
CloudView CV23

Connector Programmer

Table of Contents

Table of Contents

Connector Programmer.. 5

What's New?...7

About the Push API... 8
What is the difference between a managed and unmanaged connector?... 8

What are the goals of a connector?... 8

Push API concepts... 9
Documents...9
URI... 9
Stamps.. 10
Meta..10
Parts... 10
Directives...11
Consolidation Server directives...11
Checkpoints..12
Synchronization.. 12
Supported Text Encodings..12

Push API HTTP Level..13
Push API at the HTTP level... 13

HTTP command parameters... 13
HTTP methods.. 13
HTTP encoding..14
HTTP command response...14
HTTP time out.. 14

Push API Client Implementation Recommendations.. 14
Conventions to follow.. 15
Methods...16
Error messages and exceptions.. 16
Operational status...16

Push API Client Methods... 17
void ping()...18
void startPushSession()... 19
void stopPushSession()..20
void addDocument(Document document) and void addDocumentList(Document[] documentList)............................... 20
void updateDocument(Document document, string[] fields) and void updateDocumentList(Document[] documentList,
string[][] fieldsList)...23
void deleteDocument(String uri) and void deleteDocumentList(String[] uris).. 27
void deleteDocumentsRootPath(String rootPath [, Boolean recursive=true]).. 27
DocumentStatus getDocumentStatus(String uri) and DocumentStatus[] getDocumentStatusList(String[] uriList)...........28
ulong setCheckpoint(String checkpoint [, String name] [, sync=false])..30
String getCheckpoint([String name])...31
String getCheckpoint([String name, Boolean showSynchronizedOnly])...32
void clearAllCheckpoints().. 33
CheckpointsInfoIterator enumerateCheckpointsInfo()...34
CheckpointsInfoIterator enumerateCheckpointsInfo (boolean showSynchronizedOnly)..35
CheckpointsInfoIterator:: next()... 36
SyncedEntriesIterator::..36
SyncedEntriesIterator enumerateSyncedEntries(String rootPath, EnumerationMode enumerationMode)........................ 37
ulong countSyncedEntries(String rootPath, EnumerationMode enumerationMode)..39
void sync()...40
void triggerIndexingJob()...41
boolean areDocumentsSearchable(long serial).. 42
Metadata Examples... 42

Using the Push API Client...45
Installing the Push API Client.. 45

Java project requirements..45
.NET project requirements... 45

Instantiating the Push API Client... 46

Operations and states...46

2 - Table of Contents

Table of Contents

Operations... 46
Document statuses... 47
Session handling...48

Indexing your first PAPI document... 48
Run the sample program... 48
How to force the indexing of pending operations..50
Check the document status... 50

Indexing a Document Collection...51

Listing Synced Documents...53
Checkpoints..53
Sync code snippet...53
List documents... 54

Updating Documents...54

Monitoring the Index.. 55

Push API Connector Framework.. 56
Connector Framework Prerequisites.. 56

Global Requirements... 57
Dependencies... 57

Using the Eclipse plugin..57

Implementing the Connector... 58
Manage the configuration...58
Encrypt the password..59
Implement the connector...59
Implement a continuous scan.. 62
Implement concurrent scan modes... 63
Validate the connector configuration... 63
Add logging capabilities... 64
Update the connector status.. 65

Packaging the connector as a plugin.. 65
Plugin structure.. 66
Create a basic plugin.. 67
About the CVPlugin public class..68
Top level component class(es)..69
Top level configuration class(es)... 70
Setter/Getter methods...74

Implementing Format Plugins.. 82
Technical Overview..82
First method.. 83
Second method.. 84

Extending the Files Connector through Plugins...86
Technical Overview..86
First Method...86
Second Method...87

Developing a Security Source... 93
About Security Source Development...93

Implementing a Security Source Plugin...94
Implement the Security source part..94
Implement the Associated config part... 94
Implement the security source methods..94
Implement the AuthenticationResult class..95
Implement the SecurityToken class...96

Deploying the Connector.. 97
Deploying the Connector Plugin... 97

Install a plugin in the Administration Console.. 97
Install a plugin on the command line..97
List installed plugins..97
Uninstall a plugin..98

Maintaining a Connector Configuration across Versions... 98

Creating and Configuring the Connector..99

Table of Contents - 3

Table of Contents

Advanced Operations and Best Practices...101
What to map from the Data Source?.. 101

How to Keep the Index Synchronized with the Datasource.. 102
Strategy 1: The full scan approach... 102
Strategy 2: The differential approach.. 102

Implementing Synchronization... 103
Stamp-based synchronization... 103
Checkpoint-based synchronization... 104
Synchronization best-practices.. 105

Push API filters.. 106
About Push API filters... 106
Built-in classes..106
Code snippet (Java).. 109

Deploying Connectors on a Remote Server..109
Instantiate a connector..109
Launch your connector using a command line.. 110

Calculating a diff between Two Data Sources...113

Customizing Connectors to use the Interconnector Service.. 116
Required dependencies.. 116
Master connector sample code..116
Slave connector sample code... 117
Interconnector aggregation processor..118

Best Practices.. 119
Crash resistance... 119
Log management.. 119
Test plan & monitoring.. 119
Package the connector...120
Aggregate Documents..120
Other best practices.. 120

4 - Table of Contents

Connector Programmer

Connector Programmer

This guide explains how to develop, deploy, and configure Exalead CloudView custom Java
or .NET connectors using the Push API. This public document API allows you to index data from
any source with Exalead CloudView.

Audience

This guide is mainly destined to software programmers or users with a few programming skills.

It is assumed that the reader has experience in the operating system on which the Exalead
CloudView server is installed.

Accessing the Push API

Access Push
API with

Description

Java SDK Java Clients SDK is delivered in the Exalead CloudView kit in <INSTALLDIR>/
sdk/java-clients. This SDK contains all required material to develop external
applications interacting with Exalead CloudView.

It includes the following content:

• /docs - API documentation (javadoc); also available online at Exalead
CloudView Public APIs Java SDK

• /lib - the jars to use

• /samples - code samples

.NET SDK .NET Clients SDK is delivered in the Exalead CloudView kit in <INSTALLDIR>/
sdk/dotnet-clients. This SDK contains all required material to develop
external Push API applications interacting with Exalead CloudView.

It includes the following content:

• /docs - API documentation

• /lib - the library including the dll files

• /samples - code samples for the Search API and the Push API

Raw access The default endpoint for the Push API is: http://<HOSTNAME>:<BASEPORT+2>

Further Reading

You might need to refer to the following guides:

Connector Programmer - 5

Connector Programmer

Guide for more details on

Connectors standard connector's configuration.

Mashup Programmer Mashup UI customization.

Programmer Exalead CloudView customization.

javadoc Java methods and classes. Available in the
CloudView Public APIs Java SDK.

6 - Connector Programmer

What's New?

What's New?

There are no enhancements in this release.

Connector Programmer - 7

About the Push API

About the Push API

The Push API supports the basic operations required to develop new connectors, both managed
and unmanaged.

What is the difference between a managed and unmanaged
connector?

• A managed connector is a piece of code running within Exalead CloudView. It must be
packaged as a Exalead CloudView Plugin to be deployed and configured in Exalead
CloudView. You must develop it in Java, using the Connectors Framework API available in:

◦ <INSTALLDIR>\sdk\java-customcode for V6R2014 and higher versions.

◦ <INSTALLDIR>\sdk\cloudview-sdk-java-connectors in previous versions.

• An unmanaged connector is an external component that sends data to Exalead CloudView
using the Push API. You can develop an unmanaged connector in any language, either by
using Exalead CloudView Push API clients (available in Java, C# and PHP), or by directly
targeting the HTTP API. You must manage and deploy unmanaged connectors yourself, as
Exalead CloudView is not aware of these connectors.

All standard Exalead CloudView connectors are managed connectors. For more details, see the
Exalead CloudView Connectors Guide.

What are the goals of a connector?

A connector can be seen as a portal between two worlds, Exalead CloudView’s index, and a
specific data source.

This portal is used at two times:

• At Indexing Time

◦ Full indexing: Captures a snapshot of the data source’s current state in Exalead CloudView.

◦ Incremental indexing: Synchronizes modifications made on the data source with the
Exalead CloudView index.

• At Search Time

◦ The user performs a search in Exalead CloudView.

◦ A first check is made between the indexed document security tokens and the user’s
security tokens. For more information, see Developing a Security Source.

8 - Connector Programmer

Push API concepts

◦ Exalead CloudView only displays the list of authorized documents matching the user query.

◦ A second check is made between the document security tokens in the data source and the
user’s security tokens, when documents are fetched (downloaded or previewed). This is
done through the getDocumentSecurityTokens method.

Push API concepts

Documents

Documents can be defined as all the objects to be indexed by Exalead CloudView, regardless of
file or entity type in the data source. For example, HTML, JPG or CSV files, database records are
all considered documents within Exalead CloudView, since they are all converted into a Exalead
CloudView-specific document format (also known as a PAPI document) after being scanned by a
connector.

Items are the objects to be indexed by Exalead CloudView, regardless of file or entity type in the
data source. For example, in OnePart, 3D CAD files, JPGs, PDFs are all considered items in the
index.

A PAPI Document is an exchange format between the connectors and Exalead CloudView. It's an
abstraction, so that all connectors speak the same language to the index. The Push API handles
documents that contain the following elements:

• URI

• Stamp (optional)

• Metas

• Parts

• Directives

URI

URI is the unique identifier of the document inside the indexed corpus of the connector.

Note: The "URI" described in this document is an opaque string (with optional "/" character
hierarchy), and is NOT necessarily a "URI" as per RFC 2396, even if connectors may use regular
Internet URI. For example:

Sample URI Interpreted as

a/b/doc Folder: a

Connector Programmer - 9

Stamps

Sample URI Interpreted as

|_ Folder: b

|_ Document: doc

a/b///doc Folder: a

|_ Folder: b

|_ Folder: (empty name)

|_ Folder: (empty name)

|_ Document: doc

Stamps

Stamp is a fingerprint that represents the "state", or "version" of the document. Stamps are stored
by Exalead CloudView, and retrieved back by the connector to determine which version of the
document has been indexed, and whether it should be updated. The document will be updated if
the new stamp is not equal to the previous one.

See also the Stamp-based synchronization.

Meta

Document metas, not to be confused with hit metas, are pieces of text belonging to a document
that have associated values, such as title or size. Document metas are stored either as an index
field or as a category. Context is sometimes used as a synonym for document meta.

Parts

Parts represent the binary parts of the content to be converted and indexed like a file. Usually,
only one part is needed, but you may need to link some attachments to the content. All parts are
merged together and are associated to the same URI.

Note that:

• A PAPI Part has a name (in all Exalead CloudView versions)

• The default Part name is master

• There must be one master Part per PAPI document (for preview)

Thus when a PAPI document has several parts:

• They must all have different names

• One of them must be named master – to set it you can use the
com.exalead.papi.helper.part.setAsMaster() member method.

10 - Connector Programmer

Directives

The Part name can be set with the following member methods:

com.exalead.papi.helper.Part(String name, bytes[])com.exalead.papi.helper.Part.setName(String name)

Directives

Directives are internal properties embedded in a Exalead CloudView document. They specify
either orders on how to treat the document, or information on how to index the document.

Some directives are available at document level:

• datamodel_class: determines the data model class of the document. If this directive is not
found, the data model class specified in the source connector configuration will be used. If the
source connector does not have a class, we use the data model default class. For example:

final Document myDocument = new Document("docId");

myDocument.setCustomDirective("datamodel_class", "myDocumentClass");

• forcedSlice: overrides the automatic load balancing of documents in the Exalead
CloudView slices, by forcing the slice on which documents will be stored.

• sameSlice: (for V6R2014 and higher) forces the document to use the slice of another
document by specifying the URI of this document.

Some directives are available at the part level to help the converter determine the content type.
Note that the values of these directives cannot be null. Examples of supported directives:

• filename: the filename of the document

• mimeHint: the hint mime parameter

• mime: the forced mime (use with caution)

• encoding: the encoding of the document

The analysis pipeline takes both metas and directives into account to determine how to process a
document. For example, to get the file name of a document part, it looks for both the file_name
meta and the filename directive, if any. We recommend using the meta when data must be
indexed.

Important: When there are several directives in a document, delete operations are processed
BEFORE add operations.

Consolidation Server directives

The following table shows the hard-coded order of Consolidation Server directive operations.
These directives are created automatically by the Consolidation Server when you push methods to
the transformation processors.

Connector Programmer - 11

Checkpoints

To add these directives, you can (using
com.exalead.cloudview.consolidationapi.PushAPITransformationHelpers)

• Include them directly within your documents.

• or use pre-aggregation transformation rules in the Exalead CloudView > Consolidation
config.

Note: For more details on the Consolidation Server, see the Consolidation Server Guide.

Checkpoints

Checkpoints are opaque string, used by connectors for synchronization purposes. For more
details, see Checkpoints and Checkpoint-based synchronization.

Synchronization

After it has sent all documents from a datasource to Exalead CloudView, a connector must
generally keep the index up to date. This process is called synchronization. You can use either
stamp-based or checkpoints-based synchronization to synchronize a data-source. For more
details, see Implementing Synchronization.

Supported Text Encodings

Parts binary content in text MIME subset may have use any recognized encodings (see the list of
available encodings below). The proper encoding should be filled in the part meta-data (encoding
or encoding hint).

All other concepts shall only use UTF-8 (or its 7-bit restriction ASCII) as sole encoding, especially
all Push API multipart commands.

12 - Connector Programmer

Push API HTTP Level

Push API HTTP Level

The Push API is a simple HTTP API. The API user can implement a Push API client using either
the language of choice, or the client-side wrappers for the API. The supported languages are C#
and Java.

Note: While the exact syntax for the chosen language will differ, the recommendation is that the
method and arguments should have the same names.

Push API at the HTTP level

Push API Client Implementation Recommendations

Push API Client Methods

Push API at the HTTP level

HTTP command parameters

Parameters can be sent to the server in different ways using either [URL] or [FORM].

Parameter Description

URL The parameter in the request URL, for example:/addDocument?
uri='file://mydir/file1.doc'

FORM The parameter is part of the form data

The required way is specified in the command description.

HTTP methods

The HTTP methods used are the following:

Parameter Description

GET The GET method

POST The POST method can be encoded as:

?multipart/form-data content-type (RFC 2388), or application/x-www-form-
urlencoded

?application/octet-stream (for xxx_monopart commands)

This document describes the HTTP POST method.

Connector Programmer - 13

HTTP encoding

HTTP encoding

When dealing with text (for example, metadata key or values), the only accepted encoding is
UTF-8. No other encoding is supported.

HTTP command response

The processing of HTTP Push API operations may be asynchronous. This means that requested
add or delete operations are accepted but we do not know exactly when they will be performed.
However, errors may occur at a lower level, so here is a description of the default HTTP
responses.

HTTP Response Description

OK (200) No problem during parameters de-serialization process.

NO_CONTENT (204) No content.

20X Helpers should consider 204 and all 20X statuses as OK.

BAD_REQUEST (400) An error occurred while parameters were parsed or during command
treatment. The body of the result contains the error description (see
below for the xml format of the error description).

METHOD_NOT_ALLOWED

(405)

The use of the POST and GET methods is strict with the HTTP Push
API. Only the specified methods are authorized for each command.

UNAUTHORIZED (401) The access to connector operations through HTTP is protected using
basic authentication, and has been forbidden.

INTERNAL_ERROR

(500)

An unexpected error occurred on the server side.

HTTP time out

The HTTP TimeOut should be set to infinite in the event of the server being busy at request
time. This prevents the connector from retrying to connect to the server.

Push API Client Implementation Recommendations

When you implement a Push API client (for example, for a language not currently supported)
you will use HTTP API calls to create all the Push API client methods. For example, the add and
enumerate methods.

14 - Connector Programmer

Conventions to follow

Conventions to follow

You should follow certain conventions for method interface and method names:

• The interface should be called PushAPI. For example, PushAPI(Java), IPushAPI(C#)…

• The HttpPushAPI class implements PushAPI. The constructor must be in the form:

HttpPushAPI(PushAPIVersion version, String host, String port, String connectorName,

String connectorType, String login, String password)

• The FakePushAPI class implements PushAPI. This class is optional and should be a
simulator for test.

• The PushAPIFactory class should be implemented to create HttpPushAPI and
FakePushAPI

◦ PushAPI createFake() (optional)

◦ PushAPI createHttp(PushAPIVersion version, String host, String

port, String connectorName, String connectorType, String login,

String password)

The following description is based on C# naming conventions.

Argument Description

host The Push API server host name.

port The Push API server port number (by default, <BASEPORT> + 2).

PushAPIVersion The Push API version.

For the moment, the only accepted value is PAPI_V4 for Exalead CloudView
5.x and 6.x

For example, PushAPIVersion.PAPI_V4

connectorName The name of the connector.

connectorType The type of the connector. It is mainly used for license checking purpose (the
available connector types are described in your product license).

login The basic authentication login string. If not null, the basic authentication mode
will be enabled.

password The basic authentication password string. If not null, the basic authentication
mode will be enabled. Login and Password must either be both null or not null.

Connector Programmer - 15

Methods

Methods

Each class must implement specific methods.

Note: These methods are described using Java naming conventions. They must be adapted to the
language of choice.

Error messages and exceptions

The Push API client should use an asynchronous mechanism while treating add and delete
operations. This means that requested add or delete operations are accepted immediately but will
be executed later. Every method of the Push API client should send exceptions as follows:

• ServerUnavailableException – when the remote Exalead CloudView product cannot be
reached (network or overload errors).

• InvalidConnectorException – if the Exalead CloudView Push API server does not
recognize the client Connector name.

• UnknownErrorException – when an unexpected error occurs.

Additionally, we recommend implementing optional exceptions. List of possible error types:

• InvalidConnectorNameError

• InvalidParameterError

• UnknownError

For languages that do not support the exception mechanism, the language error management
should be used instead. The convention for error serialization is the following:

<error>
 <type> ... </type>
 <short_message> ... </short_message>
 <message> ... </message>
</error>

Operational status

Because some operations on documents and checkpoints are performed asynchronously (add,
delete, set checkpoint), it's important to know at which state of the processing flow the command is
performed.

Operations can have the following processing statuses:

16 - Connector Programmer

Push API Client Methods

Status Description

Pushed The operation has been received by Exalead CloudView, but can be lost if a
crash occurs before the sync.

All add, delete, and set checkpoints (Add(), Delete(),
SetCheckpoint()) operations create a document in the Pushed state.

Synced The operation has been synced to disk, to guarantee crash-proofness. The
operation cannot be lost anymore.

When you synchronize explicitly or choose to synchronize when you set a
checkpoint, all documents and checkpoint operations are synced to disk.

Searchable The operation has been propagated to the index, and documents can be
found at search time.

The following methods operate on documents in specific states:

Methods operate on documents with statuses...

Enumerating checkpoints and synced entries,
getting checkpoints and counting synced
entries: EnumeratesSyncedEntries()
GetCheckpoint() EnumerateCheckpointsInfo()
countSyncedEntries()

synced and searchable.

Getting document status and clearing checkpoints:

GetDocumentStatus() ClearAllCheckpoints()

pushed, synced, and searchable.

Push API Client Methods

This section describes the Push API client methods (using Java conventions) to implement with
the corresponding HTTP Push API POST methods.

void ping()

void startPushSession()

void stopPushSession()

void addDocument(Document document) and void addDocumentList(Document[] documentList)

void updateDocument(Document document, string[] fields) and void
updateDocumentList(Document[] documentList, string[][] fieldsList)

void deleteDocument(String uri) and void deleteDocumentList(String[] uris)

Connector Programmer - 17

void ping()

void deleteDocumentsRootPath(String rootPath [, Boolean recursive=true])

DocumentStatus getDocumentStatus(String uri) and DocumentStatus[]
getDocumentStatusList(String[] uriList)

ulong setCheckpoint(String checkpoint [, String name] [, sync=false])

String getCheckpoint([String name])

String getCheckpoint([String name, Boolean showSynchronizedOnly])

void clearAllCheckpoints()

CheckpointsInfoIterator enumerateCheckpointsInfo()

CheckpointsInfoIterator enumerateCheckpointsInfo (boolean showSynchronizedOnly)

CheckpointsInfoIterator:: next()

SyncedEntriesIterator::

SyncedEntriesIterator enumerateSyncedEntries(String rootPath, EnumerationMode
enumerationMode)

ulong countSyncedEntries(String rootPath, EnumerationMode enumerationMode)

void sync()

void triggerIndexingJob()

boolean areDocumentsSearchable(long serial)

Metadata Examples

void ping()

This method tests the connection with the server for the specified connectorName. This test
should be called after the construction of the Push API.

The purpose of this method is to:

• test the server availability

• check for the existence of the connectorName and its security

• compare the PAPI Versions X-Papi-Version

HTTP parameter

The parameter is described in the table below.

18 - Connector Programmer

void startPushSession()

Parameter Location Description

PAPI_session [URL] The optional parameter that retrieves the session given by a
previous call to get_current_session_id

Action: if there is a session mismatch, the Push API server
refuses the command and returns an exception.

HTTP method

The method used is:

GET http://<host>:<port>/papi/4/connectors/<connectorName>/ping

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

void startPushSession()

This method is used to start a new PushAPI session. This allows you to handle a "session" when
working with the Push API server.

It aims to solve the following use case:

• the connector starts an indexing phase, and starts sending documents to the Push API server,

• the Indexing Server crashes or is being killed (or the server suddenly reboots); documents
previously received are lost,

• the Indexing Server restarts,

• the connector sends remaining documents to the Push API server, unaware that the remote
Push API server died, and the synchronization is therefore in a “lost” state.

This is done by introducing a session identifier (an integer) that identifies the remote component
pushing the documents - this identifier changes each time the Exalead CloudView session
manager (re)starts.

HTTP method

The get_current_session_id command allows you to get the remote Push API server
session ID, which is generated when the Push API server starts. The method used is:

GET http://<host>:<port>/papi/4/connectors/<connectorName>/

get_current_session_id

Connector Programmer - 19

void stopPushSession()

HTTP response

The get_current_session_id command returns the current Push API server session id (long
integer ; at least 63-bit). This identifier is used internally by Push API client helpers.

API response

The API function does not return any value. It throws a PushAPISessionExistsException if a
session is already opened.

void stopPushSession()

This command is used to stop a PushAPI session previously opened by startPushSession and
clears the internal session id. This command has no parameters.

HTTP response

No corresponding HTTP request exists for this client function.

API response

It throws a PushAPISessionNotFoundException if no session was opened.

void addDocument(Document document) and void
addDocumentList(Document[] documentList)

This method requests to add a document. If a document with the same URI has already been
added, the document will be updated.

Note: If the conversion of a Part fails, this Part is not indexed but the other Part and the Metas are
included.

Document data types

When you implement the addDocument method you must send one or more documents to be
added to the index. The Document object should contain:

Types Description

uri A URI, which is an opaque string that uniquely identifies the document
from the connector point of view.

See also URI.

20 - Connector Programmer

void addDocument(Document document) and void addDocumentList(Document[] documentList)

Types Description

stamp An optional Stamp, which is an opaque string that the connector may use
to track document changes. Document stamps may be retrieved through
the getDocumentStatus method.

See also Stamps.

MetaContainer The MetaContainer of the document. Metadata are open name-value
pairs.

For a complete list of metadata understood by the API, see Metadata
Examples.

PartContainer The PartContainer of the document. The Connector sends raw bytes
containing the document content. Exalead CloudView conversion services
will translate and extract the textual content of the document before
indexing.

The Part contains a DirectiveContainer.

DirectiveContainerThe DirectiveContainer of the document (different from the directive
associated to a Part).

Implement the part object

The Part object must provide accessors for the following predefined directives:

• encoding

• filename

• mimeHint

• certifiedMime

To set a custom directive, the Part object must also provide a method, for example:

public void setCustomDirective(string name, string value)
public void setCustomDirective(Directive directive)
public void setCustomDirective(string name, string[] values)
public void addCustomDirective(string name, string value)

Implement the document object

The Document object must provide accessors for these predefined directives:

• forcedSlice

• sameSlice

And a method to set a custom directive:

Connector Programmer - 21

void addDocument(Document document) and void addDocumentList(Document[] documentList)

public void setCustomDirective(string name, string value)
public void setCustomDirective(Directive directive)
public void setCustomDirective(string name, string[] values)
public void addCustomDirective(string name, string value)

HTTP parameters

The add_documents parameters are described in the table below.

Important: This method sends HTTP POST requests.

Note: These parameters must be repeated (with a different id) for every document you want to
send.

For better performance, we recommend using a multipart/form-data instead of
application/x-www-form-urlencoded.

Parameter Location Description

PAPI_<id>:uri [URL/

FORM]

The uri parameter is the string of the document
URI.

PAPI_<id>:stamp [URL/

FORM]

The optional stamp parameter is the string
representing the document's Stamp.

PAPI_<id>:meta:<meta_name>[URL/

FORM]

The meta_* parameter is a string containing the
value of the metadata referenced by metaname.

Multiple values may exist for the same parameter.
You must generate as many parameters as there
are values.

PAPI_<id>:directive:

<directive_name>

[URL/

FORM]

The list of optional supported directives (at the
document level):

• forcedSlice: advanced feature

PAPI_<id>:part_bytes:<part_name>[URL/

FORM]

The part_bytes parameter is the content of the
document's part that is identified by part_name.

PAPI_<id>:part_directive:

<part_name>:<directive_name>

[URL/

FORM]

The list of optional supported directives (at the part
level):

• filename: the document filename

• mimeHint: the hint mime parameter

• mime: the forced mime (use very carefully)

22 - Connector Programmer

void updateDocument(Document document, string[] fields) and void updateDocumentList(Document[] documentList, string[][] fieldsList)

Parameter Location Description

• encoding: the document encoding

PAPI_session [URL] The optional parameter that retrieves
the session given by a previous call to
get_current_session_id

Action: if there is a session mismatch, the Push
API server refuses the command and returns an
exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

void updateDocument(Document document, string[] fields) and void
updateDocumentList(Document[] documentList, string[][] fieldsList)

There are two update methods in the PushAPI: updateDocument(Document doc, String[]
fields) and updateDocumentList(Document[] docList, String[][] fieldsList)

The first one is used to update one document, the second one to update several documents at
once. The fields/ fieldsList parameters are not handled yet, so let's say they are useless as
for now.

To update a document, you have to call one of these methods with a new document which:

• has the same URI as the one you want to update,

• and contains the updated parts/ metas.

The parts/ metas that do not have to be updated will be fetched from the document cache, so
there is no need to put them in the document used for update.

Constraints

• For the update feature to work, you must either enable the Build Group document cache or
target another Consolidation Server. For more information, see "Using Document Cache" in the
Exalead CloudView Connectors Guide.

• Only documents that have been added after the document cache has been enabled will be
updatable.

Connector Programmer - 23

void updateDocument(Document document, string[] fields) and void updateDocumentList(Document[] documentList, string[][] fieldsList)

Notes

• The old values of multivalued metas will be dropped. If you want to update a multivalued meta
by adding values, you have to put the old values you want to keep in the document used for
update too.

• Remember that parts = fields and metas = fields. The index fields that will be updated depend
on the part/meta field mappings, not on the part/meta names. For example, if you want to
update the “text” field, you probably want to put an updated “master” part in the document
used for update, and not a “text” meta.

• The document in the document cache is updated too, so subsequent updates of a document
do not need to be cumulative.

• It is a good idea to perform batches of updates instead of single updates.

Document data types

When you implement the updateDocument method you must send one or more documents to be
updated to the index. The Document object should contain:

Types Description

uri A URI, which is an opaque string that uniquely identifies the document
from the connector point of view.

See also URI.

stamp An optional Stamp, which is an opaque string that the connector may use
to track document changes. Document stamps may be retrieved through
the getDocumentStatus method.

See also Stamps.

MetaContainer The MetaContainer of the document. Metadata are open name-value
pairs.

For a complete list of metadata understood by the API, see Metadata
Examples.

PartContainer The PartContainer of the document. The Connector sends raw bytes
containing the document content. Exalead CloudView conversion services
will translate and extract the textual content of the document before
indexing.

The Part contains a DirectiveContainer.

24 - Connector Programmer

void updateDocument(Document document, string[] fields) and void updateDocumentList(Document[] documentList, string[][] fieldsList)

Types Description

DirectiveContainerThe DirectiveContainer of the document (different from the directive
associated to a Part).

Implement the part object

The Part object must provide accessors for the following predefined directives:

• encoding

• filename

• mimeHint

• certifiedMime

To set a custom directive, the Part object must also provide a method, for example:

public void setCustomDirective(string name, string value)
public void setCustomDirective(Directive directive)
public void setCustomDirective(string name, string[] values)
public void addCustomDirective(string name, string value)

Implement the document object

The Document object must provide accessors for these predefined directives:

• forcedSlice

• sameSlice

And a method to set a custom directive:

public void setCustomDirective(string name, string value)
public void setCustomDirective(Directive directive)
public void setCustomDirective(string name, string[] values)
public void addCustomDirective(string name, string value)

HTTP parameters

The update_documents parameters are described in the table below.

Note: These parameters must be repeated (with a different id) for every document you want to
send.

For better performance, we recommend using a multipart/form-data instead of
application/x-www-form-urlencoded.

Connector Programmer - 25

void updateDocument(Document document, string[] fields) and void updateDocumentList(Document[] documentList, string[][] fieldsList)

Parameter Location Description

PAPI_<id>:uri [URL/

FORM]

The uri parameter is the string of the document
URI.

PAPI_<id>:stamp [URL/

FORM]

The optional stamp parameter is the string
representing the document's Stamp.

PAPI_<id>:meta:<meta_name>[URL/

FORM]

The meta_* parameter is a string containing the
value of the metadata referenced by meta_name.

Multiple values may exist for the same parameter.
You must generate as many parameters as there
are values.

PAPI_<id>:directive:

<directive_name>

[URL/

FORM]

The list of optional supported directives (at the
document level):

forcedSlice: advanced feature

PAPI_<id>:directive:fields[URL/

FORM]

Not supported for the moment.

PAPI_<id>:part_bytes:<part_name>[URL/

FORM]

The part_bytes parameter is the content of the
document's part that is identified by part_name.

PAPI_<id>:part_directive:

<part_name>:<directive_name>

[URL/

FORM]

The list of optional supported directives (at the part
level):

filename: the document filename

mimeHint: the hint mime parameter

mime: the forced mime (use very carefully)

encoding: the document encoding

PAPI_session [URL] The optional parameter that retrieves
the session given by a previous call to
get_current_session_id

Action: if there is a session mismatch, the Push
API server refuses the command and returns an
exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

26 - Connector Programmer

void deleteDocument(String uri) and void deleteDocumentList(String[] uris)

void deleteDocument(String uri) and void deleteDocumentList(String[] uris)

Request to delete a document on the specified URI list.

HTTP method

The method used is:

POST http://<host>:<port>/papi/4/connectors/<connectorName>/delete_documents

HTTP parameters

The parameters are described in the table below.

Parameter Location Description

PAPI_uri [URL] The uri parameter is the string of the document
URI.

To delete many files, send multiple PAPI_uri
parameters.

PAPI_session[URL] The optional parameter that retrieves
the session given by a previous call to
get_current_session_id

Action: if there is a session mismatch, the Push
API server refuses the command and returns an
exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

However, no exception or error message is reported if the URI is unknown or refers to a document
that was already deleted.

void deleteDocumentsRootPath(String rootPath [, Boolean recursive=true])

Deletes a set of documents (collection) specified by a rootPath. It is possible to only delete
documents at the first level of the rootPath (not recursively) by using the recursive flag.

Data types

The object contains:

Connector Programmer - 27

DocumentStatus getDocumentStatus(String uri) and DocumentStatus[] getDocumentStatusList(String[] uriList)

Types/flag Description

rootPath A part of the URI used to select a subset of the corpus. If the rootPath value is
an empty string ("") then the whole collection will be deleted.

Note that the rootPath means that the beginning of the URI must match.

See also URI.

recursive The recursive flag indicates that the deletion also impacts subfolders.

HTTP method

The method used is:

POST http://<host>:<port>/papi/4/connectors/<connectorName>/delete_documents_root_path

HTTP parameters

The parameters are described in the table below.

Parameter Location Description

PAPI_rootPath[URL] The rootPath parameter is the string representation of the
rootPath. It can take the form:

/root/subdir1/subdir2/subdir3/subdir3/...

PAPI_recursive[URL] A boolean representation of the flag: 'true' for true, 'false' for false.

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

However, no Exception or error message is returned if the rootPath refers to an empty
(inexistant) subset of the corpus.

DocumentStatus getDocumentStatus(String uri) and DocumentStatus[]
getDocumentStatusList(String[] uriList)

This method retrieves the status of a document within the indexed corpus specified by the URI
parameters.

28 - Connector Programmer

DocumentStatus getDocumentStatus(String uri) and DocumentStatus[] getDocumentStatusList(String[] uriList)

This status may be used by the connector to compare with the document status in the source,
and then determine whether the document needs to be updated. The structure is serialized and
returned in the response body.

The getDocumentStatusList method retrieves the status of a list of documents within the
pushed corpus.

Data types

The DocumentStatus object contains:

Types Description

uri A URI is an opaque string that uniquely identifies the document from the
connector point of view.

See also URI.

stamp An optional Stamp.

See also Stamps.

exist A boolean that indicates the indexing status of the document:

• true indicates that a document with the given uri has already been sent to
the Indexing System. However, this does not guarantee that the document
has been indexed nor that the document can be seen by the user.

• false indicates that the given uri is unknown to the Indexing System.

class DocumentStatus
{
 String getUri();
 String getStamp();
 boolean isExist();
}

HTTP method

The method used is:

GET no-cache http://<host>:<port>/papi/4/connectors/<connectorName>/get_documents_status

HTTP parameters

The HTTP parameters are described in the table below.

Parameter Location Description

PAPI_uri [URL] The uri parameter is the string of the document URI.

To delete many files, send multiple PAPI_uri parameters.

Connector Programmer - 29

ulong setCheckpoint(String checkpoint [, String name] [, sync=false])

Parameter Location Description

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

If successful (status = OK), then the body contains the serialized form of the DocumentStatus
in XML format.

Here is the response format for each entry:

[M/D] [space] [url_encode(URI)] [space] [escape(STAMP)] [\n]
\ only if document is existing /

Where:

• url_encode() – is a function which performs an url encoding of the given value.

• escape() – is a function which replaces \r and \n with \\r and \\n.

• M/D – M indicates a missing entry, D indicates an existing document.

ulong setCheckpoint(String checkpoint [, String name] [, sync=false])

The setCheckpoint method sets checkpoints in the indexing system. If the optional name is
specified, then the related checkpoint is changed.

Checkpoints are used when:

• The connector must process a journalized or logged data source, which can be abstractly
represented as a flow of "add" and "delete" events in the corpus, and where an id can be used
to refer to events on a timeline. The connector will then call the setCheckpoint command
from time to time, with the id referring to the last add or delete events which have been sent to
the Indexing System.

• Crash-proof synchronization is required. Upon crash, or system restart, the connector will
call the getCheckpoint method to retrieve the last checkpoint saved by the Indexing
System. The Indexing System guarantees that any add or delete commands called before that
checkpoint were saved and will never be lost.

• To keep track of the synchronization.

The optional parameter name can be used if many checkpoints are needed for a given source.
Default value is "".

30 - Connector Programmer

String getCheckpoint([String name])

The sync flag can be used to force the sync of the pending operations before returning control.
Once synced, the document is pushed and securely handled by Exalead CloudView.

The setCheckpoint method returns the serial of the last pending operation before the
checkpoint. It could be used to check when this document is indexed and searchable.

Note: A getCheckpoint() called immediately after a setCheckpoint() set with the sync
parameter to false may not return the last value. getCheckpoint() always returns the last
synced checkpoint.

HTTP method

The method used is:

POST http://<host>:<port>/papi/4/connectors/<connectorName>/set_checkpoint

HTTP parameters

The parameters are described in the table below.

Parameter Location Description

PAPI_checkpoint[URL] The checkpoint parameter is the string of the checkpoint value.

PAPI_name [URL] This optional parameter can be used when you need to manage
many checkpoints for a connector.

PAPI_sync [URL] The sync parameter is the string representation of the sync’s value.
If true, it triggers a sync operation.

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP response

The command uses the standard responses. See HTTP command response.

If successful (status = OK), then the body contains the serialized form of the serial, which is the
string value of the serial.

String getCheckpoint([String name])

The getCheckpoint method retrieves checkpoints in the indexing process.

Connector Programmer - 31

String getCheckpoint([String name, Boolean showSynchronizedOnly])

The optional parameter name can be used if many checkpoints are needed for a given source.
The default value is "".

A getCheckpoint() called immediately after a setCheckpoint() set with the sync parameter
to false may not return the last value. getCheckpoint() always returns the last synced
checkpoint.

HTTP method

The method used is:

GET no-cache http://<host>:<port>/papi/4/connectors/<connectorName>/get_checkpoint

HTTP parameters

The parameters are described in the table below.

Parameter Location Description

PAPI_name [URL] This optional parameter can be used when you need to manage
many checkpoints for a connector.

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

If successful (status = OK), then the body contains the serialized form of the checkpoint, which
is the string value of the checkpoint.

String getCheckpoint([String name, Boolean showSynchronizedOnly])

This getCheckpoint method retrieves checkpoints in the indexing process.

The name parameter corresponds to the checkpoint name. The default value is "".

If the showSynchronizedOnly parameter is set to false, you will see all checkpoints, even
those that are not yet synchronized to disk. If set to true, you will see only synchronized
checkpoints.

HTTP method

The method used is:

32 - Connector Programmer

void clearAllCheckpoints()

GET no-cache http://<host>:<port>/papi/4/connectors/<connectorName>/get_checkpoint_info

HTTP parameters

The parameters are described in the table below.

Parameter Location Description

PAPI_name [URL] This parameter is used when you need to manage many
checkpoints for a connector.

PAPI_showSynchronizedOnly[URL] This parameter is used to specify if you want to retrieve
synchronized checkpoints only.

PAPI_session [URL] This optional parameter retrieves the session given by a
previous call to get_current_session_id

Action: if there is a session mismatch, the Push API server
refuses the command and returns an exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

If successful (status = OK), then the body contains the serialized form of the checkpoint, which
is the string value of the checkpoint.

void clearAllCheckpoints()

The clearAllCheckpoints method is used to reset all checkpoints values, including the
checkpoints with optional names.

HTTP parameter

The parameter is described in the table below.

Parameter Location Description

PAPI_session [URL] The optional parameter that retrieves the session given by a
previous call to get_current_session_id

Action: if there is a session mismatch, the Push API server
refuses the command and returns an exception.

HTTP method

The method used is:

POST http://<host>:<port>/papi/4/connectors/<connectorName>/clear_all_checkpoints

Connector Programmer - 33

CheckpointsInfoIterator enumerateCheckpointsInfo()

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

CheckpointsInfoIterator enumerateCheckpointsInfo()

Opens an Iterator over the list of defined checkpoints. Iterated results are streamed and used
when needed.

The default checkpoint has the name "" (empty string).

Data types

A CheckpointsInfoIterator is an abstract object used to retrieve CheckpointsInfo.

HTTP parameter

The parameter is described in the table below.

Parameter Location Description

PAPI_session [URL] The optional parameter that retrieves the session given by a
previous call to get_current_session_id

Action: if there is a session mismatch, the Push API server
refuses the command and returns an exception.

HTTP method

The method used is:

GET no-cache http://<host>:<port>/papi/4/connectors/<connectorName>/enumerate_checkpoints_info

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

Here is the response format for each entry:

[url_encode(NAME)] [space] [escape(VALUE)] [\n]

Where:

• url_encode() – is a function which performs an url encoding of the given value.

• escape() – is a function which replaces \r and \n with \\r and \\n.

• NAME – can be empty.

34 - Connector Programmer

CheckpointsInfoIterator enumerateCheckpointsInfo (boolean showSynchronizedOnly)

CheckpointsInfoIterator enumerateCheckpointsInfo (boolean
showSynchronizedOnly)

Opens an Iterator over the list of defined checkpoints, with a boolean parameter allowing to
retrieve either synchronized checkpoints only (true) or all checkpoints (false). Iterated results are
streamed and used when needed.

The default checkpoint has the name "" (empty string).

Data types

A CheckpointsInfoIterator is an abstract object used to retrieve CheckpointsInfo.

HTTP parameter

The parameter is described in the table below.

Parameter Location Description

PAPI_showSynchronizedOnly[URL] This parameter is used to specify if you want to retrieve
synchronized checkpoints only.

PAPI_session [URL] The optional parameter that retrieves the session given by a
previous call to get_current_session_id

Action: if there is a session mismatch, the Push API server
refuses the command and returns an exception.

HTTP method

The method used is:

GET no-cache http://<host>:<port>/papi/4/connectors/<connectorName>/enumerate_stated_checkpoints_info

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

Here is the response format for each entry:

[url_encode(NAME)] [space] [escape(VALUE)] [\n]

Where:

• url_encode() – is a function which performs an url encoding of the given value.

• escape() – is a function which replaces \r and \n with \\r and \\n.

• NAME – can be empty.

Connector Programmer - 35

CheckpointsInfoIterator:: next()

CheckpointsInfoIterator:: next()

This section describes the CheckpointsInfoIterator method.

The methods for the CheckpointsInfoIterator are the following:

CheckpointsInfoIterator::
 CheckpointInfo next()
 CheckpointInfo[] nextBatch(int count)
 void close()

Where:

• The next method returns the next CheckpointInfo of the iteration, or null if the end of the
iteration has been reached.

• The nextBatch method returns the maximum number of CheckpointInfo allowed for the
iteration, or less if the end of the iteration has been reached.

• The close method is used to close the iteration. The close method must be called to release
resources dedicated to the iteration within the Indexing System and inside the Helper.

The command uses the standard HTTP responses. See HTTP command response.

SyncedEntriesIterator::

The methods for the SyncedEntriesIterator are the following:

SyncedEntriesIterator::
 SyncedEntry next()
 SyncedEntry[] nextBatch(int count)
 void close()

• The next method returns the next document of the iteration, or null if the end of the iteration
has been reached.

• The nextBatch method returns the maximum number of documents allowed of the iteration,
or less if the end of the iteration has been reached.

• The close method is used to close the iteration. The close method must be called to release
resources dedicated to the iteration within the Indexing System and inside the Helper.

The SyncedEntry object contains:

Data types

Member Description

uri A URI is an opaque string that uniquely identifies the document from the
connector point of view.

36 - Connector Programmer

SyncedEntriesIterator enumerateSyncedEntries(String rootPath, EnumerationMode enumerationMode)

Member Description

See also URI.

stamp See Stamps.

isFolder A boolean that is true if the entry refers to a directory, false otherwise.
class SyncedEntry
{
 String getUri()
 String getStamp()
 bool isFolder()
}

SyncedEntriesIterator enumerateSyncedEntries(String rootPath,
EnumerationMode enumerationMode)

Opens an iterator on a document and/or folder collection matching the rootPath given as
parameter. It enumerates entries that have been pushed and are in synced status. It returns a
stream of entries. An entry is made of a URI and a stamp.

The underlying idea of this method is to:

• Enumerate entries in the index.

• Decode the URI to find items in the data source.

• Test whether items still exist. If all items have been removed from the datasource, then:

◦ delete the document,

◦ or decode the stamp and check whether the items have been modified in the datasource.

Iterated results are streamed and used when needed.

Data types

A SyncedEntriesIterator is an abstract object which can be used to retrieve document
statuses.

The object contains:

Types/flag Description

rootPath A part of the URI used to select a subset of the corpus.

See also URI.

enumerationMode The EnumerationMode lists the available types.

For example, NOT_RECURSIVE_ALL returns the subfolders and the
documents in the rootPath.

Connector Programmer - 37

SyncedEntriesIterator enumerateSyncedEntries(String rootPath, EnumerationMode enumerationMode)

Types/flag Description

Similarly, RECURSIVE_DOCUMENTS returns all the documents in the
rootPath (but not the subfolders).

enum EnumerationMode
{
 NOT_RECURSIVE_FOLDERS,
 NOT_RECURSIVE_DOCUMENTS,
 NOT_RECURSIVE_ALL,
 RECURSIVE_DOCUMENTS
}

HTTP method

The method used is:

GET no-cache http://<host>:<port>/papi/4/connectors/<connectorName>/enumerate_synced_entries

HTTP parameters

The parameters are described in the table below.

Parameter Location Description

PAPI_rootPath[URL] The rootPath parameter is the string representation of the
rootPath. It can take the form:

/root/subdir1/subdir2/subdir3/subdir3/...

PAPI_mode [URL] The mode parameter is the string representation of the mode:

• NOT_RECURSIVE_FOLDERS

• NOT_RECURSIVE_DOCUMENTS

• NOT_RECURSIVE_ALL

• RECURSIVE_DOCUMENTS

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

Here is the response format for each entry:

[D/F] [space] [url_encode(URI)] [space] [escape(STAMP)] [\n]

38 - Connector Programmer

ulong countSyncedEntries(String rootPath, EnumerationMode enumerationMode)

Where

• url_encode() – is a function which performs an url encoding of the given value.

• escape() – is a function which replaces \r and \n with \\r and \\n.

• D/F – D indicates an existing document, F indicates a folder.

Use of iterators with concurrent add and delete operations

• Add/Delete operations do not impact iterators that are already opened.

• Added/Deleted documents may not appear immediately in the iterated entries because of
asynchronous treatment.

ulong countSyncedEntries(String rootPath, EnumerationMode
enumerationMode)

Opens an iterator on a document and/or folder collection matching the rootPath given as a
parameter, but only returns the number of items found.

Therefore, it counts the number of entries in the whole or in a subset of the Indexing corpus for
that Connector.

Data types

The object contains:

Types Description

rootPath For details, see void deleteDocumentsRootPath(String rootPath [, Boolean
recursive=true]).

enumerationMode For details, see SyncedEntriesIterator enumerateSyncedEntries(String
rootPath, EnumerationMode enumerationMode).

HTTP method

The method used is:

GET no-cache http://<host>:<port>/papi/4/connectors/<connectorName>/count_synced_entries

HTTP parameters

The parameters are described in the table below.

Connector Programmer - 39

void sync()

Parameter Location Description

PAPI_rootPath[URL] The rootPath parameter is the string representation of the
rootPath. It can take the form:

/root/subdir1/subdir2/subdir3/subdir3/...

PAPI_mode [URL] The mode parameter is the string representation of the mode:

• NOT_RECURSIVE_FOLDERS

• NOT_RECURSIVE_DOCUMENTS

• NOT_RECURSIVE_ALL

• RECURSIVE_DOCUMENTS

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

No Exception or error message is returned if the rootPath refers to an empty subset of the
corpus. If status is OK, the body contains the string representation of the integer value.

Use of iterators with concurrent add and delete operations

• Add/Delete operations do not impact iterators that are already opened.

• Added/Deleted documents may not appear immediately in the iterated entries because of
asynchronous treatment.

void sync()

The sync method can be used to flush all previous operations to disk since the last sync
operation, to guarantee crash-proofness. It is a synchronous call that may take some time before
returning control.

HTTP parameter

The parameter is described in the table below.

40 - Connector Programmer

void triggerIndexingJob()

Parameter Location Description

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP method

The method used is:

POST http://<host>:<port>/papi/4/connectors/<connectorName>/sync

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

void triggerIndexingJob()

The triggerIndexingJob method can be used to trigger the indexing job.

Important: In V6R2014 and higher versions, the triggerIndexingJob() method may commit
an indexing job if a document analysis has been started. Unlike, the sync() method, this method
does not block the PAPI.

HTTP parameter

The parameter is described in the table below.

Parameter Location Description

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP method

The method used is:

POST http://<host>:<port>/papi/4/connectors/<connectorName>/trigger_indexing_job

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

Connector Programmer - 41

boolean areDocumentsSearchable(long serial)

boolean areDocumentsSearchable(long serial)

The areDocumentsSearchable method determines whether the documents can be found at
search time. Use it with the sync method which provides the expected serial.

Note: The setCheckpoint method with the sync parameter set to true also provides the
expected serial.

HTTP method

The method used is:

POST http://<host>:<port>/papi/4/connectors/<connectorName>/are_documents_searchable

HTTP parameter

The parameter is described in the table below.

Parameter Location Description

PAPI_serial [URL] The serial parameter is the string representation of the serial.

PAPI_session [URL] The optional parameter that retrieves the session given by a previous
call to get_current_session_id

Action: if there is a session mismatch, the Push API server refuses
the command and returns an exception.

HTTP response

The command uses the standard HTTP responses. See HTTP command response.

If status is OK, the body contains the string representation of the boolean value (true or false).

Metadata Examples

The following table contains the Metadata name-value pairs that should be understood by the
addDocument method.

Name Format Description Example

lastmodifieddateRFC 822 and RFC 2822
formats ("RFC Date
Format"), that is the
common format in most

The date to be associated
with the document.

1977/07/18-11:50:36
(GMT)1980/09/14

42 - Connector Programmer

Metadata Examples

Name Format Description Example
Internet protocols (Mail,
HTTP, ..)

ISO 8601 and RFC 3339
formats

Unix date and time
(English format)

publicUrl URL The public URL of the
resource.

http://server /getDoc.php?
id=24

author Displayed string Author name John Doe

mail:from See RFC 822 The sender of the
document.

John Doe <doe@doe.net>

mail:to See RFC 822

mail:cc See RFC 822

mail:bcc See RFC 822

language ISO 639 Primary or secondary level
language tag

fr-FR

en

ar-AR

security [~] PROVIDER:TOKEN

Known providers:

windows

notes

unix

Note: The prefix ~ can
be used for specifying a
negative security token

You must add the special
security token declaring
that the document is
public:

com.exalead.papi.helper.SecurityMeta.PUBLIC_SECURITY_TOKEN

windows:S-1-5-21-3495842611
-1063732614-555398628-5176

or

~windows:S-1-5-21-3495842611
-1063732614-555398628-5176

notes:cn=Doe/
cn=Exalead/cn=com
or ~notes:cn=Doe/
cn=Exalead/cn=com

file_name String Name of the file.

file_size ulong The size in bytes of the
data associated to the
document.

42

Connector Programmer - 43

Metadata Examples

Name Format Description Example

title String The title associated to the
document.

To create categories in the Exalead CloudView, the Indexing System considers both the original
metadata and the metadata extracted from the document content. The priority rules for metadata
may be configured in the Indexing System administration interface. For example:

• The Indexing System uses both the mimeHint and filename of the document master Part,
and the content type detected by an analysis of the source to generate a Top/Attributes/
Kind category.

• The Indexing System uses both the language meta and the detected language from the
document text to generate a Top/Attributes/Language category.

44 - Connector Programmer

Using the Push API Client

Using the Push API Client

The Push API Client allows you to write applications in Java or C# that push documents to the
index for all versions of Exalead CloudView

It is designed for Exalead partners and contractors who want to index new data sources for
Exalead CloudView.

Note: See the Push API sample application delivered with the Exalead CloudView Connectors
Java SDK or in the /INSTALLDIR/sdk/cloudview-sdk-java-connectors/samples
directory.

Installing the Push API Client

Instantiating the Push API Client

Operations and states

Indexing your first PAPI document

Indexing a Document Collection

Listing Synced Documents

Updating Documents

Monitoring the Index

Installing the Push API Client

Java project requirements

This section explains how to use the Push API V4 in your Java project:

Prerequisites Files required Recommended

Java v1.5 or later required papi-java-client.jar Java documentation for the Client
library

.NET project requirements

This section explains how to use the Push API V4 Client in your .NET project.

Connector Programmer - 45

Instantiating the Push API Client

Prerequisites Files required Recommended

Visual Studio 2005/2008 and
higher

.Net - version 2.0 and higher

Exalead.PushApi.Client.dll

Exalead.PushApi.Client.xml

.NET documentation for the Client
library

Instantiating the Push API Client

The first step in writing an application is to create a Push API client instance to connect to Exalead
CloudView.

You must specify the connector name (in connectorName) that will be displayed in the
Administration Console, for example, myPapiApp.

The connector name allows you to distinguish between two documents coming from two
different connectors. Thus a document identifier in Exalead CloudView is made as follows:
(connectorName, documentURI).

Example 1. Java code

import com.exalead.papi.helper.*;
final PushAPI papi = PushAPIFactory.createHttp(PushAPIVersion.PAPI_V4, host, port, connectorName,
connectorType, login, password);

Example 2. C# code

using Exalead.PushApi.Client;
PushAPI papi = PushAPIFactory.CreateHttp(host, port, connectorName, connectorType, login, password);

Operations and states

Operations

The basic PAPI operations are the following:

Operation Description

AddDocument Creates a document including the parts, URI, metas, etc.

GetDocumentStatus Using the documents URIs, it retrieves the stamps and their statuses to
determine the statuses of documents.

Delete The following methods are available:

• delete a document identified by its URI.

46 - Connector Programmer

Document statuses

Operation Description

• deleteDocumentRootPath – deletes a collection of documents
(recursively or not) matching a given root path. The hierarchy is based
on the slashes “/”of the URI.

• deleteDocumentsWithPrefix – deletes all child documents under
a root prefix. This method is useful if the document hierarchy is not
based on slashes, but can be risky as it does not have any filtering
mechanism. For example, if you have the following documents:

◦ eno:bo:master

◦ eno:bo:masterpart

◦ eno:bo:masterpart:subpart1

◦ eno:bo:master:subpart2

Using deleteDocumentsWithPrefix(“eno:bo:master”)
will delete all documents with this prefix, even if you want to delete
eno:bo:master and eno:bo:master:subpart2 only.

Enumerate Lists the Exalead CloudView documents and their stamps, given a URI
prefix (recursively or not).

Checkpoints Sets, retrieves or removes checkpoints. For example, to perform
incremental updates easily.

UpdateDocument Updates a document including parts and metas.

Document statuses

Because some operations are performed asynchronously (add, delete, set checkpoint), it's
important to know at which state of the processing flow the command is performed.

The above operations can have the following document statuses:

Status Description

Initial Data is only in the source (not already sent to the index by the connector).

Pushed The document has been received by the Exalead CloudView index, but can
be lost if a crash occurs before the sync.

All Add(), Delete() operations create a document in the Pushed state.

GetDocumentStatus(), GetCheckpoint(),
EnumerateCheckpointsInfo() operate on documents pushed,
synced, and searchable.

Connector Programmer - 47

Session handling

Status Description

Synced The document has been securely synced to disk. This guarantees crash-
proofness. Documents cannot be lost.

EnumeratesSyncedEntries() operates on document synced.

Searchable The document can be found at search time.

Session handling

The Push API session handling mechanism helps guarantee the consistency of a stream of PAPI
operations, even in the event of a PAPI server restart between operations.

The mechanism can be used by calling startPushSession() before sending your PAPI
operations, and stopPushSession() at the end of your operations. If an unexpected restart
occurs, the next operation will trigger a session identifier mismatch.

Internally, startPushSession asks the remote Push API server for its current session identifier,
created when the server starts. This identifier will be used in all further client commands to ensure
that the server keeps the same identifier. Any command with a session identifier mismatch will fail
with an error. stopPushSession clears the current session identifier. All further client commands
will no longer use the session identifier after this call.

Note: For a managed connector, the startPushSession() and stopPushSession calls are
made automatically by the framework and do not have to be included in the connector code. For
an unmanaged connector, the startPushSession() and stopPushSession calls must be
included manually in the connector code.

Indexing your first PAPI document

Run the sample program

This section explains how to run the sample program to index your first document.

Example 3. Java Code

import com.exalead.papi.helper.Document;
import com.exalead.papi.helper.Meta;
import com.exalead.papi.helper.Part;
// [...]
final PushAPI papi = createConnection(...);
//new document (uri , stamp)
final Document doc = new Document("doc1", "2014-03-15");
// create the metas

48 - Connector Programmer

Run the sample program

doc.addMeta(new Meta("title", "My document's title"));
doc.addMeta(new Meta("date", "2014-03-20"));
doc.addMeta(new Meta("size", "5493"));
doc.addMeta(new Meta("approved", "false"));
// master part
final byte[] bytes = new String("the text to index...").getBytes("UTF-8");
// if you don't specify part name, the part is considered as Master part
final Part masterPart = new Part(bytes);
masterPart.setEncoding("UTF-8");
masterPart.setFileName("filename.txt")
doc.addPart(masterPart);
// another part
final Part part = new Part("Second part",bytes);
part.setEncoding("UTF-8");
part.setExtension("txt");
doc.addPart(part);
// push the document
papi.addDocument(doc);

Example 4. C# Code

This code snippet demonstrates how to send the document.

//How to send a document.
void IndexDocument()
{
 Document doc = new Document("doc1");
 // the stamp associated to the document
 doc.Stamp = "2014-03-15";
 // create the metas
 MetaContainer metaContainer = new MetaContainer();
 metaContainer.AddMeta(new Meta("title", "My document's title"));
 metaContainer.AddMeta(new Meta("date", "2014-03-20"));
 metaContainer.AddMeta(new Meta("size", "5493"));
 metaContainer.AddMeta(new Meta("approved", "false"));
 doc.MetaContainer = metaContainer;
 PartContainer partContainer = new PartContainer();
 // master part
 byte[] bytes = new UTF8Encoding().GetBytes("the text to index...");
 Part masterPart = new Part(bytes);
 masterPart.Encoding = "UTF-8";
 masterPart.Filename = "foo.txt";
 partContainer.AddPart(masterPart);
 Part part = new Part(bytes);
 part.Encoding = "UTF-8";
 part.Filename = "foo.txt";
 partContainer.AddPart(part);
 doc.PartContainer = partContainer;
 // push the document

Connector Programmer - 49

How to force the indexing of pending operations

 papi.AddDocument(doc);
}

How to force the indexing of pending operations

To force indexing, you must call the two following methods.

Example 5. Java Code

// This forces a flush to disk
papi.sync()
// This triggers the indexing of committed documents.
// In V6R2014 and higher, the task queue is optional (no task queue by default)
// If there is no task queue, the following method may commit an indexing job if a
// document analysis has been started. Unlike, the sync method, this method does not
// block the PAPI
papi.triggerIndexingJob()

Example 6. C# Code

// This forces a flush to disk
papi.Sync()
// This triggers the indexing of committed documents.
// In V6R2014 and higher, the task queue is optional (no task queue by default)
// If there is no task queue, the following method may commit an indexing job if a
// document analysis has been started. Unlike, the sync method, this method does not
// block the PAPI
papi.TriggerIndexingJob()

Important: In V6R2014 and higher versions, the triggerIndexingJob() method may commit
an indexing job if a document analysis has been started. Unlike, the sync() method, this method
does not block the PAPI.

Important: In Exalead CloudView V6, the sync() method should not be called by the connector
during standard indexing. It is controlled by the Force Indexing after scan option in the
Administration Console > Connectors > Deployment > Push API section. When this option
is selected, Exalead CloudView will automatically trigger the indexing job after each scan. You
should use the sync() method for very specific use cases only. For example, if you need to make
a diff between indexed documents in Exalead CloudView and documents in the source. In that
case, you must: push new documents, make a sync() to trigger the indexing job, then enumerate
synced entries to make a diff with your source.

Check the document status

You can use GetDocumentStatus to retrieve the status of a specific document using its URI.

Example 7. Java Code

50 - Connector Programmer

Indexing a Document Collection

void getDocumentStatus() throws PushAPIException {
 final String uri = "doc1";
 final DocumentStatus ds = papi.getDocumentStatus(uri);
 if (ds.isExist()) {
 System.out.println("EXISTS! Stamp = " + ds.getStamp());
 } else {
 System.out.println("MISSING!!!");
 }
 }

Example 8. C# Code

public void GetDocumentStatus()
{
 string uri = "doc1";
 DocumentStatus ds = papi.GetDocumentStatus(uri);
 if (ds.Exist)
 Console.WriteLine("EXISTS! Stamp = " + (ds.Stamp ?? "(null)"));
 else
 Console.WriteLine("MISSING!!!");
}

Indexing a Document Collection

This section explains how to set the document URI to the filesystem path, so that the URI tree
structure reflects the filesystem tree structure (required to be able to use PAPI enumeration to
detect new and deleted documents).

The following code snippets demonstrate the new Document constructor.

Example 9. Java Code

import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import org.apache.commons.io.IOUtils;
import org.apache.log4j.Logger;
import com.exalead.papi.helper.Document;
import com.exalead.papi.helper.Part;
import com.exalead.papi.helper.PushAPI;
import com.exalead.papi.helper.PushAPIException;
public class FolderIndexer {
 public FolderIndexer(final PushAPI papi, final Logger logger) {
 this.papi = papi;
 this.logger = logger;
 }

Connector Programmer - 51

Indexing a Document Collection

 void index(final File folder) {
 for (final File file : folder.listFiles()) {
 if (file.isFile()) {
 try {
 final InputStream stream = new BufferedInputStream
 (new FileInputStream(file));
 try {
 final byte[] bytes = IOUtils.toByteArray(stream);
 final Document doc = new Document(file.getAbsolutePath(),
String.valueOf(file.lastModified()));
 doc.addPart(new Part(bytes));
 papi.addDocument(doc);
 } catch (final IOException e) {
 logger.error("Could not read file " + file.getAbsolutePath(), e);
 } catch (final PushAPIException e) {
 logger.error("Could not send file to indexing server", e); }
 } catch (final FileNotFoundException e) {
 logger.error("File does not exist: " + file.getAbsolutePath(), e);
 }
 }
 }
 }
 private final PushAPI papi;
 private final Logger logger;
}

Example 10. C# Code

public void IndexDocumentCollection()
 {
 foreach (string uri in Directory.GetFiles("."))
 {
 Console.WriteLine("Push document : " + uri);
 Document doc = new Document(uri);
 FileInfo fileInfo = new FileInfo(uri);

 // the stamp associated to the document
 doc.Stamp = fileInfo.LastWriteTime.ToString();

 // create the metas
 MetaContainer metaContainer = new MetaContainer();
 metaContainer.AddMeta(new Meta("creation_date",
 fileInfo.CreationTime.ToString()));
 metaContainer.AddMeta(new Meta("size",
 fileInfo.Length.ToString()));
 doc.MetaContainer = metaContainer;
 PartContainer partContainer = new PartContainer();
 // master part
 byte[] bytes = File.ReadAllBytes(uri);

52 - Connector Programmer

Listing Synced Documents

 Part masterPart = new Part(bytes);
 masterPart.Extension = fileInfo.Extension;
 partContainer.AddPart(masterPart);
 doc.PartContainer = partContainer;

 // push the document
 papi.AddDocument(doc);
 }
 }

Listing Synced Documents

Before listing the Exalead CloudView index, you need to ensure that changes sent by the
connector are taken into account. You can do so by using the sync method of the Push API, or by
calling the setCheckpoint method with the sync parameter set to "true".

Checkpoints

This section explains what is a checkpoint and how to use it.

A checkpoint is a string value associated to a connector. Multiple checkpoints are possible for a
connector.

Two methods are used to manipulate the checkpoint: Get and Set methods.

Note: Get operates on Synced state => a Get performed immediately after a Set may not return
the same value.

The setCheckpoint method can be used to sync the previous operations by setting the sync
parameter to true. It can also be used to know whether the operation status is Searchable. See
Operations and states.

Typical use cases of checkpoint operations:

• Store the last synchronization date of a folder.

• Store the last eventId in a journal of events.

• Safely sync to disk previous operations (sync set to true).

• Allow tracking of operations state to know whether documents are searchable; see Operations
and states.

Sync code snippet

Below is a code sample to sync documents at the end of the scan operation.

Connector Programmer - 53

List documents

Example 11. Java Code

// Example of sync.
public void SyncDocuments(final Date indexingStartDate) {
papi.setCheckpoint(String.valueOf(indexingStartDate), "sync date", true);
}

Example 12. C# Code

// Example of sync.
 public void SyncDocuments(DateTime indexingStartDate)
{
 papi.SetCheckpoint(indexingStartDate.ToString(), "sync date", true);
}

List documents

Below is a code sample to enumerate the documents of a specified folder.

Example 13. Java Code

for (final SyncedEntry doc : papi.enumerateSyncedEntries("myfolder", EnumerationMode.RECURSIVE_DOCUMENTS)) {
 System.out.println("uri : " + doc.getUri() + " stamp : " + doc.getStamp());
}
// no need to close Iterator because the end is reached

Example 14. C# Code

//Example of the enumeration of document in a specified folder.
public void Enumerate()
{
 string rootPath = "myfolder";
 EnumerationMode mode = EnumerationMode.RECURSIVE_DOCUMENTS;
 foreach (SyncedEntry entry in new
 SyncedEntriesEnumerator(papi.EnumerateSyncedEntries(rootPath, mode)))
 {
 Console.WriteLine("URI = " + entry.Uri + ", Stamp = " + (entry.Stamp ?? "(null)"));
 }
}

Updating Documents

This section explains which methods you should use for partial and full document updates.

• For partial updates, use the updateDocument methods. See void
updateDocument(Document document, string[] fields) and void
updateDocumentList(Document[] documentList, string[][] fieldsList).

54 - Connector Programmer

Monitoring the Index

• For full updates, use the addDocument method. See void addDocument(Document document)
and void addDocumentList(Document[] documentList).

Monitoring the Index

You can use the areDocumentSearchable method to know whether the last pushed documents
are searchable.

Example 15. Java Code

static void waitForDocumentsAreSearchable() throws PushAPIException {
 // get the serial that can be used to track processing status of documents
 final BigInteger serial = papi.setCheckpoint("no value", "foo");
 // trigger indexing job
 papi.triggerIndexingJob();
 // wait for documents searchable
 try {
 while (!papi.areDocumentsSearchable(serial)) {
 Thread.sleep(1000);
 }
 } catch (final InterruptedException e) {
 e.printStackTrace();
 }
 }

Example 16. C# Code

static void WaitForDocumentsAreSearchable()
{
 // get the serial that can be used to track processing status of documents
 ulong serial = papi.SetCheckpoint("no value", "foo");
 // trigger indexing job
 papi.TriggerIndexingJob();
 // wait for documents searchable
 while (!papi.AreDocumentsSearchable(serial)) {
 Thread.Sleep(1000);
 }
 }

Connector Programmer - 55

Push API Connector Framework

Push API Connector Framework

The Push API Connector Framework allows you to develop custom Java connectors that push
documents to Exalead CloudView

This connector can be deployed, configured and managed using the Exalead CloudView functions.

The Framework is designed for Exalead partners and contractors who want to index new data
sources in Exalead CloudView.

The development framework delivered with Exalead CloudView is located in <INSTALLDIR>\sdk
\

In this package, you will find all the components that you need to build connectors or security
sources, that can be plugged and managed by Exalead CloudView using the Java programming
language.

The SDK contains the following directory and files:

• sdk/java-customcode/docs/api – API Documentation

• sdk/java-customcode/lib/

◦ papi-java-client.jar

◦ papi-java-connector.jar

◦ security-java-api.jar

• sdk/java-customcode/samples/connectors/samples/

◦ example-filesystem-connector.jar

Connector Framework Prerequisites

Using the Eclipse plugin

Implementing the Connector

Packaging the connector as a plugin

Implementing Format Plugins

Extending the Files Connector through Plugins

Connector Framework Prerequisites

To develop a custom connector using the Push API Java Connector Framework, you must first
create a Java project, for example, in Eclipse. The requirements and dependencies are detailed
below.

56 - Connector Programmer

Global Requirements

Note: We recommend using the Exalead CloudView Eclipse plugin that allows you to easily
develop, package and deploy your custom components.

Global Requirements

Global requirements for JAR projects are:

• CloudView V6.x

• a Java JDK (version 1.5 or later)

Dependencies

A Push API Connector is a JAR project that has the following dependencies:

• papi-java-connector.jar (contains Connector definition)

• papi-java-client.jar (contains PushAPI definition)

All dependencies should be used to compile your project.

Using the Eclipse plugin

The Exalead CloudView Eclipse plugin is provided to help you develop and deploy plugins in
Eclipse Indigo 3.7 or later. The documentation is packaged with this plugin and is available at
http://eclipse.exalead.com .

You can develop custom components for:

• Exalead CloudView core

◦ Connectors

◦ Document Processors

◦ Meta Processors

◦ Prefix Handlers

◦ Push API Filters

◦ Query Processors

◦ Security Sources

• Exalead CloudView Mashup

◦ Widgets

◦ Feeds

Connector Programmer - 57

http://eclipse.exalead.com
http://eclipse.exalead.com
http://eclipse.exalead.com

Implementing the Connector

◦ Feed Triggers

◦ Mashup Triggers

◦ Pre-Request Triggers

◦ MEL Functions

◦ Security Providers

Example 17. Why use it

• Easy deployment: you can package your plugin with customized components to be exported
and deployed automatically on the selected instance of Exalead CloudView. For Mashup UI,
this avoids rebuilding and redeploying the standalone-mashup-ui.war package for each
customized item.

• Quick export: you can package your plugin with classes that you want to export and then
export it as a zip file on a selected path.

• Manage installs: you can list the deployed plugins on a selected instance of Exalead
CloudView and then select the plugins to remove.

• Debug connectors: you can use the debugging functionality to debug the code of custom
connectors on-the-fly and avoid redeploying on an instance to check your code changes.

Implementing the Connector

This section describes how to implement your connector.

Manage the configuration

To manage the connector’s configuration, you must first extend the ConnectorConfig class.
Your class must follow the recommendations described in Top level configuration class(es).

A basic filesystem connector needs to know where to start crawling for files. By specifying a root
folder, the connector will recursively crawl all the files located in this folder.

See the DemoFileSystemConnectorConfig sample code:

package com.exalead.papi.framework.connectors.example.filesystem;
import com.exalead.papi.framework.connectors.ConnectorConfig;
import com.exalead.config.bean.IsMandatory;
import com.exalead.config.bean.PropertyLabel;
import java.io.File;
/**
 * The configuration class for the filesystem connector.
 */
public class DemoFileSystemConnectorConfig extends ConnectorConfig {

58 - Connector Programmer

Encrypt the password

 private File startingFolder = null;
 @IsMandatory(false)
 @PropertyLabel("My starting folder")
 public void setStartingFolder(final File startingFolder) {
 this.startingFolder = startingFolder;
 }
 public File getStartingFolder() {
 return startingFolder;
 }
 /**
 * Optional method listing all option names as they will be displayed in the UI
 **/
 public static String[] getMethods() {
 return new String[] { "StartingFolder" };
 }
}

Encrypt the password

If your connector requires an encrypted password to connect to the source (for example, a
database), then you must define a Password property in the configuration. You add a setter
method as follows.

...import com.exalead.config.security.Crypter;
public class MyDataBaseConf extends ConnectorConfig{
 private String password;
 // setter to define Password property
 @BeeKeyValueType("encrypted")
 public void setPassword(final String password) {
 this.password = Crypter.getInstance().decrypt(password);
 }
...

Implement the connector

To implement a Java connector, you must extend the Connector class. The constructor of your
class must have your ConnectorConfig-derived class as sole parameter.

The second class is your ConnectorConfig, in this case,
BasicFilesystemConnectorConfig

public class BasicFilesystemConnector extends Connector {
 private final BasicFilesystemConnectorConfig config;
 public BasicFilesystemConnector(final BasicFilesystemConnectorConfig config)
 throws Exception {
 super(config);
 this.config = config;
 }

Connector Programmer - 59

Implement the connector

Note: The previous version of the constructor, taking an additional PushAPI object as first
parameter, is now deprecated and must not be used.

The following methods must be implemented:

Method Description

public void scan(PushAPI papi,

String mode, Object modeConfig)

throws Exception;

This method is used to scan/synchronize all
documents. The provided PushAPI object is to be
used for synchronization operations.

The optional mode parameter, and its
optional configuration object, can be used
in specialized scan cases defined with the
@ConnectorCapabilities annotation.

You can also set the @ConnectorCapabilities
annotation to get a continuous scan. See Implement
a continuous scan.

public Document fetch(String uri)

throws Exception

This method is used to retrieve a document from the
source, for example, to create a thumbnail or when
a user clicks on a search result.

uri is the URI of the indexed document.

public MetaContainer

getDocumentSecurityTokens(String

uri);

This method is used to retrieve the security tokens
of a document. This method is not used during
indexing but when Exalead CloudView needs to
retrieve security tokens at real time.

uri is the URI of the indexed document.

When you push documents, you must add a security
meta:

document.addMeta("security",

"mytoken");

You can use the following helper to self-abort a synchronization in progress:

/**
 * Helper which can be called by the connector code to self-abort.
 * @param reason the reason why the abort was issued ; may be null
*/
 @Override
 public final void selfAbortScan(String reason);

60 - Connector Programmer

Implement the connector

You can also use the following triggers, which are called upon aborted scan, suspended scan, or
resumed scan, to execute additional operations:

/**
 * Called by the framework when scan abort is requested.
 * This method must not change the state of the connector, only wake up some calls
 * which might be blocking.
 * The scan will only be considered as aborted when the scan() method has returned.
 */
 @Override
 public void onScanAborted() throws Exception;
/**
 * Called by the framework when scan suspend is requested.
 * This method must not change the state of the connector, only wake up some calls
 * which might be blocking.
 * It is then the responsibility of the connector to set the status of the connector
 * to SUSPENDED when effectively taken into account.
 */
 @Override
 public void onScanSuspended() throws Exception;
/**
 * Called by the framework when scan resume is requested.
 * This method must not change the state of the connector, only wake up some calls
 * which might be blocking.
 * It is then the responsibility of the connector to set the status of the connector
 * to WORKING when effectively taken into account.
 */
 @Override
 public void onScanResumed() throws Exception;

You should also call the following helper regularly inside long worker loops (long enumeration
of documents) to be able to exit gracefully if an abort has been requested by the user, or by the
internal framework:

/**
 * Checks the current connector status and, if an abort command was
 * sent, throws an ConnectorAbortingException exception.
 *
 * This function is a helper which can be called by connector. It is not
 * called by the framework.
 **/
 @Override
 public void checkAbortingOperation() throws ConnectorAbortingException;

See the sample Java code for a basic filesystem connector
(DemoFileSystemConnector.java) located in <INSTALLDIR>\sdk\cloudview-sdk-
java-connectors\samples\fsbasic.

Connector Programmer - 61

Implement a continuous scan

Implement a continuous scan

Scan modes describe how connectors index documents. By default, a connector has one scan
mode called full which starts when you click the Scan button in the Administration Console.
Additional scan modes can be developed and provided with the connector. They are started when
you select CONNECTOR NAME > Operation > More actions and click their corresponding Run
buttons.

Scan modes are described by a ScanModeDefinition. A ScanModeDefinition contains a
workflow which describes how a connector will process the indexing. The workflow can be:

• a scan-based indexing (Wokflow.SCAN_BASED)

• or a permanent scan (Workflow.PERMANENT_WORK).

A scan-based indexing exits when the scan is done. The connector starts, scans and indexes
documents in the scan() method, and quits. This method is either called periodically to index new
documents automatically, or manually by clicking the Scan button.

A permanent-work indexing (also called continuous scan) does not exit when a first scan is done.
The connector loops forever in the scan() method, indexing new documents permanently. This
method is started automatically by Exalead CloudView just after the connector's initialization,
so that when Exalead CloudView starts, your connector starts running immediately. When a
connector is set to permanent-work mode, we recommend implementing an "abort" command, to
let users click the Abort scan button, when they want the connector to terminate its job and exit.

The following code sample show how to implement the continuous scan.

@ConnectorCapabilities(
 scanModes = {
 @ScanModeDefinition(
 name = "full",
 workflow = ConnectorCapabilities.Workflow.PERMANENT_WORK)
 }
)public class ContinuousScanConnector extends Connector implements CVComponent {
 public ContinuousScanConnector(ContinuousScanConfig config) throws Exception {
 super(config);
 }
 @Override
 public void scan(final PushAPI papi, final String scanMode, final Object scanModeConfig)
 throws Exception {
 while(true) {
 try {
 // do the job, index documents
 // ...
 // check for an abort
 if(getStatus(scanMode) == ConnectorStatus.ABORTING) {

62 - Connector Programmer

Implement concurrent scan modes

 // log the abort and quit
 break;
 }
 }
 catch(final Exception e) {
 // log the exception
 // handle the problem
 }
 finally {
 // clean everything
 // be ready for a next run
 }
 }
 }
}

Implement concurrent scan modes

By default, the connector framework is set to launch scans one after the other. You cannot run
several scan operations at the same time mainly for thread safety.

For example, let’s say that your connector is scheduled to launch full scan operations on a regular
basis (for example, every 5 minutes) and that you want to run another scan operation once a week
to update the index regarding what was deleted in the source content. The two scan operations
may conflict at a given time and the second operation may not even be triggered.

To tackle this issue, you can set your connector behavior to allow concurrent scan modes using
the ConnectorCapabilities#isReentrant() annotation property set to false.

Validate the connector configuration

You can write a config check class to validate the configuration of your connector. This class must
implement the CVComponentConfigCheck interface and override the check() method. In this
method, you should check whether all parameters of your configuration contain valid values.

If a parameter contains an invalid value, you should throw a ConfigurationException with a
message describing the problem. The check() method is either called when you click the Check
config button in the connector Configuration tab, or when you click the Apply button. Throwing
a ConfigurationException will stop the validation process and you can't apply an invalid
configuration.

The check method may also be called by buildgct when Exalead CloudView is not started.

Let's suppose that your connector is in the MyConnector class and its configuration in the
MyConnectorConfig class.

public class MyConnectorConfigCheck implements CVComponentConfigCheck<MyConnectorConfig> {

Connector Programmer - 63

Add logging capabilities

 @Override
 public void check(final MyConnectorConfig config, final boolean useNow) throws ConfigurationException,
Exception {
 // use the MyParam getter
 final int myParam = config.getMyParam();
 // let's check the parameter value
 if(myParam < 0) {
 final ConfigurationException e = new ConfigurationException("Invalid MyParam value (must be >= 0)");
 e.setConfigKey("MyParam"); throw e;
 }
 }
}

And you should annotate your connector with a @CVComponentConfigClass.

@CVComponentConfigClass(configClass = MyConnectorConfig.class,
 configCheckClass = MyConnectorConfigCheck.class)public class MyConnector extends Connector {}

Add logging capabilities

When a connector runs many things can happen. Knowing which exceptions where met by your
connector is necessary to fix issues. This is why it is better to avoid creating your own loggers
using either the standard java logger or the Log4J Logger.getLogger().

We recommend using the Connector.getLogger() method, or even better, the
Connector.getLogger(String suffix) method. These methods create loggers with
the connector instance name. This allows you to differentiate multiple instances of the same
connector. Use the method with the suffix argument when you have multiple classes.

public class MyConnectorClass extends Connector implements CVComponent {
 Logger thisClassLogger = getLogger();
 MyConnectorSubClass sub = new MyConnectorSubClass(getLogger("MyConnectorSubClass"));
 // ...
}
public class MyConnectorSubClass {
 public MyConnectorSubClass(Logger logger) {
 // ...
 }
}

When performing tasks within other tasks, you can use
com.exalead.log4ng.Log4NGContext which will append pushed contexts before each
logging message in the same order they were pushed. This context stack is different for each
thread.

For example:

Log4NGContext.push("State1");
getLogger().error("FIRST LOGGER");

64 - Connector Programmer

Update the connector status

Log4NGContext.push("State2");
getLogger("myLogger").error("SecondLogger");
Log4NGContext.pop();
Thread t = new Thread(new Runnable() {
 @Override
 public void run() {
 Log4NGContext.push("Thread");
 getLogger("myLogger2").error("ThrirdLogger");
 }
});
t.start();
t.join();
getLogger().error("FIRST LOGGER AGAIN");
Log4NGContext.pop();
getLogger().error("FIRST LOGGER ONE LAST TIME");

Would print something like:

State1: FIRST LOGGER
State1: State2: SecondLogger
Thread: ThrirdLogger
State1: FIRST LOGGER AGAIN
FIRST LOGGER ONE LAST TIME

Update the connector status

To update the connector scan status, that is to say the number of documents pushed, deleted and
scanned, you must call the following methods during the scan:

getState(“scan mode”).incPushed();

getState(“scan mode”).incDeleted();

getState(“scan mode”).incScanned();

Where “scan mode” is the name of the scan passed to the scan method.

Packaging the connector as a plugin

Plugins are components or resources that can be hot plugged without restarting the product. They
are installed in the DATADIR, and are therefore instance-wide.

To load your custom code in Exalead CloudView, it must be packaged as a CVPlugin. You can
then easily upload it in the Administration Console.

Plugins can include special component classes, such as connectors, security sources, format
converters, analysis processors, etc. They can also include other materials, such as resources
(linguistics, statistics, etc.).

Connector Programmer - 65

Plugin structure

Each component class within a plugin can have its own configuration. For example, a connector,
will usually have user-defined settings, which will be edited through the Administration Console >
Connectors menu. The framework will handle:

• the configuration editing process,

• the connector instantiation.

Plugin structure

Create a basic plugin

About the CVPlugin public class

Top level component class(es)

Top level configuration class(es)

Setter/Getter methods

Plugin structure

The plugin/component framework allows you to package a set of components within a plugin. The
plugin will typically be deployed from a standalone ZIP file including all the necessary JARs and
resources.

What is a plugin

A plugin is a regular ZIP file using the 1989 PKZip original format, with deflate compression or no
compression (beware to produce compatible files), and must have the following structure:

• META-INF/cvplugin.properties - can define several core properties related to the plugin,
as key=value lines terminated by a line feed.

Note:

Properties can only use ASCII characters, a restriction that Java annotations do not
bear for properties such as "Author" or "Copyright". See Description of the META-INF/
cvplugin.properties file.

• lib/ - subdirectory contains the plugin JAR file(s). The JAR file(s) will be parsed by the
framework to locate all classes, load the required ones, execute initialization steps, etc.

• Other sub-directories can be included to collect additional resources. We strongly recommend
not to put any standalone file at the top level of the ZIP directory structure, and collect
necessary material in a dedicated sub-folder, such as a resources/ sub-folder.

66 - Connector Programmer

Create a basic plugin

Description of the META-INF/cvplugin.properties file

Component Description

plugin.jars A space-separated list of JAR names to be parsed. If defined,
the framework will not scan all the jar files present in the lib/
subdirectory, but only scan those defined in this list.

Example: plugin.jars=mycomponent.jar

plugin.mainClass The main plugin class name. If defined, the framework will use the
given class name instead of searching for a unique CVPlugin-derived
class.

Example: plugin.mainClass=com.example.plugins.Plugin

plugin.author The author name.

We recommend using the @CVPluginAuthor() annotation instead.

plugin.copyright The copyright information.

We recommend using the @CVPluginCopyright annotation
instead.

plugin.description The description.

We recommend using the @CVPluginDescription annotation
instead.

plugin.version The version information.

We recommend using the @CVPluginVersion annotation instead.

Create a basic plugin

The following procedure describes the main steps to create a CVplugin on a Linux environment.

1. Go to your plugin directory:

2. Create the META-INF/ and lib/ subdirectories:

3. Create a cvplugin.properties file under the META-INF/ subdirectory:

4. Copy your JAR component in the lib/ subdirectory:

5. Zip your plugin:

Connector Programmer - 67

About the CVPlugin public class

About the CVPlugin public class

To execute specific initializations through the constructor, you should define a public main class
extending the CVPlugin (com.exalead.mercury.plugin.CVPlugin) class.

CVPlugin class basics

This class must be included in one of the JAR files of the lib/ subdirectory. All classes within the
JAR collection are available by default through the plugin class loader.

If no such class exists, and if there is only one component within the plugin, the framework will use
metadata associated with this unique component.

The name of the CVPlugin-derived class is not important. There should be at most one CVPlugin-
derived class in the classes collection.

/** My plugin. **/
@CVPluginDescription("My Wonderful Plugin")
@CVPluginVersion("1.0")
@CVPluginCopyright("Copyright Wonders & Co., All Rights Reserved")
@CVPluginAuthor("Wonders & Co.")
public class Plugin extends CVPlugin {
 protected final File installDirectory;
 /** Default constructor. **/
 public Plugin(final String name, final File installDirectory) {
 super(name, installDirectory);
 this.installDirectory = installDirectory;
 // Optionally, define the plugin initialization code here:
 }
}

CVPlugin class annotations

This CVPlugin-derived plugin class may define a number of useful annotations (located in the
com.exalead.mercury.plugin package) to provide additional information.

Annotation Description

@CVPluginAuthor The plugin author name(s).

@CVPluginCopyright The plugin copyright information.

@CVPluginDescriptionThe plugin description.

@CVPluginVersion The plugin version information.

68 - Connector Programmer

Top level component class(es)

Top level component class(es)

A component is a class implementing the com.exalead.mercury.component.CVComponent
interface.

This top-level interface is an empty interface (no defined method inside) designed to be
automatically detected by the framework.

All available non-inner classes implementing this interface are collected during startup
while scanning all JARs, and allow to list a subset of components implementing a
specialized class or interface at runtime. For example, all components deriving from the
com.exalead.papi.framework.connectors.Connector class are listed to collect the list of
available connectors in the product.

Top level component class annotations

Annotation Description

@CVComponentDescription

(com.exalead.mercury.component.

CVComponentDescription)

If specified, this is the short description of the
connector used in the select box of the Add
connector dialog box in the Administration Console.

Example:

@CVComponentDescription("My Wonderful

Connector Component")

@CVComponentConfigClass

(com.exalead.mercury.component.config.

CVComponentConfigClass)

This annotation defines the:

The associated CVComponentConfig derived
class used for the configuration.

CVComponentConfigCheck

(com.exalead.mercury.component.config.CVComponentConfigCheck)

used to enhance the configuration check of the
CVComponent.

Example:

@CVComponentConfigClass(configClass

= FilesystemConnectorConfig.class,

configCheckClass =

ConnectorConfigCheck.class)

@CVComponentLabel

(com.exalead.mercury.component.CVComponentLabel)

If specified, this is the label of the component. The
label is used in the Administration Console when
selecting a custom document processor, semantic
processor, or query prefix handler.

Connector Programmer - 69

Top level configuration class(es)

Annotation Description

For example: @CVComponentLabel("My
document processor")

@PropertyLabel

(com.exalead.config.bean.PropertyLabel)

DEPRECATED

Similar to the @CVComponentDescription
annotation.

@IsEmptyConfig

(com.exalead.config.bean.)

The given configuration class is empty (no setters at
all). Without this annotation, an empty class would
be rejected at configuration build time.

@IntrospectableComponent

(com.exalead.mercury.component.

IntrospectableComponent)

This annotation defines the:

CVComponentIntrospector

(com.exalead.mercury.component.CVComponentIntrospector)

derived co-class used for introspection queries,
for example the Check connectivity operation
available in the Administration Console.

and a list of supported query classes
derived from SupportedQuery
(com.exalead.mercury.component.SupportedQuery).

Example:

@IntrospectableComponent(introspectorClass = MyConnectorIntrospector.class, supportedQueries = {
 @SupportedQuery(queryClass = CheckConnectivity.class),
 @SupportedQuery(queryClass = TestConnection.class),
 @SupportedQuery(queryClass = ListDirs.class),
 @SupportedQuery(queryClass = ListFiles.class),
 @SupportedQuery(queryClass = ListForms.class),
 @SupportedQuery(queryClass = ListItems.class),
 @SupportedQuery(queryClass = ListViews.class) })

Top level configuration class(es)

A configuration class defines a list of configuration properties that can be used by a component.

The framework will usually:

• manage the serialized configuration (as an XML object),

• unserialize it,

• create an instance of the given class, and allow you to edit its properties,

• handle the configuration of components from the Administration Console.,

70 - Connector Programmer

Top level configuration class(es)

• etc.

The exact workflow is specific to each component type. For example, some component types may
not have any configuration at all.

A configuration class must implement the empty CVComponentConfig
(com.exalead.mercury.component.config.CVComponentConfig) interface to be
accepted as a valid configuration class.

Example:

/**
 * The configuration class for the filesystem connector.
**/
@CVComponentDescription("Filesystem simple demo (java)")
public class DemoFileSystemConnectorConfig extends ConnectorConfig
{
 private File startingFolder = null;
 @IsMandatory(false)
 public void setStartingFolder(final File startingFolder)
 {
 this.startingFolder = startingFolder;
 }
 public File getStartingFolder()
 {
 return startingFolder;
 }
 /**
 * Optional method listing all option names as they will be displayed in the UI
 **/
 public static String[] getMethods()
 {
 return new String[] { "StartingFolder" };
 }
}

Note: An additional static method named getMethods may be defined in a configuration class,
to return properties in a specific order. This method should be public, taking no argument, and
returning an array of String corresponding to the ordered property names.

Example :

public static String[] getMethods()
 {
 return new String[]{"Proxy", "ProxyPort"};
 }

Top level configuration additional interfaces

Connector Programmer - 71

Top level configuration class(es)

Interface Description

CallAfterFill

(com.exalead.config.bean.CallAfterFill)

Allows you to define a callAfterFill() observer
method to be called upon filling.

This method is used to perform specific post-actions
related to filled properties.

This interface is not required to get a working
configuration.

CVComponentConfigSamplify

(com.exalead.mercury.component.config.

CVComponentConfigSamplify)

Allows you to define a samplify() method, that
will be called when a sample object is requested by
the framework.

This method is used to fill properties with a real-
world example. For example, a Hostname property
may be filled with myhostname

The following example shows the CVComponentConfig class using the samplify method.

package com.exalead.connectors;
import com.exalead.papi.framework.connectors.ConnectorConfig;
import com.exalead.config.bean.ConfigurationException;
import com.exalead.config.bean.IsMandatory;
import com.exalead.mercury.component.config.CVComponentConfig;
import com.exalead.mercury.component.config.CVComponentConfigSamplify;
public class SamplifyConnectorSampleConfig
extends ConnectorConfig
implements CVComponentConfigSamplify {
 @IsMandatory(true)
 public void setPrimaryServer(final WebServer primaryServer) {
 this.primaryServer = primaryServer;
 }
 public WebServer getPrimaryServer() {
 return this.primaryServer;
 }
 @IsMandatory(false)
 public void setSecondaryServers(final WebServer[] secondaryServers) {
 this.secondaryServers = secondaryServers;
 }
 public WebServer[] getSecondaryServers() {
 return this.secondaryServers;
 }
 @Override
 public void samplify() {
 // samplify is called after the config instantiation.
 this.primaryServer.setServer("mywebserver.mydomain");
 this.primaryServer.setPort(80);

72 - Connector Programmer

Top level configuration class(es)

 // Thus there will be a default value for the primary server name
 // but it won't appear when adding a new secondary server
 }
 // a webserver is made of a server name and a network port
 public static class WebServer {
 @IsMandatory(true)
 public void setServer(final String server) {
 this.server = server;
 }
 public String getServer() {
 return this.server;
 }
 @IsMandatory(true)
 public void setPort(final int port) {
 if (port < 0 || port > 65535) {
 final ConfigurationException e =
 new ConfigurationException("Invalid network port: " + port);
 e.setConfigKey("Port");
 throw e;
 }
 this.port = port;
 }
 public int getPort() {
 return this.port;
 }
 public static String[] getMethods() {
 return new String[] {
 "Server",
 "Port"
 };
 }
 private String server;
 private int port;
 }
 private WebServer primaryServer = new WebServer();
 private WebServer[] secondaryServers;
 public static String[] getMethods() {
 return new String[] {
 "PrimaryServer",
 "SecondaryServers"
 };
 }
}

The UI should be similar to the following screenshot:

Connector Programmer - 73

Setter/Getter methods

Setter/Getter methods

This section describes the setter and getter methods when packaging your CVPlugin.

About setters

Setters are:

• public methods that do not return any value (void return type),

• whose names are prefixed by set (the property names following the set prefix keep the same
letter case),

• and take exactly one argument (the value to be set).

Setters may bear annotations, see Setter function annotations. Setters annotated with the
IsHidden (com.exalead.config.bean.IsHidden) class are ignored.

These are the setters for the Proxy and ProxyPort properties.

@IsMandatory(false)
@PropertyLabel("Proxy to use")
public void setProxy(final String proxy) {
 this.proxy = proxy;
}
@IsMandatory(false)
@PropertyLabel("Proxy port to use")
public void setProxyPort(final int port) {
 this.port = port;
}

74 - Connector Programmer

Setter/Getter methods

Note: The first upper case is kept for the property name.

Each setter method should be associated with a getter method.

About getters

Getters are:

• public methods returning a value,

• the returned value should be equivalent to the value taken as argument in the setter,

• and take no argument.

Getters do not bear any annotation.

These are the getters for the Proxy and ProxyPort properties.

public String getProxy()
{
 return proxy;
}
public int getProxyPort()
{
 return proxy;
}

Note: The first upper case is kept for the property name.

The available types, recognized by the framework for setters and getters are the following ones:

• The String class.

• Base boolean types: boolean, Boolean.

• Base numerical types: byte, char, short, int, long, float, double, Boolean, Byte, Character,
Short, Integer, Long, Float, Double.

• Any class supporting the public static valueOf method taking exactly one String argument,
and returning an object of its own class (in this case, the toString method from the Object
base class will also be used); such as enums classes.

• Any class taking exactly one String argument (in this case, the toString method from the
Object base class will also be used); such as the Date class.

• Generic Interface class (to accept outer components in configurations; used internally only).

• An array of an allowed type.

Example of array parameters:

public class NotesServerConfig implements CVComponentConfigSamplify {
 public static class NotesDBRule

Connector Programmer - 75

Setter/Getter methods

 {
 public NotesDBRule(final String rule)
 {
 this.rule = rule;
 }
 public NotesDBRule()
 {
 }
 protected String rule;
 public String getRule()
 {
 return rule;
 }
 @Override public String toString() {
 return getRule();
 }
 }
 private NotesDBRule[] includes = new NotesDBRule[] {};
 @IsMandatory(false)
 @PropertyLabel("Include rules (regular expression)")
 public void setIncludes(final NotesDBRule[] includes) {
 this.includes = includes;
 }
 public NotesDBRule[] getIncludes() {
 return includes;
 }
}

Setter function annotations

The following annotation classes may be used in setters to provide additional information on
property types and settings.

Annotation Description

@BeeKeyValueType

(com.exalead.config.bean.BeeKeyValueType)

Possible values include:

• string for generic string,

• numeric for a signed long integer value,

• enum:value1,value2... for a selection
restricted to certain values.

• encrypted for values that shall be encrypted,
such as passwords.

76 - Connector Programmer

Setter/Getter methods

Annotation Description

• hidden for values that must not be displayed/
edited at all. Consider using @IsHiddenUI
instead.

@Connector

(com.exalead.config.bean.Connector)

Displays a combo box to list configured connectors.
The list of connectors can be restricted with the
following flags:

• allowSelf: if the component describes a
connector, it indicates whether this connector is
included in the combobox (default is false).

• allowDeployed: indicates whether deployed
connectors are listed (default is true).

• allowUndeployed: indicates whether
undeployed connectors are listed (default is true)

• allowUnmanaged: indicates whether
unmanaged connectors are listed (default is true)

• allowManaged: indicates whether managed
connectors are listed (default is true)

• allowedClassId: a regular expression to filter
by connector classid. If the regular expression is
an empty string, then all connectors are listed.

• forbiddenClassId: a regular expression to
exclude connectors by classid.

• allowEmpty: adds an extra empty option in the
combo box. Property value will be "" when this
option is selected.

@DataModelClass

(com.exalead.config.bean.DataModelClass)

Displays a combo box to list available classes in
all configured data models. The data models to
search classes in can be restricted with the following
options (both options are mutually exclusive):

• dataModel: only list classes of the given data
model.

• buildGroup: only list classes of the data model
referenced by the given build group.

Connector Programmer - 77

Setter/Getter methods

Annotation Description

@Date

(com.exalead.config.bean.Date)

Displays a calendar to configure the property
field. The property field will be stored as a string
formatted with the date format specified in the
annotation.

Default date format is: @Date(format=“yyyy-MM-
dd”)

Example: If you add a startDate field with
@Date(format=“yyyy-MM-dd”)
public void setStartDate(String startDate) {
 this.startDate = startDate;
}

The UI will display: Start date: [calendar widget]

And when dates are saved, they will be stored with
the yyyy-MM-dd date format.

@DateTime

(com.exalead.config.bean.DateTime)

Same as @Date with time information.

Default datetime format is:
@DateTime(format=“yyyy-MM-dd

HH:mm:ss”)

@EnumFieldType

(com.exalead.config.bean.EnumFieldType)

The given setter takes only a subset of String
representations (enum) as value.

Example:

@EnumFieldType(possibleValue =

{ @PossibleValueType("red"),

@PossibleValueType("green"),

@PossibleValueType("blue") })

Note: in @PossibleValueType you can associate
a label to each value.

@IsHidden

(com.exalead.config.bean.IsHidden)

The given setter is to be ignored. For example, you
can use it if the function is not part of the bean setter
subset.

Example:

@IsHidden()

78 - Connector Programmer

Setter/Getter methods

Annotation Description

@IsHiddenUI

(com.exalead.config.bean.IsHiddenUI)

The given setter property should not be editable or
displayed, but must still be processed as a regular
property. Use it to hide internal properties.

Example:

@IsHiddenUI()

@IsMandatory

(com.exalead.config.bean.IsMandatory)

If the associated boolean is true, then the given
setter property must be defined (non-empty
unserialized value) so that the configuration can be
considered as valid.

Otherwise, the property will be considered as
optional.

Note: Without this annotation, the default is
mandatory.

Example:

@IsMandatory(false)

@MultiLineString

(com.exalead.config.bean.MultiLineString)

Displays a multi-line text input control.

@Path

(com.exalead.config.bean.Path)

Displays a file chooser widget, that browses
Exalead CloudView host filesystem.

@PropertyDescription

(com.exalead.config.bean.PropertyDescription)

The property description, as a string. Typically
displayed for comment or tooltip. It supports text
only, no HTML code.

Example:

@PropertyDescription("Define the

hostname to be used for the proxy")

@PropertyLabel

(com.exalead.config.bean.PropertyLabel)

The property label, as a string. Typically displayed
for short name.

Example:

@PropertyLabel("Proxy hostname")

@SecuritySource

(com.exalead.config.bean.SecuritySource)

Displays a combo box to list configured security
sources. The list of security sources can be
restricted with the following flags:

Connector Programmer - 79

Setter/Getter methods

Annotation Description

• allowSelf: if the component describes a
security source, indicates whether this security
source is included in the combobox (default is
false)

• allowDeployed: indicates whether deployed
security sources are listed (default is true)

• allowUndeployed: indicates whether
undeployed security sources are listed (default is
true)

• allowedClassId: a regular expression to
filter by security source classid. If the regular
expression is an empty string, then all security
sources are listed.

• forbiddenClassId: a regular expression to
exclude security sources by classid.

• allowEmpty: adds an extra empty option in the
combo box. Property value will be "" when this
option is selected.

@WithSuggest

(com.exalead.config.bean.WithSuggest)

Displays a text input that performs remote
queries to suggest entries. In order to remote
suggestions to work, the CVComponent must
support SuggestOption queries. Here is a full
example:

Component config class:
MyComponentConfig extends ConnectorConfig {
 ...

 private String folder;

 @WithSuggest
 public void setFolder(String folder) {
 this.folder = folder;
 }
}

Component class:
@IntrospectableComponent(introspectorClass=MyComponentIntrospector.class,
supportedQueries = {@SupportedQuery(queryClass = SuggestOption.class)})

80 - Connector Programmer

Setter/Getter methods

Annotation Description
class MyComponent extends Connector {
 ...
}

Introspector class:
class MyComponentIntrospector implements CVComponentIntrospector {
 public Object execute(CVComponentConfig componentConfig, IntrospectionQuery query) throws Exception {
 if (query instanceof SuggestOption) {
 SuggestOption suggestQuery = (SuggestOption) query;
 SuggestOption.SuggestResult result = new SuggestOption.SuggestResult();

 // disambiguate by field name if you have several fields annotated with @WithSuggest
 if ("Folder".equals(suggestQuery.getConfigKey())) {
 String currentValue = suggestQuery.getCurrentValue();
 MyComponentConfig myConfig = (MyComponentConfig) componentConfig;
 String[] suggestedValues = ...;
 result.setSuggestedValues(suggestedValues);
 }

 return result;
 }
 throw new IllegalStateException("Unknown introspection query");
 }
}

Available classes for setters and getters

The following classes can be used in setters and getters.

Class Description

BooleanChecked

(com.exalead.config.bean.BooleanChecked)

Ensures that the value entered for an option is either
true or false.

Use it with boolean options to enforce the option
values to true or false.

BytesValue

(com.exalead.config.bean.BytesValue)

A value representing a number of Bytes, in any SI
Unit.

For example, you can use "10KB" or "10MB" as
value, and still handle an amount of bytes in your
code.

MillisecondsValue

(com.exalead.config.bean.MillisecondsValue)

A value representing a number of milliseconds, in
any SI Unit.

Connector Programmer - 81

Implementing Format Plugins

Class Description

For example, you can use "2min" or "5s" as value,
and still handle an amount of milliseconds in your
code.

OptionalBoolean

(com.exalead.config.bean.OptionalBoolean)

A value representing a tri-state Boolean value, with
checked value (true, false or optional)

KeyValue

(com.exalead.config.bean.KeyValue)

A value representing a pair of strings (key and a
value).

Possible Setter exceptions

A setter may raise exceptions, such as NumberFormatException or
IllegalArgumentException, but we strongly recommend using the following built-in
exceptions.

Recommended exception Description

ConfigurationException

(com.exalead.config.bean.ConfigurationException)

Generic exception thrown when a configuration
exception occurs.

IllegalValueException

(com.exalead.config.bean.IllegalValueException)

Exception thrown when a setter encounters an
illegal value.

Implementing Format Plugins

The Text Extractor (all mime types) component is used in the analysis to extract text
and metadata from various file types (such as Office files, PDF, etc.). A similar component is also
used to produce HTML previews from the same set of file types, and generate thumbnails when
displaying results.

This system can be extended using the plugins mechanism, to support more file types for
extraction at indexing time, but also for HTML preview and thumbnails calculation.

Technical Overview

A format plugin is a regular plugin and its main component can have an associated configuration
object. For more information, see Packaging the connector as a plugin.

The format component must implement:

• DocumentPartTransformer

(com.exalead.pdoc.plugins.DocumentPartTransformer)

82 - Connector Programmer

First method

• and, as usual, CVComponent (com.exalead.mercury.component.CVComponent).

It must provide one of the following constructors:

• Either a default constructor (taking no argument), if the component has no associated
configuration.

• Or, as usual, a constructor taking an object implementing CVComponentConfig. In that
case, a CVComponentConfigClass annotation must be present. See Top level component
class(es).

Note: You may want to extend the DocumentPartTransformer.DefaultImpl class
(com.exalead.pdoc.plugins.DocumentPartTransformer.DefaultImpl) which
already provides default methods.

Two methods must be implemented as described in the following sections.

First method

The first method allows you to advertise the supported output MIME types, that is to say, the MIME
type of data produced after transformation, for the two kinds of transformation (extraction of data,
or display).

/**
 * Get the list of supported MIME output formats per transformation kind.
 * For TransformKind.display, the types advertise the first produced part
 * MIME type. (an hypertext text/html document may have additional parts
 * with different formats)
 *
 * @returns an empty array if the transformation is not supported
 * @param kind
 * the kind of transformation: Note: the returned array may
 * include Format.MIME_GENERIC to advertise a filter producing
 * any type of document or an unknown subset of document types.
**/
 public List<String> getSupporterOutputMime(TransformKind kind);

Example

If the component is able to produce plain text when extracting, and HTML for display, the code can
be:

public List<String> getSupporterOutputMime(TransformKind kind)
 {
 final List<String> list = new ArrayList<String>();
 if (kind == TransformKind.extract) {
 list.add("text/plain");
 } else if (kind == TransformKind.display) {
 list.add("text/html");

Connector Programmer - 83

Second method

 }
 return list;
 }

Second method

The second method will process the input document, and produce extracted data or previews.

/**
 * Transform a part 'part' using the format 'format' into a destination
 * document. Use getSupporterOutputMime() to get the list of supported
 * output MIME types.
 *
 * @param part
 * the input part.
 * @param format
 * the transformation format
 * @param input
 * the source document (part is probably in this document)
 * @param output
 * the target document (parts are stored inside this document)
 * @throws UnsupportedInputFormatException
 * if the input format is not supported by the filter
 (in this case, the upstream client will give up with the current filter)
 * @throws UnsupportedOutputFormatException
 * if the output format is not supported by the filter
 (in this case, the upstream client may retry with a different format, using the same transformer)
 * @throws NoSuchMethodException
 * if the method is not supported
 * @throws TransformationException
 * upon error (in this case, the upstream client may choose to
 * give up on the input, or select another filter)
 * Note: input and output may be the same objects
**/
 public void transform(DocumentPart part, ProcessableDocument input,
 ProcessableDocument output, Format format)
 throws TransformationException, UnsupportedInputFormatException,
 UnsupportedOutputFormatException, NoSuchMethodException;

This function takes:

• a part as input (the part contains data, and associated metadata),

• the related input document, which is generally unused,

• the output document where multiple parts might be added,

• and the requested format (whether information extraction is requested for the display
processing and the output MIME type).

84 - Connector Programmer

Second method

When producing content:

• Each produced file must be embedded in a Part document, created through the output object
addPart method.

• For referenced parts, parts must have proper MIME type advertised, and proper filenames. If
the first HTML part embeds relative links to resources, the given resources must be properly
named, using the same relative filenames.

Note: The part name is usually preview for a preview, and document for extracted metadata,
but the naming is free. The first part must be the leading part. However, if the produced content
is an HTML preview, the first part must be the master document.

The following example shows the skeleton of a transform() method:

@Override
public void transform(DocumentPart part, ProcessableDocument input,
 ProcessableDocument output, Format format)
 throws TransformationException, UnsupportedInputFormatException,
 UnsupportedOutputFormatException
{
 // Validate requested output format
 final boolean isText = format.getMime().equalsIgnoreCase(
 Format.MIME_TEXT);
 final boolean isHtml = format.getMime().equalsIgnoreCase(
 Format.MIME_HTML);
 final String outMime = format.getMime();
 if (!isText && !isHtml) {
 throw new UnsupportedOutputFormatException("unsupported format");
 }

 // Validate input format
 String mime = part.getComputedMime();
 if (!isNotMyFormat(part.getFilename(), part.getForcedMime())) {
 throw new UnsupportedInputFormatException("unsupported MIME type");
 }
 // Transform
 try {
 byte[] data = part.getContentAsBytes();
...
 if (isHtml) {
 // Prepare final part
 final DocumentPart dp = output.addPart("preview");
 dp.setEncoding("utf-8");
 dp.setForcedMime(format.getMime());
...
 dp.setContent(xml.toString().getBytes("UTF-8"));
 }

Connector Programmer - 85

Extending the Files Connector through Plugins

 } catch (IOException io) {
 throw new TransformationException(io);
 }
}

Extending the Files Connector through Plugins

The filesystem connector embeds natively a number of schemes and protocols: native filesystem,
Windows share filesystem (\\path or smb:// URLs), basic ftp support (ftp:// URLs), basic http
(http://), etc.

It is possible to extend the features of the filesystem connector and use all the embedded features
of the connector (multithreaded scan, containers handling, etc.) without having to create a new
connector, by implementing additional protocol schemes through plugins.

Note: For a description of the Files Connector features, see "Files Connector" in the Exalead
CloudView Connectors Guide.

Technical Overview

A filesystem connector interface plugin is a regular plugin, providing a factory component without
any associated configuration.

The main filesystem connector interface component must implement FileInterfaceFactory
(com.exalead.papi.connectors.filesystem.FileInterfaceFactory) and, as usual,
CVComponent (com.exalead.mercury.component.CVComponent). It must provide a
default constructor (no arguments).

Two methods must be implemented.

First Method

The first method allows you to define supported root path schemes, that is to say, whether the root
path is recognized by this plugin.

/**
 * Test whether a root path is handled by this factory;
 * i.e. if build() may be called upon this path.
 * The factory needs to ensure the namespace used will not conflict with
 * any native namespace, of with previous plugin.
 *
 * @param rootConf
 * The root path.
 * @return true if the root path is handled by this factory.
*/

86 - Connector Programmer

Second Method

 public boolean canHandle(final FilesystemRootPathConfig rootConf);

This method must return true if the root path passed is recognized by the plugin. It will typically
check the syntax of rootConf.getRootKey() against a known specific URL scheme prefix.

Important: Make sure that no other plugin is using this prefix, or the filesystem connector will raise
an error due to the namespace conflict.

For example, when using "myfile://" as prefix for root paths, you may use:

@Override
public boolean canHandle(FilesystemRootPathConfig rootConf) {
 final boolean handle = rootConf.getRootKey().startsWith("myfile://");
 return handle;
}

Second Method

The second method will provide an instance of FileInterface
(com.exalead.papi.connectors.filesystem.FileInterface) to handle the virtual
underlying filesystem. This method will only be called by the framework if canHandle() returned
true upon the same configuration object.

/**
 * Build a new FileInterface
 *
 * @param rootConf
 * the root path
 * @return The FileInterface
 * @throws IOException
 * Upon I/O error during object creation
 * @throws IllegalArgumentException
 * If the root path is unsupported (ie. canHandle() would have
 * returned false)
 */ public FileInterface build(final FilesystemRootPathConfig rootConf) throws IOException,
IllegalArgumentException;

The object passed provides the root key (getRootKey()) and authentication details if needed.

For example, when using "myfile://" as prefix for root paths, you may use:

@Override
public FileInterface build(FilesystemRootPathConfig rootConf) throws IOException, IllegalArgumentException {
 if (!canHandle(rootConf)) { // unexpected
 throw new IllegalArgumentException("unsupported scheme");
 }
 final File root = new
File(rootConf.getRootKey().replace("myfile://", ""));
 return new MyFileInterface(root);
}

Connector Programmer - 87

Second Method

The FileInterface (com.exalead.papi.connectors.filesystem.FileInterface)
interface provides the necessary functions to handle a virtual filesystem (listing the directory,
opening a file, fetching attributes, etc.):

package com.exalead.papi.connectors.filesystem;
import java.io.IOException;
import java.util.Iterator;
import com.exalead.papi.helper.Meta;
import com.exalead.papi.helper.stream.ContentStreamSafe;
/** * Abstract file interface. */
public interface FileInterface {
 /**
 * Get the absolute path.
 *
 * @return The absolute path.
 */
 public String getAbsolutePath();
 /**
 * Is the file a file ? *
 * @return true if this is a file
 */
 public boolean isFile();
 /**
 * Is the file a directory ?
 *
 * @return true if this is a directory
 */
 public boolean isDirectory();
 /**
 * Is the file a link ?
 *
 * @return true if this is a link
 */
 public boolean isLink();
 /**
 * Get the path leaf name.
 *
 * @return the path leaf name
 */
 public String getName();
 /**
 * Last-modified date.
 *
 * @return Last-modified date, or 0 if not supported.
 */
 public long lastModified();
 /**
 * Return the time when the file was last accessed (in milliseconds since

88 - Connector Programmer

Second Method

 * Epoch)
 *
 * @return Last-access date, or 0 if not supported.
 **/
 public long lastAccess();
 /**
 * Return the time when the file was created (in milliseconds since Epoch)
 * Return 0 if this attribute if unsupported by the filesystem.
 *
 * @return Creation date, or 0 if not supported.
 **/
 public long creation();
 /**
 * The file length.
 *
 * @return file length
 */
 public long length();
 /**
 * Does the file exist?
 *
 * @return true if the file exists
 */
 public boolean exists();
 /**
 * Is the file readable?
 *
 * @return true if the file is readable
 */
 public boolean canRead();
 /**
 * Get security meta-data.
 *
 * @return security meta-data
 */
 public Meta[] getSecurityMetas() throws IOException;
 /**
 * Get additional meta-data.
 *
 * @return additional meta-data, or @c null if no additional meta-data are
 * present.
 */
 public Meta[] getAdditionalMetas() throws IOException;
 /**
 * Get contents.
 *
 * @return The stream contents.
 * @throws Exception

Connector Programmer - 89

Second Method

 * Upon error.
 */
 public ContentStreamSafe getContents() throws Exception;
 /**
 * Enumerate files. Only available for directories.
 *
 * @return the iterator
 */
 public Iterator<FileInterface> enumerateFiles(FileInterfaceFilterfilter) throws IOException;
 /**
 * Enumerate files. Only available for directories.
 *
 * @return the iterator, or @c null upon error
 */
 public Iterator<FileInterface> enumerateFiles() throws IOException;
 /**
 * Get a child.
 *
 * @param name
 * The child name.
 * @return the child.
 */
 public FileInterface getChild(String name); }

Example of a very basic implementation of a filesystem scheme (this sample is available in the
sample list):

public class MyFileInterface implements FileInterface {
 protected final File file;
 public MyFileInterface(File file) {
 this.file = file;
 }
 @Override
 public boolean canRead() {
 return file.canRead();
 }
 @Override
 public long creation() {
 return -1; // unsuppoorted
 }
 @Override
 public Iterator<FileInterface> enumerateFiles(FileInterfaceFilterfilter) throws IOException {
 final List<FileInterface> list = new ArrayList<FileInterface>();
 for (final File f : file.listFiles()) {
 final MyFileInterface child = new MyFileInterface(f);
 if (filter == null || filter.accept(child)) {
 list.add(child);
 }
 }

90 - Connector Programmer

Second Method

 return list.iterator();
 }
 @Override
 public Iterator<FileInterface> enumerateFiles() throws IOException {
 return enumerateFiles(null);
 }
 @Override
 public boolean exists() {
 return file.exists();
 }
 @Override
 public String getAbsolutePath() {
 return file.getAbsolutePath();
 }
 @Override
 public Meta[] getAdditionalMetas() throws IOException {
 return new Meta[] { new Meta("canonical_path",file.getCanonicalPath()) };
 }
 @Override
 public FileInterface getChild(String name) {
 return new MyFileInterface(new File(file, name));
 }
 @Override
 public ContentStreamSafe getContents() throws Exception {
 return new MyContentStreamSafe(file);
 }
 @Override
 public String getName() {
 return file.getName();
 }
 @Override
 public Meta[] getSecurityMetas() throws IOException {
 return new Meta[] { SecurityMeta.getPublicSecurityMeta() };
 }
 @Override
 public boolean isDirectory() {
 return file.isDirectory();
 }
 @Override
 public boolean isFile() {
 return file.isFile();
 }
 @Override
 public boolean isLink() {
 return false;
 }
 @Override
 public long lastAccess() {

Connector Programmer - 91

Second Method

 return -1; // unsuppoorted
 }
 @Override
 public long lastModified() {
 return file.lastModified();
 }
 @Override
 public long length() {
 return file.length();
 }
}

92 - Connector Programmer

Developing a Security Source

Developing a Security Source

Describes how to develop a security source for your custom managed connector

About Security Source Development

Implementing a Security Source Plugin

About Security Source Development

Security sources are used to manage security information relative to users, or group of users.

The main goal of security sources is to:

• authenticate a user (using its password) and return its security identifiers, called tokens,

• list security tokens associated with a given user or group.

When a document is produced by a connector, the security metadata pushes the list of tokens
which give the required access credentials to the indexed document.

Negative tokens can also be used to refuse credentials. In such case, negative rules are always
prioritary, that is to say that if a positive token gives access to a document, and a negative one
denies it, the access will be denied.

By default, all security tokens are indexed in the product, to enable security features per
document.

Users also have a set of similar tokens associated with their authenticated accounts. These tokens
are usually based on their access rights or group ownership.

An authenticated user will only be able to find a document, if his set of security tokens contains at
least an allowed token, and no negative token.

Connectors and security sources work together, the tokens produced by the former are compared
to the later to reduce the search results scope.

For example:

A filesystem source connector produces the following tokens (the security meta-data will
contain these values):

• unix:user:10028

• unix:group:100

Any authenticated user whose token contains either unix:user:10028 or unix:group:100
will therefore have access to the document.

Connector Programmer - 93

Implementing a Security Source Plugin

Implementing a Security Source Plugin

A security source is a regular plugin with an associated configuration object.

Its design is quite similar to the Connector one. The security source class must implement the
SecuritySource (com.exalead.security.sources.common.SecuritySource)

interface, and must define a constructor taking a configuration class.

Implement the Security source part

@CVComponentConfigClass(configCheckClass = CVComponentConfigCheckNone.class,
configClass =LocalSecuritySourceConfig.class)
@CVComponentDescription("Local Security (generic)")
 public class LocalSecuritySource extends SecuritySource implements CVComponent {
 public LocalSecuritySource(LocalSecuritySourceConfig config) {
 ...
 }
 ...
}

Implement the Associated config part

@CVComponentDescription("Local Security (generic)")
@IsEmptyConfig(true)
public class LocalSecuritySourceConfig implements CVComponentConfig {
 ...
}

Implement the security source methods

The following methods must be implemented within the security source.

Method Description

public abstract

AuthenticationResult

authenticate(String login, String

password, boolean needPassword)

throws SecurityException;

This method authenticates a user and returns
authorizations, such as success status, security
tokens and associated information, with:

• the login login name,

• and an optional credential password to check if
needPassword is set to true

Otherwise, the function always returns a valid object
which can be used to list the user security tokens.

94 - Connector Programmer

Implement the AuthenticationResult class

Method Description

public List<String> getUsers()

throws Exception;

Lists all users contained in the security source.

It may return an empty list if such information is not
available.

public List<String> getGroups()

throws Exception;

Lists all groups contained in the security source.

It may return an empty list if such information is not
available.

public SecurityToken

getUserToken(String user);

Gets the security token list of a user.

public SecurityToken

getGroupToken(String group);

Gets the security token list of a group.

Implement the AuthenticationResult class

The returned AuthenticationResult
(com.exalead.security.sources.common.AuthenticationResult) object should be
filled using the following methods.

Method Description

public void setSuccess(Boolean

value);

If authentication was requested, it sets the success
result.

public void setCause(String

value);

If authentication was requested and failed, it
provides the error description.

public void setUserId(String

value);

Sets the user identifier.

public void

setUserDisplayName(String value);

Sets the user display name, usually its first and last
names.

public void

setSecurityTokens(List<SecurityToken>

tokens);

If no authentication was requested, or if the
authentication was successful, it provides the list of
security tokens owned by the user.

Example:

List<SecurityToken> tokens = new ArrayList<SecurityToken>();
 tokens.add(new SecurityToken("unix:user:10028"));
 tokens.add(new SecurityToken("unix:group:100"));
AuthenticationResult results = new AuthenticationResult();
 results.setSuccess(true); results.setUserId("10028");

Connector Programmer - 95

Implement the SecurityToken class

 results.setUserDisplayName("John Doe");
 results.setSecurityTokens(tokens);

Implement the SecurityToken class

Each security token is returned inside a SecurityToken
(com.exalead.security.sources.common.SecurityToken) object. Its constructor takes
the security token string as sole argument.

Example:

SecurityToken st = new SecurityToken("unix:user:10028");

96 - Connector Programmer

Deploying the Connector

Deploying the Connector

Describes how to deploy the connector plugin in Exalead CloudView and how to configure it in the
Administration Console

Deploying the Connector Plugin

Maintaining a Connector Configuration across Versions

Creating and Configuring the Connector

Deploying the Connector Plugin

Your custom connector must be packaged as a plugin to be deployed in Exalead CloudView.
You can deploy your plugins using either the Administration Console or the cvadmin tool (on the
command line).

Install a plugin in the Administration Console

1. Go to Deployment > Plugins
2. Click Upload plugin and browse for your file.

Install a plugin on the command line

You can install plugins regardless of whether the Exalead CloudView product is running or
stopped.

1. Go to <DATADIR>/bin and run: ./cvadmin plugins

2. Enter: install file=myplugin.zip

Note:

For multi-host installs, you must run this command on the master host. The plugin
will automatically be distributed to all hosts.

3. Restart the processes for which you are going to use its components, typically the search-
server or analyzer.

You can then use the plugin.

List installed plugins

1. From the <DATADIR>/bin, get the list of the installed Exalead CloudView plugins: ./cvadmin
plugins list

Connector Programmer - 97

Uninstall a plugin

Uninstall a plugin

1. From the <DATADIR>/bin get the list of the installed Exalead CloudView plugins: ./cvadmin
plugins list

2. Remove the plugin: ./cvadmin plugins remove name=myplugin

Maintaining a Connector Configuration across Versions

The following code sample shows how to implement the upgrade-config capability in your
connector.

For more information about this command, see "Upgrade a connector" in the Exalead CloudView
Administration Guide.

package com.exalead;
import com.exalead.mercury.component.*;
import com.exalead.mercury.component.config.CVComponentConfig;
import com.exalead.papi.framework.connectors.Connector;
import com.exalead.papi.framework.connectors.ConnectorConfig;
import com.exalead.papi.framework.connectors.introspection.UpgradeConfig;
import exa.bee.KeyValue;
@IntrospectableComponent(
 // register the {@link MyUpgradableConnector.Introspector} class to handle introspection queries
 introspectorClass=MyUpgradableConnector.Introspector.class,
 // tells CloudView this connector supports the config upgrade capability
 supportedQueries={ @SupportedQuery(queryClass=UpgradeConfig.class)})
public class MyUpgradableConnector extends Connector {
 public MyUpgradableConnector(final ConnectorConfig config) throws Exception {
 super(config);
 }
 public static class Introspector implements CVComponentIntrospector {
 // Member method called to process introspection queries.
 @Override
 public Object execute(
 final CVComponentConfig componentConfig,
 final IntrospectionQuery query) throws Exception {
 if (query instanceof UpgradeConfig) {
 final UpgradeConfig up = (UpgradeConfig) query;
 System.out.println("Updating configuration of connector " + up.getConnectorName());
 //Specify the component versions explicitly and the dependencies to perform the upgrade
 //The following example shows how to upgrade from version 1.0 to 2.0 if you need
 // an intermediary upgrade to version 1.1
 //You can either upgrade from 1.0 to 2.0 OR from 1.1 to 2.0
 //CAUTION: As by default CloudView is not able to provide the previous connector version (1.0 or 1.1)
 //to this method, if you choose to migrate from 1.1 to 2.0, the same code will be called.

98 - Connector Programmer

Creating and Configuring the Connector

 //In our example, it will execute the upgrade operation starting from 1.0.
 applyChangesFrom_1_0To1_1(up.getCurrentConfig());
 applyChangesFrom_1_1To2_0(up.getCurrentConfig());
 return up.getCurrentConfig();
 }
 return null;
 }
 void applyChangesFrom_1_0To1_1(final KeyValue config) {
 renameKey(config, "Foo", "Bar");
 }
 void applyChangesFrom_1_1To2_0(final KeyValue config) {
 // [...] apply required changes. For example, if version 2.0 is multithreaded and
 // you need to set up the threadPoolSize property...
 }
 /**
 * Recursively look for a key in the connector configuration, and rename it to another value.
 * @param config The configuration to upgrade
 * @param prevKey The configuration key name to replace
 * @param newKey The new key value
 * @return The updated configuration
 */
 public KeyValue renameKey(final KeyValue config, final String prevKey, String newKey) {
 if (config.getKey() != null) {
 if (config.getKey().equals(prevKey)) {
 config.setKey(newKey);
 }
 }
 for (int i = 0; i < config.getKeyValue().size(); ++i) {
 config.getKeyValue().set(i, renameKey(config.getKeyValue().get(i), prevKey, newKey));
 }
 return config;
 }
 }
}

Creating and Configuring the Connector

Once you have implemented and installed your connector, it should be available in the list of
connectors displayed in the Type property of the Add Connector dialog box.

1. Go to the Administration Console.

2. In Index > Connectors, click Add connector and enter a name for your custom connector.
For example, Basic filesystems

3. Select your connector type from the drop-down list and click Accept.

Connector Programmer - 99

Creating and Configuring the Connector

4. In your connector’s Configuration tab, click Add Entry to add the additional properties to the
Global Config.

5. Click Apply to apply the configuration.

100 - Connector Programmer

Advanced Operations and Best Practices

Advanced Operations and Best Practices

This chapter describes several considerations that should be taken into account when developing
your own connector.

What to map from the Data Source?

How to Keep the Index Synchronized with the Datasource

Implementing Synchronization

Push API filters

Deploying Connectors on a Remote Server

Calculating a diff between Two Data Sources

Customizing Connectors to use the Interconnector Service

Best Practices

What to map from the Data Source?

In a way, indexing can be seen as creating a mapping function between objects from the data
source, to documents in the index. While this mapping may seem obvious at first, the question
shouldn't be overlooked, as it structures the behavior of the search engine.

There is not always a 1 to 1 mapping between unit objects in the data source, and documents in
the index.

For example, suppose you are writing a connector for a data source dealing with emails. Should it
be possible for a user to find emails based on the content of their attachments? Most probably yes,
therefore this connector is probably going to map an email and all its attachments with a single
document.

Should it also be possible to find a whole thread of discussion, query with quotes from an email?
If so, then the connector will probably push along with the previous documents, 1 document per
thread, in which the content of all emails will have been mapped.

For example:

• For emails / forums: To find a thread, you could have:

◦ 1 Email = 1 Document

◦ All emails belonging to the same thread = 1 Document

• Enovia

Connector Programmer - 101

How to Keep the Index Synchronized with the Datasource

◦ 1 object made of several parts = 1 document

• Database

◦ Star or snowflake schema join = 1 document

Note: To aggregate data this way, you can use the Consolidation Server.

How to Keep the Index Synchronized with the Datasource

Strategy 1: The full scan approach

The easiest strategy is to define a single function, which every time it is called, triggers a full scan
on the data source, and pushes all documents found in the data source to the index.

Strategy 2: The differential approach

An improvement to the first strategy is to only push the differences between the contents of the
data source and the index. These differences can be described using four categories, as shown in
the schema below.

102 - Connector Programmer

Implementing Synchronization

Implementing Synchronization

When indexing a document collection that is evolving, the task of your connector is to ensure
that the state of the index always follows the state of the source. This includes detecting new
documents, modified documents and deleted documents.

Exalead CloudView provides two mechanisms to help implementing synchronization.

Stamp-based synchronization

In Exalead CloudView, each document has a stamp, which is an opaque String. When you push
a document with a stamp, the stamp is stored and can be retrieved. This can be used to detect
whether a document has been modified since its last push. For example, you could set the "last
modification timestamp" of the document as the stamp, or its MD5 hash.

A basic example would look like:

for (Document document : listDocumentsInDataSource()) {
 String currentStamp = computeStamp(document);
 DocumentStatus statusInCloudView = papi.getDocumentStatus(document.getURI());
 if (statusInCloudView == NOT_PRESENT) {
 /* This document is not in CloudView, so it's new in the data source -> push it */
 papi.addDocument(document);
 } else {
 if (!statusInCloudView.stamp.equals(currentStamp)) {
 /* Stamp has changed: the document was modified -> push it */
 papi.addDocument(document);
 }
 }
}

However, this method has two drawbacks:

• Calling the getDocumentStatus() method for each document is slow, as it involves one
synchronous PAPI call for each document.

• It does not handle documents to be deleted in Exalead CloudView.

To fix this, you can list all documents in Exalead CloudView, and compute the differences. For
example:

Map<String, String> stampsOfDocumentsInCloudView;
for (SyncedEntry se : papi.enumerateSyncedEntries()) {
 stampsOfDocumentsInCloudView.put(se.getURI(), se.getStamp());
}
Set<String> documentsInDataSource;
for (Document document : listDocumentsInDataSource()) {

Connector Programmer - 103

Checkpoint-based synchronization

 documentsInDataSource.add(document.getURI());
 String currentStamp = computeStamp(document);
 String stampInCloudView = stampsOfDocumentsInCloudView.get(document.getURI());
 if (stampInCloudView == null) {
 /* This document is not in CloudView, so it's new in the data source -> push it */
 papi.addDocument(document);
 } else {
 if (!stampInCloudView.equals(currentStamp)) {
 /* Stamp has changed: the document was modified -> push it */
 papi.addDocument(document);
 }
 }
}
/* Now, compute the list of deleted documents: documents that are in CloudView but not in the data source */
for (String docInCloudView : stampsOfDocumentsInCloudView.keySet()) {
 if (!documentsInDataSource.contains(docInCloudView)) {
 /* Doc is not in data source anymore -> Delete it from !CloudView */
 papi.deleteDocument(docInCloudView);
 }
}

This method might not be convenient if you have huge amounts of documents in Exalead
CloudView, due to the large memory requirements to store the list.

Other possible method enhancements are:

• Batch enumeration over known data subsets. For example, folders in a filesystem connector.

• Parallel enumeration – if suitable, this enumerates both the data source and Exalead
CloudView in parallel. The Exalead CloudView enumeration is guaranteed to be in
lexicographical order based on the URIs. As the Exalead CloudView enumeration is streamed,
you can perform a merge between the lists and compute the differences on the fly.

Checkpoint-based synchronization

Stamp-based synchronization is generally quite costly due to the memory requirements and
should only be used when there is no notion of "event log" in the source. Many data sources have
logs or mechanisms to determine what has changed between two events. In this case, you should
use checkpoint-based synchronization.

A checkpoint is an opaque String, not associated with a document, that is stored persistently by
Exalead CloudView, and can be retrieved.

If a checkpoint can be retrieved, then all operations that were sent to the PAPI before the
checkpoint are guaranteed to be safely stored to disk, and will never be lost, even if they are not
yet searchable.

The following sample shows the workflow of a checkpoint-based synchronization:

104 - Connector Programmer

Synchronization best-practices

final static String CHECKPOINT_NAME = "my_checkpoint";
public void syncSource() {
 String currentCheckpointValue = papi.getCheckpoint(CHECKPOINT_NAME);
 String currentLast = dataSource.getCurrentLastEventId();
 for (Action a: dataSource.getAllDocumentsBetween(currentCheckpointValue, currentLast)) {
 if (a.kind == ADD) papi.addDocument(a.getDocument());
 else if (a.kind == DEL) papi.deleteDocument(a.getURI());
 }
 /* Now, set in CloudView the fact that we have reached currentLast */
 papi.setCheckpoint(currentLast, CHECKPOINT_NAME);
}

You can force the sync when you set a checkpoint, or just after, but this is not strictly necessary.
If you don't sync and a crash occurs, you will retrieve the previous checkpoint value, and will re-
scan more documents than needed. However, the indexing process is idempotent when the same
document is pushed several times, therefore, there is no change to the database.

Synchronization best-practices

• In some cases, you will need to garbage-collect the data source log after pushing. Make sure in
this case that you sync Exalead CloudView before garbage-collecting the log.

• Always compute the "next" checkpoint value before scanning. This way, if new records are
added while scanning, you will not miss them.

• As much as possible, avoid using the current time as a checkpoint value because in some rare
cases, it can cause synchronization issues. Consider the following cases:

◦ t0: A new transaction begins on the data source.

◦ t1: A document D1 is added on the transaction; its last modification date is set to "t1".

◦ t2: Scan begins; we compute t2 as the next checkpoint value, and will scan the source up to
t2.

◦ t3: Transaction commits.

At the end, the document D1 has not been scanned. However, we will resume the scan
from t2 next time, and therefore never scan D1.

• If you don't have any other form of ever-increasing ids, and must use modification/current
times, make sure to always include an "overlap offset" when computing the checkpoint, to
account for currently running transactions. For example:

long now = System.currentTime();

String nextCheckpoint = "" + (now - 60000);

// Leave one minute of overlap: we'll always scan a bit more than needed,

// but won't miss any documents in currently running transactions.

Connector Programmer - 105

Push API filters

Push API filters

The PushAPI class can be encapsulated using different Push API filters to enhance or modify its
behavior. The resulting class inherits the PushAPI, allowing to replace the original one.

About Push API filters

Push API filters include buffering, logging capabilities, debugging features plus custom features.

Filters have generally one constructor taking a parent PushAPI object to override or enhance its
features. Other constructors may be used to tune the default settings.

Push API filters must be threadsafe if the connector using it:

• Supports the fetch operation. The same PushAPI pipeline is used for both scan and fetch
operations, which can occur concurrently.

• Declares itself as reentrant (ConnectorCapabilities#canFetch). There can be more than
one scan at the same time.

• Uses a thread-pool to speed up the push of documents.

Important: You cannot add Push API filters on the Push API of the Indexing server. It is
however possible to use them in the Java Client code that sends documents.

Built-in classes

Push API filters include the following built-in classes:

Class Description

Background PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

BackgroundPushAPIComponent

Sends documents in the background. Use this filter
when a lot of small files are sent to the PushAPI and
slow it down considerably.

Buffering PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

BufferedPushAPIComponent

Buffers PushAPI operations in memory, and
executes them by batch.

Example: if you launch ten addDocument()
operations, this class will attempt to collate them
into a single addDocumentList() operation.

Caution: If the final papi.sync() method
is not called by the last BufferedPushAPI,
don’t forget to force the indexing of pending

106 - Connector Programmer

Built-in classes

Class Description
operations with the papi.sync() method after
the last addDocument() operation for each
BufferedPushAPI. This will prevent documents from
remaining in the buffer and not be indexed.

Convert PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

ConvertPushAPIComponent

Specifies the elements you want to convert from
documents. You can choose a conversion mode,
filter the type of document binary parts to include/
exclude, or filter documents on their file names.

The main parameter of this filter is Conversion
mode:

• Text - retrieves only the textual content of the
document and adds it to the text meta.

• Metadata - retrieves texts and metadata
extracted from binary parts and maps them to
the document. Note that by default, metadata is
prefixed by convert_ to distinguish it from the
original document metadata. This prefix can be
changed in the Advanced Settings if needed.

• Binary - retrieves the result of the conversion
as such in an Exalead (Ndoc) binary part that
can be decoded using the NativeTextExtractor
document processor in the analysis pipeline.

Disabled PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

DisabledPushAPIComponent

Does not send documents. Use this filter to test a
connector without sending documents.

Dump PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

DumpPushAPIComponent

Dumps the documents being added to the PushAPI
in logs, for debugging and audit purposes.

The logs may include all metadata and fields sent
through the PushAPI, attachments, etc.

Fake PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

FakePushAPIComponent

Simulates a fake remote Push API server.

The parent Push API is unused, and all operations
such as addDocument(), are emulated in memory,
but no commands are transmitted to the remote
Push API server.

Connector Programmer - 107

Built-in classes

Class Description

This is useful to perform tests on a connector, or to
measure raw performance for the connector itself.

This class is an enhanced version
of the DisabledPushAPI class,
as it emulates commands such as
enumerateCheckpointInfo() or
enumerateSyncedEntries() with already stored
information.

Indexing Job Trigger Filter

com.exalead.papi.framework.connectors.papiplugins.

IndexTriggerPushAPIComponent

This simple wrapper class sends a
triggerIndexingJob() at the end of a session
(stopPushSession()).

Used by default for managed connectors.

Java PushAPI Filter

com.exalead.papi.helper.pipe.inlinejava.

InlineJavaAPI

Adds a Push API filter that can handle Java code.
It takes Java code either inline or from a file, and
executes it on-the-fly. For production mode, we
recommend packaging custom code as a Java
Plugin (CVPlugin) and referencing the path of the
class file.

Metadata Compaction PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

MetaCompactPushAPIComponent

Serializes metas in an optimized compact format for
the Push API.

It is useful when documents have a lot of metas, as
the PushAPI HTTP protocol is not efficient and the
PushAPI server fetches metas one after the other.

Replay PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

ReplayPushAPIComponent

Adding this Push API filter is a prerequisite to use
the Replay connector, which allows you to repush
data from a given source. See "Replay Connector"
in the Exalead CloudView Connectors Guide .

Enter the Replay server name you defined
previously as Instance name for the Deployment >
Roles > Data integration > Replay server role.

Tee PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

TeePushAPIComponent

This wrapper duplicates all commands, and sends
them to a secondary PushAPI. For debugging
purpose only.

108 - Connector Programmer

Code snippet (Java)

Class Description

Tracing PushAPI Filter

com.exalead.papi.framework.connectors.papiplugins.

TracePushAPIComponent

This wrapper adds simple logging capabilities,
recording regularly the number of documents sent,
the bandwidth used etc.

Code snippet (Java)

PushAPI papi;
// original PushAPI
// Override the current papi with buffering capabilities.
// Documents passed to this new papi will be buffered.
papi = new BufferedPushAPI(papi);
// Then add logging capabilities. Documents passed to this new papi
// will first be recorded for logging and then batched.
papi = new TracePushAPI(papi);

Deploying Connectors on a Remote Server

We recommend deploying custom connectors as plugins within Exalead CloudView. You may
however need to deploy them on a remote server and still want to benefit from the Exalead
CloudView Administration Console to manage them.

The Exalead CloudView kit contains a set of JAR files that must be deployed on your remote
server:

• datainteg-java-commons.jar - contains the Remote Scan Server (RScan). It allows
to manage Exalead CloudView scan operations on remote connectors. To do so you must
instantiate these connectors as described in the code sample below. Once the RScan server
is deployed, you can create RScan Client connectors in the Exalead CloudView Administration
Console to launch scan operations.

• Developing unmanaged connectors requires the following jar files:

◦ datainteg-java-commons.jar

◦ cloudview-java-plugin.jar

◦ papi-java-client.jar

◦ papi-java-connector.jar

Instantiate a connector

1. The following code snippet shows how to instantiate a connector (myConnector).
package com.exalead.papi.datainteg.connectors;

Connector Programmer - 109

Launch your connector using a command line

import org.apache.log4j.BasicConfigurator;

import org.apache.log4j.Level;

import org.apache.log4j.Logger;

import com.exalead.mercury.plugin.simple.SimplePluginManager;

import com.exalead.papi.datainteg.connectors.rscan.unmanaged.Runner;

import com.exalead.papi.framework.connectors.Connector;

import com.exalead.papi.framework.connectors.ConnectorConfig;

import com.exalead.papi.helper.Document;

import com.exalead.papi.helper.PushAPI;

public class RScanServerSample {

 public static void main(final String[] args) throws Exception {

 BasicConfigurator.configure();

 Logger.getRootLogger().setLevel(Level.INFO);

 SimplePluginManager.getCurrentInstance();

 // Start a RSCAN server

 final Runner rscanRunner = new Runner(10005);

 // Add a new connector

 rscanRunner.registerConnector(MyConnectorClass.class, "myConnector");

 try {

 // wait for input requests on RSCAN server indefinitely.

 Thread.sleep(Long.MAX_VALUE);

 } catch (final InterruptedException e) { /* do nothing */ }

 rscanRunner.stop();

 }

 /**

 * Connector sample pushing one document.

 */

 public static class MyConnectorClass extends Connector {

 public MyConnectorClass(final ConnectorConfig config) throws Exception {

 super(config);

 }

 @Override

 public void scan(final PushAPI papi, final String scanMode, final Object scanModeConfig) throws

Exception {

 final Document doc = new Document("document1234");

 doc.addMeta("author", "foo");

 doc.addMeta("content", "Lorem ipsum dolor sit amet...");

 papi.addDocument(doc);

 }

 }

}

Launch your connector using a command line

1. Copy all .jar files from your Exalead CloudView <INSTALLDIR>/sdk/java-customcode/
lib to a working directory.

2. Copy all the connector .jar files to the working directory.

110 - Connector Programmer

Launch your connector using a command line

3. Open a shell, go to your working directory and type the following command:
java -cp '*' com.exalead.papi.datainteg.connectors.rscan.server.RemoteScanLauncher

-rscanPort <port number> -connector <connector class>=<connector name>

where:

◦ <port number> is an available port (not used by CloudView).

◦ <connector class> is the name of your connector class, for example,
com.customer.cloudview.Connector1

◦ <connector name> is the name of your connector.

◦ You can use the -connector parameter several times to launch several connectors at
once.

The following snippet shows the source code for the RemoteScanLauncher class:

package com.exalead.papi.datainteg.connectors.rscan.server;

import java.util.ArrayList;

import java.util.List;

import org.apache.log4j.BasicConfigurator;

import org.apache.log4j.Level;

import org.apache.log4j.Logger;

import com.exalead.mercury.plugin.simple.SimplePluginManager;

import com.exalead.papi.datainteg.connectors.rscan.unmanaged.Runner;

import com.exalead.papi.framework.connectors.Connector;

public class RemoteScanLauncher {

 private class ConnectorDescription {

 private String clazz;

 private String name;

 public ConnectorDescription(final String clazz, final String name) {

 this.clazz = clazz;

 this.name = name;

 }

 public String getClazz() {

 return clazz;

 }

 public String getName() {

 return name;

 }

 }

 private static final Logger logger = Logger

 .getLogger(RemoteScanLauncher.class);

 private int rscanPort = -1;

 private List<ConnectorDescription> connectors = new ArrayList<ConnectorDescription>();

 private void parseCommandLine(final String[] args)

 throws CommandLineParameterException {

 if (args.length > 0) {

 int i = 0;

Connector Programmer - 111

Launch your connector using a command line

 while (i < args.length) {

 final String param = args[i++];

 if (param.equals("-rscanPort")) {

 if (args.length < i + 1) {

 throw new CommandLineParameterException("Missing " + param + " value");

 } else {

 final String rscanPortParam = args[i++];

 this.rscanPort = Integer.parseInt(rscanPortParam);

 }

 }

 else if (param.equals("-connector")) {

 if (args.length < i + 1) {

 throw new CommandLineParameterException("Missing " + param + " value");

 } else {

 final String connectorParam = args[i++];

 final String[] connector = connectorParam.split("=");

 if (connector.length != 2) {

 throw new CommandLineParameterException("Invalid " + param + " value");

 }

 final ConnectorDescription connectorDescription = new ConnectorDescription(connector[0],

connector[1]);

 connectors.add(connectorDescription);

 }

 }

 else {

 throw new CommandLineParameterException("Unknown command line parameter: " + param);

 }

 }

 }

 }

 private void validateCommandLineParameters()

 throws CommandLineParameterException {

 if (this.rscanPort == -1) {

 throw new CommandLineParameterException("Missing -rscanPort parameter");

 }

 if (this.connectors.size() == 0) {

 throw new CommandLineParameterException("Missing -connector parameter");

 }

 }

 private void displayHelp() {

 final String help = "Rscan connector launcher (c) Exalead\n"

 + "Usage: \n"

 + "1. Copy all .jar files from CLOUDVIEW/sdk/java-customcode/lib into your working directory\n"

 + "2. Copy all .jar files of your connector into your working directory\n"

 + "3. Into your working directory: java -cp '*'

com.exalead.papi.datainteg.connectors.rscan.server.RemoteScanLauncher -rscanPort <port number>

 -connector <connector class>=<connector name>\n"

 + " You can use several -connector parameters to launch several connectors";

112 - Connector Programmer

Calculating a diff between Two Data Sources

 logger.info(help);

 }

 private void run() throws Exception {

 SimplePluginManager.getCurrentInstance();

 // Start a RSCAN server

 final Runner rscanRunner = new Runner(this.rscanPort);

 try {

 // add new connectors

 for (final ConnectorDescription connector : connectors) {

 @SuppressWarnings("unchecked")

 final Class<? extends Connector> clazz = (Class<? extends Connector>)

Class .forName(connector.getClazz());

 final String name = connector.getName();

 rscanRunner.registerConnector(clazz, name);

 logger.info("Connector " + name + " is launched.");

 }

 Thread.sleep(Long.MAX_VALUE);

 } finally {

 rscanRunner.stop();

 }

 }

 public static void main(String[] args) throws Exception {

 BasicConfigurator.configure();

 Logger.getRootLogger().setLevel(Level.INFO);

 final RemoteScanLauncher launcher = new RemoteScanLauncher();

 try {

 launcher.parseCommandLine(args);

 launcher.validateCommandLineParameters();

 launcher.run();

 } catch (final CommandLineParameterException e) {

 logger.error(e);

 launcher.displayHelp();

 }

 }

}

Calculating a diff between Two Data Sources

It is sometimes useful to get the differences between two data sources.

First, you enumerate your data source and push all documents in the index using the Push API.
Then, you need to regularly update the index by adding new documents, and deleting documents
that have been deleted in the source.

Sometimes you are not notified by the source of deleted documents and you don't know which are
the documents to delete from the index. In such case, your only solution is to compare documents

Connector Programmer - 113

Calculating a diff between Two Data Sources

present in the index with documents present in the data source, and then delete documents that
are in the index but no longer in the source.

To do so, we provide a Subtractor class in the papi-java-datainteg-commons.jar file.

Using this class you will create an object that calculates the set of items present in a data source A
and NOT in a data source B, to know exactly which items to delete from the index.

This calculation will be performed in a java heap buffer and will swap on disk if there is not
enough memory available. Items enumeration is processed through Cursor objects, which are
enumerators. This allows you to use the Subtractor class with various sources, you just need to
provide enumerators to access items.

/**
 * Iterator on the CloudView index
*/
private Cursor<byte[]> getCursorFromCloudview(final PushAPI papi) throws PushAPIException {
 return new Cursor<byte[]>() {
 private Iterator<SyncedEntry> syncedEntries = papi.enumerateSyncedEntries("",
EnumerationMode.NOT_RECURSIVE_ALL).iterator();
 @Override public void close() throws IOException {
 }
 @Override
 public byte[] next() throws Exception {
 if(syncedEntries.hasNext() == false) {
 return null;
 }
 final SyncedEntry entry = syncedEntries.next();
 final String uri = entry.getUri();
 return uri.getBytes("UTF-8");
 }
 };
}
/**
 * Iterator on a fake data source
 * which contains 9995 documents with uris from "uri0" to "uri9994"
 */
private Cursor<byte[]> getCursorFromDataSource() {
 return new Cursor<byte[]>() {
 private int index = 0;
 private int len = 9995;
 @Override
 public void close() throws IOException {
 }
 @Override
 public byte[] next() throws Exception {
 if(index >= len)
 return null;

114 - Connector Programmer

Calculating a diff between Two Data Sources

 final String uri = new String("uri" + index++);
 return uri.getBytes("UTF-8");
 }
 };
}
/**
 * Sample code to show how to check documents needed to be deleted in
 * the Cloudview index.
 * In this sample code we already have 10000 (10K) documents in the Cloudview index
 * with uris from "uri0" to "uri9999"
 */
private void checkItemsToDelete(final PushAPI papi, final Logger logger) throws Exception {
 // computes sources intersection
 final File workdir = new File(System.getProperty("java.io.tmpdir") + '/' + UUID.randomUUID());
 try {
 // this cursor will enumerate on 10000 documents (the cloudview index)
 final Cursor<byte[]> cursorFromCloudview = getCursorFromCloudview(papi);
 try {
 // this cursor will enumerate on 9995 documents (the data source)
 final Cursor<byte[]> cursorFromDataSource = getCursorFromDataSource();
 try {
 // maximum amount of memory consumed in Java HEAP (5 MB)
 final int ramBudget = 5 * 1024 * 1024;
 // create a subtractor object
 final Subtractor sub = new Subtractor(workdir, "subtractorName", ramBudget, logger);
 // computes items that are in source1 and NOT in source2
 final Cursor<byte[]> itemsInCloudviewAndNotInDataSource = sub.sub(cursorFromCloudview,
 cursorFromDataSource);
 try {
 // loop on all items that are in the Cloudview index and no longer in the data source
 for (final byte[] bytes : new IterableCursor<byte[]>(itemsInCloudviewAndNotInDataSource))
 {
 final String s = new String(bytes, "UTF-8");
 papi.deleteDocument(s);// delete the document to update the index
 }
 }
 finally {
 itemsInCloudviewAndNotInDataSource.close();
 }
 }
 finally {
 cursorFromDataSource.close();
 }
 }
 finally {
 cursorFromCloudview.close();
 }
 }

Connector Programmer - 115

Customizing Connectors to use the Interconnector Service

 finally {
 FileUtils.deleteQuietly(workdir);
 }
}

Customizing Connectors to use the Interconnector Service

You can customize connectors to allow the use of the Interconnector service between them.

Required dependencies

You must first add the following JAR files located in <DATADIR>/javabin/plugin to your
project:

• interconnector-service-java-framework.jar

• datainteg-java-commons-queue.jar

Master connector sample code

To allow connection between the connectors and the Interconnecter server, you must first check
that an Interconnector server has been deployed in the Administration Console (Deployment
> Roles). For more details, see "Configure the Interconnector Server" in Exalead CloudView
Connectors Guide.

You must also add two configuration keys to your connector:

• the Interconnector server instance name

• the slave connector name

Below is a sample code for your master connector (JDBC here).

//Master connector
//While processing a column containing a path, adds a File System Query (FS Query = a document path) to the message bus
//Instantiation of the Interconnector Service
InterConnectorServiceBuilderImpl builder = (InterConnectorServiceBuilderImpl) InterConnectorService.builder();
builder.withDestination(config.slaveConnector); //a configuration key has been added to the connector, to know the
//name of the slave connector
builder.withQuerySerializer(new FileSystemQuerySerializer()); //the file system query serializer (to xml) supplied by
//the JDBC connector
builder.withInterconnectorServerInstance(config.interconnectorServerInstanceName); //a configuration key has been
//added to the connector, to know the interconnector server instance name the query will be sent to
InterConnectorServiceImpl service = builder.build(); //this is time consuming, the service should be instantiated
//only once per application (as a Singleton)
//End of the instantiation
//Creation of the File System Query
FileSystemQuery fileSystemQuery = new FileSystemQuery();

116 - Connector Programmer

Slave connector sample code

fileSystemQuery.setPath(filePath);
//Calls to the service to delete and add a query
service.deleteQuery(docURI.toString()); //clear the query before adding the new one
service.addQuery(fileSystemQuery, false, true, docURI.toString()); //docURI is the URI of the JDBC document
that is currently processed
//Creation of the parent document in the Consolation Box, with type "aggregated"
PushAPITransformationHelpers.addArcTo(document, "parent", docURI.toString() + "_REL");
PushAPITransformationHelpers.setType(document, "aggregated");
//Don't forget to close the service when all the processing is done
service.closeService();

Slave connector sample code

Below is a sample code for your slave connector (File System here).

//Slave connector
//Enumerates the watched queries
 InterConnectorServiceBuilderImpl builder = (InterConnectorServiceBuilderImpl) InterConnectorService.builder();
 builder.withReceiverName(key.connector.getConnectorName()); //the receiver is the connector itself
 builder.withQuerySerializer(new FileSystemQuerySerializer());
 builder.withInterconnectorServerInstance(config.interconnectorServerInstanceName);
 InterConnectorServiceImpl service = builder.build(); //this is time consuming, the service should be instantiated only
//once per application (as a Singleton)
 service.pollMessageQueue();
 Iterable<ImmutablePair<String, UserPayloadWithUri<String, String>>> tripletIterable = service.getQueries();
 Iterator<ImmutablePair<String, UserPayloadWithUri<String, String>>> iteratorQueries = tripletIterable.iterator();
 if (iteratorQueries != null && iteratorQueries.hasNext()){
 try {
 final ImmutablePair<String, UserPayloadWithUri<String, String>> triplet = iteratorQueries.next();
 UserPayloadWithUri<String, String> queryAndFlags = triplet.getRight();
 Query query = service.getSerializer().deserialize(queryAndFlags.getValue());
 String checkpoint = triplet.getLeft();
 String filepath = query.getUID();
 ...
 FilesystemKey skey = new FilesystemKey(key.connector, filepath, connectorconfig.createFileFromRootPath
(filesystemRootPathConfig), false, true);
 try {
 service.notifyEndOfQueryJob(checkpoint);
 }
 catch (Exception e){
 logger.warn("Error while notifying end of query job to storage");
 }
 return (FSKey) skey;
 }
 catch (Exception e){
 logger.error("Error while adding a root key ",e);
 return null;
 }

Connector Programmer - 117

Interconnector aggregation processor

 }
 //Processes a watched query, i.e. a file system path in this connector
 //Adding a "parent_uri" meta to link the indexed file system document to the indexed JDBC document
 try {
 ArrayList<String> listParentURIs = service.getParentURIFromUID(file.getAbsolutePath());
 if (listParentURIs != null && !listParentURIs.isEmpty()){
 for (String parentURI : listParentURIs){
 collect.addMeta("parent_uri", parentURI);
 }
 }
 service.closeService();
 }
 catch (Exception e){
 logger.debug("Error retrieving parent URI while building PAPI document "+ absolutePath, e);
 }
 //Processes the "parent_uri" metas to create arcs and documents in the consolidation box
 Collection<Meta> parents_meta = doc.getMetaContainer().getMetaValues("parent_uri");
 if (parents_meta != null && !parents_meta.isEmpty()){
 Iterator<Meta> iterator = parents_meta.iterator();
 while (iterator.hasNext()){
 String uri = iterator.next().getValue();
 // creating the "relation" intermediate document in the consolidation box, then link it to the child document
 PushAPITransformationHelpers.createUnmanagedDocument(doc, uri + "_REL", "relation");
 PushAPITransformationHelpers.addArcFrom(doc, "rel", uri + "_REL");
 }
 PushAPITransformationHelpers.setType(doc, "child");
 }
//Enumerates and processes the deleted queries
Iterable<ImmutablePair<String, UserPayload<String, String>>> deleteIterable = service.getDeletedQueries();
Iterator<ImmutablePair<String, UserPayload<String, String>>> iteratorDeletedQueries = tripletIterable.iterator();
while (iteratorDeletedQueries != null && iteratorDeletedQueries.hasNext()){
 final ImmutablePair<String, UserPayloadWithUri<String, String>> triplet = iteratorDeletedQueries.next();
 UserPayloadWithUri<String, String> queryAndFlags = triplet.getRight();
 Query query = service.getSerializer().deserialize(queryAndFlags.getValue()); ;
 String filepath = query.getUID();
 papi.deleteDocument(filepath);
 }

Interconnector aggregation processor

You must now configure the Interconnector aggregation processor in the Administration Console
with the appropriate document types and arcs defined in your code. For more details, see "Add the
Interconnector aggregation processor" in Exalead CloudView Connectors Guide.

You can scan your master connector, then your slave connector.

118 - Connector Programmer

Best Practices

Best Practices

Crash resistance

To test the connector crash resistance, you can:

• Stop the source server during indexing time to simulate a source server crash.

• Unplug the network cable to simulate a network error.

• Restart the Push API server while the connector is indexing to simulate a Push API server
crash.

All these tests should pass without losing any document.

Log management

Exalead CloudView uses log4j to report logs. You can:

• either use the getLogger() static method in the Logger class,

• or the getLogger() method of the Connector object.

The global log level of the product is managed in the Logs menu of the Administration Console.
You can:

• Display the exception stack for each message.

• Log the URIs of documents sent to the index in trace mode.

• Log the plugin version number at the beginning of the scan method.

Note: You can also configure log levels more precisely by editing the <DATADIR>/config/
Logging.xml file.

Test plan & monitoring

These are a few tests that you can perform to test your connector:

• Index 1 million documents in a single indexing phase without crash.

• Calculate the required time for incremental indexing just after a full scan, without any
modification on the source server. This will give you an idea of the minimum time required for
incremental indexing.

• Launch several incremental indexing and monitor memory consumption. Note that the
connector process memory is shared by all connectors.

Connector Programmer - 119

Package the connector

• If you encounter java.lang.OutOfMemoryError: Java heap space or
java.lang.OutOfMemoryError: PermGen space errors in a specific process, the
memory setting for this process may be too low.

Edit DeploymentInternal.xml, and change the corresponding
<ProcessInternalConfig> node value(s):

◦ Change the -Xmx value for heap space issues. For example: <StringValue value="-
Xmx1024m"/>

◦ Change the -XX:MaxPermSize value for PermGen space issues. For example:
<StringValue value="-XX:MaxPermSize=1024m"/>

Do not forget to rebuild the configuration (for example with <DATADIR>/bin/buildgct
master).

Package the connector

Do not forget to update the plugin version number for each new release.

Aggregate Documents

Sometimes, building a PAPI document is a really complex task, especially when you need to
rebuild it entirely for an incremental update. For example, let’s say that for a connector indexing
emails, we want to create a single PAPI document for each email thread that aggregates all the
emails of the thread. When a new email arrives in a thread, the connector must rebuild the entire
document by aggregating all emails once again.

For this kind of situation, we recommend using the Consolidation Server. See the Exalead
CloudView Consolidation Server Guide.

Other best practices

• Index raw documents without connector aggregation. If you want to perform aggregation, use
the Consolidation Server. See the Exalead CloudView Consolidation Server Guide.

• Do not store anything on the hard drive, everything must be stored in Exalead CloudView.

• Build document URIs in a hierarchical way, for example, /ROOT/FolderA/FolderB/
DocumentA, to be able to delete a whole folder content with only one call to the
deleteDocumentsRootPath() method.

• If the indexing is multi-threaded, the number of threads must be configurable in the connector
UI to adjust the server load.

120 - Connector Programmer

Other best practices

• To send documents as batches to the indexing server, you can select the Buffer operations
option in the Administration Console > Connectors > Deployment > Push API section. You
don't need to develop your own buffering strategy, just rely on this option.

Connector Programmer - 121

	Table of Contents
	Connector Programmer
	What's New?
	About the Push API
	What is the difference between a managed and unmanaged connector?
	What are the goals of a connector?
	Push API concepts
	Documents
	URI
	Stamps
	Meta
	Parts
	Directives
	Consolidation Server directives
	Checkpoints
	Synchronization
	Supported Text Encodings

	Push API HTTP Level
	Push API at the HTTP level
	HTTP command parameters
	HTTP methods
	HTTP encoding
	HTTP command response
	HTTP time out

	Push API Client Implementation Recommendations
	Conventions to follow
	Methods
	Error messages and exceptions
	Operational status

	Push API Client Methods
	void ping()
	void startPushSession()
	void stopPushSession()
	void addDocument(Document document) and void addDocumentList(Document[] documentList)
	void updateDocument(Document document, string[] fields) and void updateDocumentList(Document[] documentList, string[][] fieldsList)
	void deleteDocument(String uri) and void deleteDocumentList(String[] uris)
	void deleteDocumentsRootPath(String rootPath [, Boolean recursive=true])
	DocumentStatus getDocumentStatus(String uri) and DocumentStatus[] getDocumentStatusList(String[] uriList)
	ulong setCheckpoint(String checkpoint [, String name] [, sync=false])
	String getCheckpoint([String name])
	String getCheckpoint([String name, Boolean showSynchronizedOnly])
	void clearAllCheckpoints()
	CheckpointsInfoIterator enumerateCheckpointsInfo()
	CheckpointsInfoIterator enumerateCheckpointsInfo (boolean showSynchronizedOnly)
	CheckpointsInfoIterator:: next()
	SyncedEntriesIterator::
	SyncedEntriesIterator enumerateSyncedEntries(String rootPath, EnumerationMode enumerationMode)
	ulong countSyncedEntries(String rootPath, EnumerationMode enumerationMode)
	void sync()
	void triggerIndexingJob()
	boolean areDocumentsSearchable(long serial)
	Metadata Examples

	Using the Push API Client
	Installing the Push API Client
	Java project requirements
	.NET project requirements

	Instantiating the Push API Client
	Operations and states
	Operations
	Document statuses
	Session handling

	Indexing your first PAPI document
	Run the sample program
	How to force the indexing of pending operations
	Check the document status

	Indexing a Document Collection
	Listing Synced Documents
	Checkpoints
	Sync code snippet
	List documents

	Updating Documents
	Monitoring the Index

	Push API Connector Framework
	Connector Framework Prerequisites
	Global Requirements
	Dependencies

	Using the Eclipse plugin
	Implementing the Connector
	Manage the configuration
	Encrypt the password
	Implement the connector
	Implement a continuous scan
	Implement concurrent scan modes
	Validate the connector configuration
	Add logging capabilities
	Update the connector status

	Packaging the connector as a plugin
	Plugin structure
	Create a basic plugin
	About the CVPlugin public class
	Top level component class(es)
	Top level configuration class(es)
	Setter/Getter methods

	Implementing Format Plugins
	Technical Overview
	First method
	Second method

	Extending the Files Connector through Plugins
	Technical Overview
	First Method
	Second Method

	Developing a Security Source
	About Security Source Development
	Implementing a Security Source Plugin
	Implement the Security source part
	Implement the Associated config part
	Implement the security source methods
	Implement the AuthenticationResult class
	Implement the SecurityToken class

	Deploying the Connector
	Deploying the Connector Plugin
	Install a plugin in the Administration Console
	Install a plugin on the command line
	List installed plugins
	Uninstall a plugin

	Maintaining a Connector Configuration across Versions
	Creating and Configuring the Connector

	Advanced Operations and Best Practices
	What to map from the Data Source?
	How to Keep the Index Synchronized with the Datasource
	Strategy 1: The full scan approach
	Strategy 2: The differential approach

	Implementing Synchronization
	Stamp-based synchronization
	Checkpoint-based synchronization
	Synchronization best-practices

	Push API filters
	About Push API filters
	Built-in classes
	Code snippet (Java)

	Deploying Connectors on a Remote Server
	Instantiate a connector
	Launch your connector using a command line

	Calculating a diff between Two Data Sources
	Customizing Connectors to use the Interconnector Service
	Required dependencies
	Master connector sample code
	Slave connector sample code
	Interconnector aggregation processor

	Best Practices
	Crash resistance
	Log management
	Test plan & monitoring
	Package the connector
	Aggregate Documents
	Other best practices

