounded to the closest
integer

#round(expr,

precision)

float Returns the value of the expression rounded to precision
digits after comma

#floor(expr) int Returns the value of the expression rounded to the closest
lower integer

#ceil(expr) int Returns the value of the expression rounded to the closest
upper integer

Configuration - 459

Geographic Functions

Function Type Description

#exp(expr) float Returns the base-e exponential function

#log2(expr) float Returns the base-2 logarithm function

#ln(expr) float Returns the base-e logarithm function

#cos(expr) float Returns the cosine function

#sin(expr) float Returns the sine function

#tan(expr) float Returns the tangent function

#sqrt(expr) float Returns the square root of expr

#abs(expr) int Returns the absolute value of expr

#inrange(expr,

minExpr, maxExpr)

int Returns true if expr is in the range
[minExpr;minExpr]

#stddev(expr, expr,

expr, ...)

float (n-ary) Returns the population standard deviation of N
expressions

#avg(expr, expr,

expr, ...)

float (n-ary) Returns the average value of N expressions

#min(expr, expr,

expr, ...)

fd (n-ary) Returns the minimum value of N expressions

#max(expr, expr,

expr, ...)

fd (n-ary) Returns the maximum value of N expressions

#countif(operator,

baseExpr, expr, expr,

expr, ...)

int (n-ary) Returns the number of expr expressions matching
the relation expr operator baseExpr.

Example: #countif(==, 42, document_foo,
document_bar, document_baz) returns the number
of fields between foo, bar and baz in the class document
that equals 42

Geographic Functions

Function Type Description

#lat(expr) fd Returns the first component of a point (the latitude, or x in
cartesian mode)

460 - Configuration

Category Functions

Function Type Description

#lng(expr) fd Returns the second component of a point (the longitude, or
y in cartesian mode)

#dist(point_field,

expr_lat, expr_lng)

int Returns the distance in meters between a point field and
the point in argument

#dist_latlong(lat_field,

lng_field, expr_lat,

expr_lng)

 Similar to #dist, for GPS coordinates, with the latitude in
a numerical field and longitude in another numerical field

#dist_eucl(x_field,

y_field, expr_x,

expr_y)

 Similar to #dist, for cartesian coordinates, with the x-
coordinate in a numerical field and y-coordinate in another
numerical field

Category Functions

Function Type Description

#children_count("Top/

path/to/root",

categoriesField)

int Returns the number of categories in the document under
the root Top/path/to/root in the categoriesField.

For example, you can get the number of people referenced
in a document with: #children_count("Top/
people", categories)

#cat_corpus_count("Top/

path/to/cat",

categoriesField)

int Returns the number of documents that have the given
category in the current slice

#has_category("Top/

path/to/cat",

categoriesField)

int Returns 1 if the document has the category, otherwise 0

Time Manipulation Functions

Time is represented using an internal index representation, which is not a timestamp and must
not be directly manipulated. We provide the following functions to manipulate time in virtual field
expressions.

Note: Since months and years do not always have the same durations, there are no nmonths()
and nyears() functions.

Configuration - 461

Time Manipulation Functions

We provide a syntactic sugar to manipulate time expressions. It is a basic set of mathematical
operators for computation on date and time at query time through virtual field expressions. You
can use the y, m, w, d, H, M, S suffixes to define expressions like: #now() + 1d, #now() - 2y,
etc.

Function Type Description

#now() (or #now) long Returns the current time in internal index representation

#datetime(year,

month, day, hour,

minute, second)

long Creates an index time from a human-readable time.
month is between 1 and 12 and day between 1 and 31.

If hour, minute or second are omitted, they default to 0.
Any of year, month, etc. can be virtual field expressions.

#datetime_from_date(dateExpr)long Creates a datetime from a date virtual field expression
dateExpr. For example, DateFacets.

#fromunixts(ts) long Creates an index time from the UNIX timestamp ts

#tounixts(time) long Returns the UNIX timestamp corresponding to the given
index time

#year(time) long Returns the year for the given index time

#month(time) long Returns the month for the given index time (January is 1)

#day(time) long Returns the day for the given index time (1-based).

#weekday(time) long Returns the day of the week for the given index time
(0=Sunday, 6=Saturday)

#hour(time) long Returns the hour for the given index time

#minute(time) long Returns the minute for the given index time

#second(time) long Returns the second for the given index time

#nweeks(time1,time2) long Returns the (signed) number of completely elapsed weeks
between index times time1 and time2

#ndays(time1,time2) long Returns the (signed) number of completely elapsed days
between index times time1 and time2

#nhours(time1,time2) long Returns the (signed) number of completely elapsed hours
between index times time1 and time2

#nmins(time1,time2) long Returns the (signed) number of completely elapsed hours
between index times time1 and time2

462 - Configuration

Time Manipulation Functions

Function Type Description

#nsecs(time1,time2) long Returns the (signed) number of completely elapsed hours
between index times time1 and time2

#yesterday() long Returns yesterday time in internal index representation

#years_ago(N) long Returns, in internal index representation, the time of N
years ago

#months_ago(N) long Returns, in internal index representation, the time of N
months ago

#weeks_ago(N) long Returns, in internal index representation, the time of N
weeks ago

#days_ago(N) long Returns, in internal index representation, the time of N
days ago

#hours_ago(N) long Returns, in internal index representation, the time of N
hours ago

#minutes_ago(N long Returns, in internal index representation, the time of N
minutes ago

#seconds_ago(N) long Returns, in internal index representation, the time of N
seconds ago

#addperiod(time,ndays,nhours,nminutes,nseconds)long Returns a new index time differing from the original one.

It is calculated using the specified units (ndays, nhours, ...)
which can be positive or negative integers.

#adjust_timezone(time)long Returns a new index time adjusted to the timezone
specified in the end user's query input.

Note: By default, CloudView stores date time index fields
in UTC format.

#parse_date(date_string,

[optional_format])

long Creates an index time from given date string. If no
optional_format is given, %m/%d/%Y is used.

#parse_time(datetime_string,

[optional_format])

long Creates an index time from given datetime string. If no
optional_format is given, %m/%d/%Y-%H:%M:%S is
used.

Configuration - 463

String Functions

String Functions

For alphanumeric fields

Function Type Description

#tf(field) int Number of terms in field. storeTf must be enabled

For both alphanumeric and value fields

Function Type Description

#regex_count(field,

'pattern')

int Returns the number of occurrences of pattern in the
content of field

#regex_match(field,

'pattern')

int Returns 1 if pattern matches the content of field

#strlen(field) int Number of characters in field

#strhash(field) int Returns the hash64 of the content of field

#strcmp(field, field

or string)

int Compares the content of a field (s1) to the content of
another field, or a string (s2).

It returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match,
or be greater than s2.

#strlower(field) int Returns the lowercase string content

#strncmp(field, field

or string, long)

int Compares the first n characters of two strings s1 (field)
and s2 (field or string).

It returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match,
or be greater than s2

#strnormalize(field) int Returns the normalized string content

#strstr(field, field

or string)

int Looks for the first occurrence of a substring (field or string)
in the content of another field

Multivalued fields Manipulation Functions

When a numerical/alphanumerical/value field is multivalued, all comparison operators can be used
but the search policy must be explicit. For example, with ==:

464 - Configuration

Dynamic Fields Manipulation Functions

• (int boolean) #any(multivaluedField, ==, exp) - returns 1 if at least one value is
equal to exp

• (int boolean) #all(multivaluedField, ==, exp) - returns 1 if all the values are
equal to exp

• (int) #countif(multivaluedField, ==, exp) - returns the number of values that are
equal to exp

Operators ==, !=, <, <=, >, >= can be used.

Function Type Description

#min(multivaluedField)fd Returns the minimal value of a multivalued field (numerical
and alphanumeric fields are supported)

#max(multivaluedField)fd Returns the maximal value of a multivalued field
(numerical and alphanumeric fields are supported)

#length(multivaluedField)int Returns the number of values in a multivalued field. It also
works for nonmultivalued fields.

#sum(multivaluedField)fd Returns the sum of values in a multivalued field (numerical
fields are supported)

#avg(multivaluedField)float Returns the average value of values in a multivalued field
(numerical fields are supported)

#stddev(multivaluedField)float Returns the population standard deviation of values in a
multivalued field (numerical fields are supported)

Dynamic Fields Manipulation Functions

Function Description

#extract(dynamicField,

"meta name")

Returns the value of "meta name" in the dynamic field

#extracthasvalue(dynamicField,

"meta name")

Returns 1 if "meta name" is valued in the dynamic field, and 0 if
not.

Type Casting

Function Type Description

#int(expr) int Returns the result of expr as a integer. A truncation is
performed (not a round).

Configuration - 465

Special Functions

Function Type Description

#float(expr) float Returns a float-typed expr with the floating-point value of
expr

Special Functions

Function Type Description

#dscore(expr, s0, s1,

x1, x2)

int • If expr = 0 - returns 0.

• If 0 < expr < x1 - returns linear interpolation
between s0 and s1.

• If x1 < expr < x2 - returns linear interpolation
between s1 and 0.

• If x2 < expr - returns 0. Can be used to implement
geo distance ranking.

Ranking Elements

Ranking elements can be retrieved using the @ notation. For example, @term.score retrieves the
global score of the terms; @a returns the user key a.

When a node is named with the syntax name="thename", and the node matched, some
ranking values become accessible:

• @thename.matched returns 1

• @thename.npos returns the number of positions in this node

• @thename.score returns the local score of the node

• Alphanum nodes also have @thename.rank that returns the rank of the term and
@thename.tfidf that returns the tfidf of this term.

• Distance nodes also have @thenode.distance that returns the distance of the document to
the center of the distance.

466 - Configuration

	Table of Contents
	Configuration
	What's New?
	Workflow and Concepts
	About Index Schemas and Search Logics
	What is an Index Schema?
	What is a Search Logic?
	Modifying the Index Schema and Search Logics
	When do I need to Re-Index Documents?

	The Indexing and Search Processes
	About the Indexing Process
	About the Search Process

	Configuring CloudView with the Data Model
	About the Data Model
	What is the Data Model Expansion
	What is generated by the Data Model Expansion
	Controlling the Data Model Expansion
	Taking Control over Generated Index Fields

	Working with Data Model Classes
	Can I Delete the Default Document Class?
	Working with Multiple Classes
	Impact of Multiple Classes on Performance

	Using Properties to Configure Document Metas
	Data Types and Semantic Types for Properties
	Indexing Options for All Properties
	Indexing Options for Alphanumeric Properties
	Indexing Options for Numerical Properties
	Indexing Options for Date Properties
	Indexing Options for Geographical Properties
	Indexing Options for Measure Properties

	Creating Dynamic Properties
	Add a Dynamic Property
	About Storing and Displaying Dynamic Property Fields
	Store Properties in a Parent Class Dynamic Property
	Search Dynamic Property Fields

	Creating Multivalued Properties
	Tools to Create a Data Model from Your Corpus
	Create a Data Model from Sample Documents
	Store Unprocessed metas

	Configuring Data Processing
	Understanding and Using the Analysis Pipeline
	About Data Processing
	The Analysis Pipeline Sequence of Processors
	Use Multiple Pipelines with Conditions
	Use a Single Pipeline with Groups of Processors
	Multiple Pipelines vs. Single Pipeline with Groups
	Configuring the Analysis Pipeline Manually

	Testing your Analysis Pipeline Behavior
	Test the Analysis Pipeline with an Indexed Document
	Test the Analysis Pipeline with a New Custom Document
	Display Document Processing Information
	Test the Semantic Processing of your Analysis Pipeline

	More About Semantic Analysis
	When does Semantic Analysis take Place?
	Set Up Semantic Analysis?
	Index-Time Semantic Analysis
	Other Documentation about Semantic Analysis

	Tokenizing Text
	Using Native Tokenizers
	Using Basis Tech Tokenizer
	About Creating Additional Tokenization Configurations
	Customizing the Tokenization Config
	About Decompounding

	Creating and Deploying Semantic Resources
	Create a Resource File from the Administration Console
	Manage Resources in cvadmin

	Managing Semantic Annotations
	Manage Annotations with the Annotation Manager
	Manage Annotations with Custom Code

	Configuring Form Indexing
	Use Form indexing for Over-Indexing Acronyms
	Set Weight

	Configuring Search Queries
	User Query Language (UQL)
	The Different Types of Search in UQL
	Reserved Characters in UQL
	Operands
	Operators by Priority
	More About INNERJOIN

	Exalead Low-Level Query Language (ELLQL)
	Why Use ELLQL?
	ELLQL vs UQL
	ELLQL Syntax
	Filtering Search Results in ELLQL

	Defining Query Templates
	Query Template Syntax
	Reserved Named Queries
	Use Case

	Using Prefix Handlers
	The Different Types of Prefix Handlers
	Specify a Tokenization Configuration for Prefix Handlers

	Configuring Query Expansion
	Query Tree and Query Expansion
	Query Expansion Features
	Enable query expansion
	Stemming
	Lemmatization
	Phonetization
	Approximation
	Normalization Exceptions
	Synonyms
	Japanese Synonyms

	Configuring Dictionaries
	About Dictionaries
	Setting Up a Dictionary
	Compacting and Building Dictionaries
	Clearing Dictionaries

	Adding 'Did You Mean?' Spell-Check
	About Spell-Check
	Setting Up Spell-Check

	Adding Search Suggestions
	About Search Suggestions
	Create a Suggest Dictionary
	Enable the Suggest in the Mashup UI
	Use the Suggest Via the Search API
	Export Suggest Dictionary Content to an XML File
	Dispatch a Query to Several Suggest Dictionaries
	Performance Considerations and Options for Search Suggest

	Adding Related Terms
	About Related Terms
	Configure Related Terms and Similar Documents Detection

	Configuring and Using Similarity Measures
	Configure the Index for Similarity Queries
	Use the #attrsimilar Function in the Search API
	Code Samples to Create Similarity Query Prefix Handlers

	Configuring Geographic Search
	About Geographic Points
	Create a Geographic Point
	Search a Geographic Point
	Calculate Distances in Virtual Fields
	Use Geolocation Based on Place Detection

	Adding a Query Cache
	About Query Cache
	Create and Manage a Query Cache

	Configuring Search Results
	Defining Search Results Content
	Configure the Search Result Summary
	Configure Value Selection for Metas
	Configuring the Highlighting of Search Terms

	Creating Facets to Refine Search Results
	About facets
	Create Facets
	Numerical Range facets
	Date Facets
	Configure Date Facets
	Multidimension Facets
	Geographic Facets
	Create Value Facets for Nonhierarchical Metas
	Create Aggregations for Facets
	Exclusive vs. Disjunctive Refinements

	Calculating Results On-The-Fly with Virtual Fields
	When to Use Virtual Fields
	Performance Considerations
	Virtual Field Syntax

	Specifying a Timezone for Date Time Metas
	Specify a Timezone in the Output Format
	Convert Date Time Values to a Specific Timezone
	Specify a Timezone at Search Time

	Ranking and Sorting Search Results
	About Ranking
	Sorting

	Collapsing/ Grouping Search Results
	About Grouping
	Setting Up Grouping

	Setting the Limits of Search Results

	Managing Saved Configurations
	About Saved Configurations
	How Applying Configuration Works
	Apply Configuration Process

	Comparing Configuration Versions
	Rolling Back to a Previous Configuration
	Editing the Configuration Manually
	Edit a File in the API Console
	Edit the Configuration Files Directly
	Apply Changes in the Command Line

	Apply changes when Exalead CloudView has stopped

	Troubleshooting
	Troubleshooting Document Analysis
	Identify the Cause of the Index Crash
	Unexpected Search Behavior

	Analyzing User Queries with Reporters
	About Reporters
	Output Reporting Data to CSV Files
	Output Reporting Data to a JDBC Database
	Output Reporting Data to the Internal SQLite Database
	Index Reporting Data as a Data Source
	Available Fields for the Reporting Publishers

	Performance Considerations
	About Exalead CloudView Sizing
	How Project Requirements Impact Sizing
	Disk Requirements
	RAM Sizing Formula

	The Impact of the Data Model on Performance
	How Property Options Impact Performance
	How Classes Impact Performance

	Dealing with Hierarchical Dimensions

	Appendix - Configure Document Processors
	Chunk Operations
	Copy Context Chunks
	Multi-Context Encoder
	New Chunk
	Remove Contexts
	Rename Context for Chunks
	Rename Unmapped Contexts
	Replace Values
	Value Selector

	Normalization
	Date Formatter
	Numerical Formatter
	Public URL Processor
	Units of Measurement Normalizer

	Numerical Operations
	Double to Long
	Fixed Range Numerical Partitioning
	Forced Range Numerical Partitioning
	Math Document Processor
	Text to Num

	Text Extraction
	HTML Relevant Content Extractor
	MIME Detector
	Mime Type Setter
	Semantic Web Document Processor
	Standard Parts Merger
	Text Extractor (All Mime Types)
	Text Extractor (text, html, exalead)
	Xpath Extractor
	Xpath Fragment Extractor

	Text Operations
	Concatenate Values
	Content Cleanup
	Language Detector
	Language Setter
	Print Values
	Replace Regexp
	Split Values
	String Hash
	String Transform

	Custom
	Custom Document Processor
	Java Document Processor
	Remote HTTP Transformer

	Other
	Debug Processor
	Discard Document Processor
	Document Processor Group
	Format Checker Date
	Infer File Extension
	Insert Current Date
	Precomputed Thumbnails Document Processor
	Random DocumentChunks Generator (Uniform Distribution)
	Random DocumentChunks Generator (Zipf Distribution)
	Real-Time Alerting
	Semantic Pipe
	Similar String to Part Converter
	Storage Service Document Processor
	UTF8 Checker

	Appendix - Configure Semantic Processors
	About Semantic Processors
	Acronym Detector
	Chunker
	Compound Words Splitter
	Example
	When to Use
	Dependencies

	Fast Rules Matcher (Rule-Based)
	When to Use
	Dependencies
	Rule Nodes
	Sample Fast Rules XML Files
	Supported Queries
	Rule Syntax
	Create the Fast Rules Resource File
	Map the Annotation to a Category Facet

	Lemmatizer
	When to Use
	Configure Lemmatization Manually

	Named Entities Matcher
	When to Use
	Which Entities are extracted?
	Filtering Options
	Named Entities Classes and Subclasses
	Extract Your Own Named Entities
	Set Block Lists and Allow Lists for Named Entities Extraction

	NGram Extractor
	Normalizer
	Ontology Matcher (Resource-Based)
	Dependencies
	Rules for Ontology Matching
	Sample Ontology Matcher XML File
	Ontology Rules Syntax
	Multilevel Ontology Example
	Create the Ontology Matcher Resource File
	Map an Annotation to a Category Facet

	Phonetizer
	When to Use
	Phonetize a Field Created from a Data Model Property
	Configure Phonetization Manually

	Proximity
	How Is the Best Match Selected?
	Configure the Proximity Processor

	Related Terms
	Required Settings
	Optional Settings
	Search-Time Configuration

	Rules Matcher (Rule-Based)
	Dependencies
	Basics of Creating Rules
	Sample Rules Matcher XML File
	Rules Syntax
	Rules Best Practices
	Caveats
	Limitations
	Create a Rules Matcher Resource File
	Map the Annotation to a Category Facet

	Semantic Extractor
	Entities and Attributes
	Rule Attributes
	Dependencies
	Sample Semantic Extractor XML File
	Entities Syntax
	Rules Syntax
	Macros
	Create the Semantic Extractor Resource File
	Map the Annotation to a Category Facet

	Semantic Query Analysis
	Configure Semantic Query Analysis
	Example 1: Define "Cheap" for an E-Commerce Site
	Example 2: Define "Cheap" for Different Products

	Snowball Stemmer
	When to Use
	Configure Stemming Manually

	Part of Speech Tagger
	How to use
	When to use

	Appendix - Semantic Resources Reference
	Ontology
	OInclude
	Pkg
	Entry
	Form
	FastRulesDefinition
	Category
	Rule
	DateFormat
	LemmaDictionary
	Lemma
	Inflected
	NormalizationOverwrites
	NormalizationOverwrite
	NormalizationAlternatives
	NormalizationAlternative
	NormalizationExceptions
	NormalizationException
	RegexpMatches
	RegexpMatch
	SemanticExtractorConfig
	Entity
	TextEntity
	BooleanEntity
	IntegerEntity
	FloatingPointEntity
	RangeEntity
	RegexpEntity
	Define
	Include
	Rule
	Synonyms
	SynonymSet
	Synonym
	TRules
	Seq
	Iter
	Star
	Plus
	Opt
	Sub
	Or
	Near
	Noblank
	PatternRef
	And
	Not
	Nor
	TokenKind
	Paragraph
	Sentence
	Dash
	Punct
	Digits
	Alnum
	Alpha
	TokenLanguage
	AnyToken
	TokenRegexp
	Word
	Annotation
	Ctx
	AnnotationRegexp
	TRule
	MatchAnnotation
	TInclude
	TImport
	Remove
	Copy
	KeepLongestLeftMost
	AnnotationProcessed
	KeepLeftMostLongest
	KeepFirst
	SelectMostFrequentValue
	SelectMostFrequentAnnotation
	SelectByContexts
	StringValue

	Appendix - ELLQL Language
	ELLQL Language Features
	Structure of the Language
	Options

	Simple Operators
	Fields Search
	Specials
	Delimiters

	Compound Operators
	Unary Operators
	Binary Operators
	Nary Operators
	Proximity Operators

	Appendix - Search API Parameters
	The search Command
	Global Parameters
	Sorting and Grouping Parameters
	User Query
	UQL Interpretation
	Limits Parameters
	Hit Meta Parameters
	Faceting Parameters
	Dynamic Search Target
	Textual Relevance Parameters
	Unranked search mode
	Search Logic Editing

	Misc
	The fetch, preview and thumbnail Commands
	About Thumbnails
	Global Parameters
	Fetch Parameters
	Preview Parameters
	Thumbnail Parameters

	The Search Results
	The spellcheck Command
	The suggest Command
	The security Command
	The expansion Command
	The introspection Command

	Appendix - Virtual Field Expression Syntax
	What Is a Virtual Field Expression
	Expression Types
	Numerical Operators
	Built-ins
	General Functions
	Mathematic Functions
	Geographic Functions
	Category Functions
	Time Manipulation Functions
	String Functions
	Multivalued fields Manipulation Functions
	Dynamic Fields Manipulation Functions
	Type Casting
	Special Functions
	Ranking Elements

