2,
2S NETVIBES | Exalead CloudView

CloudView CV23
Consolidation

Table of Contents

Table of Contents

(@0e] g o] [To =1 o] g IS =T = o 5
L g 1= AT N PP 6
About the Consolidation SeIVerc.vi it e e raneaanes 7
LA V=TI e g F=To] 1T =1 [o PN 7
(o] g 1=Te] [Ta F=luTe] g IIST=T m V2=t ol =T u s V1 o] o e AV P 7
How the Consolidation Server Fits into Exalead CloUdVIiEW. . .uuieiiiiiii et reenees 8
About the Consolidation ObJeCt GrapPh.....ci.i i ettt e e rt e e e rnennns 10
Object Graph and Index Incremental UpPdates.ociu ettt et ettt e s e nanes 10

(@] o) 1=T o a €] =T o T 1Y T [11

L@ o) 1= a €] = o I A o= 11
Object Graph MatChing EXPrESSiONS. .. uu .ttt ettt e et e e et e s et e et r e s e e e e e res 12
Configuring the Consolidation SerVer.....iiiiiiii i e a e 13
Deploying the ConsOlidation SeIVer. ettt ettt e et et e e et e e e e aneeenes 13
Add Consolidation Support at Exalead CloudView Installation Time.....ciiiiiiiiiiii e 13

Add Consolidation SUP POt ManUally ...t e et et e e e et e e et et e ettt e e e 13
Enable Consolidation 0N SOUIMCE COMMECEOIS. .. uu.uuiee ettt e teaeee e s e e ee e e e s a e e e e r e e aen e e e e r e s a e e e e n e e n e enenenennenenen 14

(@fe] o) To U] T o [o a T=I @] g T=To] [o -1 o[o TP 14
(oYl o TU gl oL I o T o ol =YY o] o= PPN 15
Trigger and SynNChronize CoNSOlidatioNttt et e et et et e e ettt a e e et et e e et et e e e e 16
Forwarding Documents t0 Other BUild GrOUDS. ... ui ettt et ettt e et e e e e et et e e et e e e e eanes 16
Clearing the ConsOldation SEIVEN i it e et e e e et r e et e et e e e eneeanenaneaens 18
Tuning and Sizing the ConSOlidation SEIVEIttt ettt e et e teneeneneen 19

L0 00T 19

] 741 T 20
Writing Transformation and Aggregation PrOCESSOIS. . ..uiiiiiiiiiiieiiiiie i sieraesaneeaineaaneans 22
JAY T 18 Lol B To ol 8] o g =T o Lol od /ool 177 1 T [P 22
Document Processing in the Consolidation SeIVEIuie e e e e e e r e e e e e e e e eeaennnnns 22

[ool T o] Yot 0] o B @0 o /= PP 24
(@fe] o) oo I TSI oYl T1= 1 o VP 25
Processor Type Inheritance and RUNEIME SelECHION.ttt e et e e e e naas 26

= 1= T 0T <1 0= 27
Define Java Trans oM ation PrOCESSOIS. ... ettt ettt et e et e e et e e e e s e e et e r e s e e e e e e s a s et e e e e e n e e e e e rnenenen 27

RL TS el g aa =Y oT T @ o T=T o= o o] o 1= PPN 33
(D) ToI F= AV W N Te T =Ta = [o I o 0 Yol TT Yo ol PPN 39

P Lo g <To = To] o N @] =T o=l (o] o 1= PP 47
(o] aTo =T o NV o 1= T o= T ol 0 N b= Yo o] o1 [PPN 56
Manage DOCUMENES EXPICIEIY ...ttt r e e e e et s e e e e e e e a e e e e n e enaens 62

TN the TranSfOrmMIatioN PRas . . ittt et et ettt et et et e ettt ettt et 62

IN the AgGGregation Phase. . ..u it 66

| Fa] o=t fl 0= /= o (o] o 66
Troubleshooting the Configuration........oviiiii i e 69
Where Can I Find the Consolidation Server LOGSttt ettt et e e e e e e aeeeneas 69
Monitoring the ObJeCt Graph.. ... ettt e e e 69
Use the Consolidation Server INtrOS DE I ON. ...ttt ettt e e e e et e e et et e e et e e rt e e e e rae e aenes 70
Simulate Matching Elements and Impact DeteCtion. . o.uui i eas 71

i gL u oty =ToruTo) o IO TT=Y o) o o S U =T T PPN 72
Example: My Aggregation Does Not Perform What I Am EXPeCtiNgG.....cuiiiiiiiiiiiii i 74
[=%(sYe gl T o aT=I @] o) [=Tot (i1 =T o o VAT 74
Export the Object Graph t0 @ DOT File. ... et e e e e e e s e e e e s a e e e e e eaenes 74
Convert the DOT File to Another Image FOrmat. . .ottt e e aens 75
Checking the Consolidation STtorage CoONTENt.ttt e e et e e e et e e e aaenneas 76

2 - Table of Contents

Table of Contents

Observing the Processors’ ConMSUM DI ONttt ettt ettt e et e e e et e et et e e e e et e e e e et eneenennes 76
Get a Global View of the Consolidation Server PrOCESSO S . uuiuiuiit ittt eee e 76
Check If the Consolidation Storage Compact Works Properly.......covuieiiiiiiiiiii e 77
Get a Finer Debugging Granularity 0N @ SpPeCifiC PrOCESSON. . ..uiuiuiiiit it e 77

Consolidation Server Fails With OUt Of MeMOrY ErTOr. . .uiieiiii it a et aeaeeaaens 78

(ST =TT < 79

FAY o YoYU | M @o] g F=Yo] [Ta F=Tu[o] T LT r= =] PP 79
L= Lo AN o I O TN gl T = T oYU o= PP 79
What We Want t0 Do FUNCEIONAIIY e e ettt et e et ettt et e e e e et e e et et e e e e e e e a e e aeanes 80
PN Lo LU A @Y LTS T n o] 1T PPN 80

Deploy the Coffee SamPle Data.....ccieieieiiiie ittt e e e et e e e e e s e s n e e e e ra e eneaeanenanenens 80
e g =Tl il o) =TI D T - PP 80
Deploy the Coffee Sample ConfiGUIatioN. et e et e e s e et er e s s e e e e rarnens 81

UC-1: Consolidating Data frOm TWO SOUMCES. ...ttt ittt et ettt e e e et e e e et e e et r e e e e e aneneenees 81
Step 1 - Define the Connectors Corresponding to EaCh SOUICE.......o.iiiiiiiiiiiii e 81
Step 2 - Configure CoNSOlIatioNt 83
Step 3 - Scan Source Connectors and Check What IS INAeXEd......uiuiiiiiiiiii it e e e eees 85

UC-2: Enriching Child Documents with Parent Document Metas......cviiiiiiii i 86
Step 1 - Define the Source CoNNECEOr fOr TradES. .. uu et ittt e e et e et e e e s s b e e e e e e aranes 87
Step 2 - Configure CONSOIAATIONttt et e e e s e et e a et s e e et et a e et aas 87
Step 3 - Scan Source Connectors and Check What IS IndeXed.......c.ouiuiuiiiiiiiiiii e 88

UC-3: Consolidating Information on @ View DOCUMENE. ..ttt e e e e e aareaneans 90
I T o O A O =Tl S = =y [o =X PP 90
11T o I A X [B N = Yo L o o T oY o I @0 TU] o = PP 91
Step 3 - Scan the Source Connector and Check What IS INAEXE......vieieieiniuiiie it re e eneae e neeneaeens 92
Step 4 - Add New Categori@S 0N COUNETII S, .. v uuiuet ettt e tr et e e e e e e e e e et e e e e s e e e e n e s e en e ee e raraenenenn e rnenenens 93
Step 5 - Rescan Source Connectors and Check What IS INAEXE.......uuuiiieiriiiiiiieiereeierer e e e e e neeees 95

L8O S =1 (o] =] o [1 =Y o e = PP 96
Step 1 - Configure an Aggregation ProCeSSOr fOr Trad@S. . uuu e et e e et e e e e e e e e n e e e e e nenenenes 96
Step 2 - Rescan the Trades Connector and Check What IS INAeXEd......ciuiiiiiiiiiiiii i e e 96

UC-5: Incremental Scan - Propagating Node Changes........ooviiiiiiiiiiiiiii et ae e 98
Step 1 - Set the Trades Connector to INCremMeNntal MOAE.ttt e e et e e aaaes 98
Step 2 - Rescan the Trades Connector and Check What IS INAeXEd......ciuiiiiiiiiieii i e e eaaes 99
SteP 3 - Add @ NEW YOI Of Tra0 @S ittt ittt ettt et ettt e et a et ettt e et e et e e et et e e et e et e e et e a e e e e enennans 99
Step 4 - Rescan the Trades Connector and Check What IS INAeXEd......cuuiiiiiiiieii i eeaes 99

UC-6: Incremental Scan - Propagating ArC Changes......ce e ittt e e e e neenes 100
Step 1 - Set the Country Connector to Incremental MO,ouiuiuiiiiiiiii e aeas 100
Step 2 - Create Organization frOmM COUNEIIES.ttt et e et e e r et a e e e e e e e e nens 101
Step 3 - Rescan the Country Connector and Check What Is IndeXed........oiiiuiiiiiiiiiiiiiii it e e 102
Step 4 - Update the Membership Of @ COUNTIY ...t et e e e res 104
Step 5 - Rescan the Country Connector and Check What IS IndeXed......c.oiiiuiiiiiiiiiiiiiii e e e 105

UC-7: Generating Child DOCUMENTS. ...ttt ettt et e e et a et e e e et e e e e et et e e e n e e e e e e 106
Step 1 - Create Child Documents from Organization with an Aggregation ProCessor.........cvvviiiiiniiiiiiiiiiieeens 106
Step 2 - Relaunch the Organization Aggregation and Check What Is IndeXed........coiiiiiiiiiiiiiiiiiiri e 107
Step 3 - Change the Membership Of @ COUNTIY ...t e eaeas 108
Step 4 - Rescan the Country Connector and Check What Is IndeXed........ooeiiiiiiiiiiiiiiii e e 108

UC-8: Consolidating Data from StOrage SeIViCe. ..ttt e ettt a e aneans 109
Step 1 - Define the Source ConNeCtor fOr STOragESEIVICE. . ..ttt ettt ettt e e e aes 109
Step 2 - Link storageService Tags t0 COUNIIES. .. uuiuiiititiiitie it e e e 110
ST o G T ¥ o B =T [o TN o 1| o = 112
=T I S g o [G =T [P 113

APPENAIX = GrOOVY PrOCES SO S, ittt ittt ettt et e st e et e s st e e ean e s aanneesanneesannneaanns 115

Groovy Transformation and Aggregation OpPeratioNS. e raeaeaas 115

Company's HierarcChy EXampPle iN GO0V Y ...ttt ettt et tteae et aeae e e et e e et et e s e e et e e e e et eaneernennens 116

(Do T e B o Yol YT Yo Tl @leYa [T Y- n o] 1T 117
(D] Yor=Tgla VAV o L f=Te b= YT a Lo 0 Yol ST= =] o = V- R 117
DiscardAggregationProCesSOrCON IG.JAVaA. ... e e ettt 117
DiscardAggregationProcessorCoONfigCRECK. JAVa. .. v e e s 118

Appendix - Matching EXpressions Grammar. . o.uuoesve s i siieiiessee s sasesanesaneesnnesaneaaneanns 120

Protect Specific Characters from Interpretation.o e 120

Table of Contents - 3

Table of Contents

= 1] 0] 1 120
Case INvolving @ SimpPle Path. ... e 121
(O T I o T I g LT A @ o 1= = | o PP 122
(= E =T 0NV AV o o = T = o P 123
(ORIl =Y IO 1o o =T o T o 124
Case with @an OR 0N @ Path ElemMEnt.. ... et e e s e e e e e e e e nenaenens 125
(OF T IRV o = T O Lo T U1 T @ oY= = o o P 126
Case with an OR Operator fOr NOGE Ty P . ittt et ettt et a e a e et e rae e aneaneeanans 127
Case with an OR Operator ON Path.....ciiiii i e e et e et e e e e e aaeeanes 128
Case with Fallback Operator If the First Path IS Selected......ccoviiiiiiiiii s 129
Case with Fallback Operator If the second Path IS SeleCted.......coviriiiiiiiiiii i 130
Case with Fallback and OR Operators TOGether.c.v i e e e 131
Case with Fallback Operator Using regeXp iN NOGe Ty Pe. . ittt ettt ne e neanaeas 132
AppendiX - Old DSL FUNCHIONS. ..ttt e a s s s s ase s ane s an s snaesanraannesnneans 134

4 - Table of Contents

Consolidation Server

Consolidation Server

This guide explains how to deploy and configure consolidation for source connectors.
The Consolidation Server supports all kinds of connectors.
Audience

This guide is mainly destined to software programmers or users with a few programming skills in
Java or Groovy.

Further Reading

You might need to refer to the following guides:

Guide for more details on
Connectors standard connector's configuration.
Configuration indexing and search concepts, as well as

advanced functionality.

Consolidation - 5

What's New?

What's New?

There are no enhancements in this release.

6 - Consolidation

About the Consolidation Server

About the Consolidation Server

This chapter describes the Consolidation Server components and the processing pipeline
workflow.

Why Use Consolidation
Consolidation Server Terminology
How the Consolidation Server Fits into Exalead CloudView

About the Consolidation Object Graph

Why Use Consolidation

Like most search engines, Exalead CloudView has a simple data model to provide good
performance at query time. Unlike relational databases, it has only one table. This allows Exalead
CloudView to have minimal query latency even on a very large corpus, but things get more difficult
in the indexing phase when the original data model is more complex than what Exalead CloudView
can support.

Object trees, often based on several relational database tables, have to be flattened to be used
efficiently in Exalead CloudView.

Consolidation is very helpful when indexing relational data and handling this flattening during an
incremental index build. In other words, it takes updates as they come instead of rebuilding the
entire index when an object changes. The incremental update is a complex task as it requires
calculating the impact of any changes and building complete documents according to projection
rules. To do so, the Consolidation Server keeps track of object relationships and stores data to
rebuild Exalead CloudView documents.

Note: The Consolidation Server is not limited to one data source. It can work across several data
sources, which allows building documents based on objects coming from different sources. This
avoids having an ETL or an equivalent tool to perform cross-source joins and aggregations.

Consolidation Server Terminology

This section describes the most important terms and concepts of the Consolidation Server.

+ CDIH (Consolidated Document Identifier Holder) — is similar to the Indexing Server DIH. It
assigns unique IDs to the documents processed by the Consolidation Server.

Consolidation - 7

How the Consolidation Server Fits into Exalead CloudView

» Consolidation config — A consolidation config specifies consolidation settings, some applying
to transformation and aggregations processors. You can also specify rules to forward
consolidated documents to another build group or Consolidation Server.

« Transformation processors — Use transformation processors to specify the relationships
between the objects pushed to the Consolidation Server. The documents and their
relationships are stored using an object graph, where documents are nodes and relationships
are arcs.

» Aggregation processors — An Aggregation processor is a set of rules describing how to build
the documents sent to Exalead CloudView. They allow the Consolidation Server to enrich
object graph documents with the metas of their related nodes. You can write these rules in
Groovy or Java.

+ Documents - All the objects to index, regardless of file or entity type in the data source. For
example, HTML, JPG or CSV files, database records are all considered documents within
Exalead CloudView, since they are all converted into a Exalead CloudView-specific document
format (also known as a PAPI document) after being scanned by a connector.

How the Consolidation Server Fits into Exalead CloudView

A Exalead CloudView installation is made up of one or several build groups, with connectors
feeding the build groups with documents. The Consolidation Server allows you to define
consolidation rules for documents before pushing them into the build group Indexing Server.

The Consolidation Server therefore fits before the build group Indexing Server or before
another Consolidation Server if a specific forward rule indicates to do so. You can view it as a
transformation phase between source connectors and the Indexing Server.

For each connector, you can choose to enable consolidation. You can therefore use the
Consolidation Server for a set of connectors and not for other connectors as shown in the following
diagram.

" Build Group

-

The following diagram illustrates the consolidation workflow within the Consolidation Server, when

connectors push documents.

8 - Consolidation

How the Consolidation Server Fits into Exalead CloudView

- ",

Comnector Server

:\‘.- Py
o Y
! Consolidation Server FUSAE
transformation jub\““’/
)
I8 \2)
o Object Graph
Py r“-"""' Document
___3 " r— cache
|| aggregation job () P
S e
2
| ;\,' Appregation Procesors |
- 5
{f{ o L condiions
o
L6) Y apgregation conditions | |
{ Build Groupds) N ™
) Distant Consolidation
; Indexing Server Server if needed

Step Description

1 Connectors push an addDocuments bulked order through HTTP to the Consolidation Server:

* Documents arrive in the Consolidation Server

* Source URIs are added to the CDIH

2 Documents go through the transformation processing.

3 As soon as commit conditions are met (see yellow star on the diagram) OR when one of the
source connectors sends a synchronization order, all changes are persisted to disk in the
Consolidation storage. Its purpose is to store transformed documents and the updated object

graph.

Consolidation - 9

About the Consolidation Object Graph

Step Description

4 As soon as aggregation conditions are met (see red star on the diagram) the Impact detection
is launched on new object graphs. It detects the nodes of the existing graph that have to be
aggregated again.

5 Once the impact detection is complete, aggregation processing can be launched for all
detected nodes. The processing depend on their type and the action context.

6 As soon as a document is aggregated, it is pushed to the target defined in the existing forward
rules.

The target can be an Indexing Server or another Consolidation Server.

Note: The reception order of ADD/DELETE operations for a given document is respected all along
the processing chain. For example, if a connector sent an ADD order for document and then a
DELETE order, the Consolidation Server will also send an ADD order and a DELETE order to the
Indexing Server.

About the Consolidation Object Graph

Consolidating documents requires a means of defining the relationships between these
documents. To do so, the Consolidation Server uses an object graph, in which each node
corresponds to a document.

The node identifier is the document URI. Arcs represent document relationships by linking the
nodes with one another.

Note: In this section, document refers to a Exalead CloudView document.

Object Graph and Index Incremental Updates

Using an object graph, a set of document modifications, and aggregation rules, the Consolidation
Server determines which documents have been impacted by changes to update the Exalead
CloudView index incrementally. By doing so, the Consolidation Server is able to limit the graph
traversal and only parse relevant relationships.

The Consolidation Server is able to:
« Enrich a node with "related" data coming from related nodes.
* Aggregate many related nodes' attributes into a single node.

» Correctly handle incremental updates and recompute nodes whose "related" data have been
modified (that is to say, added, deleted, updated).

10 - Consolidation

Object Graph Node

Object Graph as Displayed in the Consolidation > Introspect Tab

¥ Nodles (72)

member (4}
project (1) @ MeIFdsteHIF % OF cloudvisw® IFdefault_if%2Ftmp/mambers xmi
o project-ref (1) .

5) . ® proje@_ Ui itEm-3-10-40

[project_requirement (2) @ ~s2Foatatsaf %2Fgloydyien3s2Fdefault. 16% 2Rtma/membens sml.
requirement_tem (13} b - 4

. #® requirement_item-3-10-38
HMEang node (2} «

',.req; irement_itern-3-11-14

Truncated (45) @ project_requirgment-3-12
W Ar cs (7T1) " /
2 2 1% 2F i z F ST ¥ j et
rnembe-r of (4 WIFdataSeZF g %2F cloudyiew®ZFdefavll jBl2Rima/men :-_E-g_xml_prpje_g 3
- § %2Fdata¥IF) W IFdoudviewls2 Foefault_if%2Fimp/members.cmil
p'l:ljscd-rer[h =" project-3

i

p'l:ljl:cd_"l:qu irement (3}
B requirement_tem (14)
Truncated (49) by requirement_|iem-3-11-13

[] ""rn-nu rement_item-3-11-10

~ o
rwIFdata®%zly beFeEldeniradnin_ibnarimd gembem ami,

L=

L4
[] I'-“:I‘.'lull'ﬁl"l‘l’:l"l'._llﬁﬁ'-fri‘l'-' [] requirement_ltem-3-1-1

® raulEmenOsRREmEp T3 111e

e by

Export L

Object Graph Node

An object graph node is made of the following string properties:
* A unique identifier — the Exalead CloudView document URI.

+ A set of types, ordered from the most specific to the most generic type. For example, Cat >
Animal > Living Form. The node type is used to determine which rules are going to be applied
(transform, aggregate or forward).

Finally, when pushing a document (node) to the index, you can define the type explicitly. If not, the
default data model class associated to the connector will be used.

Inside transformation processors, it is also possible to create nodes explicitly. See Manage
Documents Explicitly.

Object Graph Arcs

An object graph arc requires three String properties:

» The source node URI, which is the key of this object

* The destination node URI

» The relationship name of the arc indicating the arc direction

Object graph arcs represent document relationships specified by transformation processors.
However, several connectors with specific schemes (ENOVIA, SalesForce, etc.) specify both

Consolidation - 11

Object Graph Matching Expressions

nodes and arcs using custom directives. Therefore, the Consolidation Server supports custom
directives directly sent by source connectors.

Recommendation: To use custom directives, use the new
com.exalead.cloudview.consolidationapi.PUSHAPITransformationHelpers.java
documented in the javadoc.

Object Graph Matching Expressions

In the aggregation phase, processors can benefit from the object graph arcs to access objects
linked to the processed document, using any path connecting the objects together.

The Consolidation Server provides a dedicated grammar to build complex path expressions.

Once a matching rule is used inside an aggregation processor, it can be also used for the
impact detection step. It ensures that when updating document A used by document B inside an
aggregation processor, document B is processed again to ensure that the change is correctly
reflected. For more information, see Impact Detection.

12 - Consolidation

Configuring the Consolidation Server

Configuring the Consolidation Server

This chapter describes the Consolidation Server deployment and configuration in Exalead
CloudView.

The configuration procedures focus on the actions to follow but do not contain examples. For
detailed common examples, see Use Cases.

Deploying the Consolidation Server
Configuring the Consolidation
Clearing the Consolidation Server

Tuning and Sizing the Consolidation Server

Deploying the Consolidation Server
This section describes how to add and deploy a Consolidation Server in Exalead CloudView.

Add Consolidation Support at Exalead CloudView Installation Time

1. When finishing Exalead CloudView installation with the setup wizard, in the Processing
screen, select Set up a consolidation server role with standard configuration.

Note: You can also enable the support of consolidation directly after Exalead CloudView
installation by launching the post-installation script <DATADIR>/bin/postinstall with the

--consolidation true option.

It creates a Consolidation Server instance (cs0) that sends its documents to the default build
group (bg0).

Add Consolidation Support Manually

In the Administration Console, go to Deployment > Roles.
2. Add a new Consolidation server role.

3. Expand the Consolidation server role and define an Instance name for this Consolidation
Server.

You cannot change the Consolidation Server instance name once created.
4. Apply the configuration.

Now that the Consolidation Server is deployed, connectors can target its Push API. For more
information, see the Exalead CloudView Connectors Guide.

Consolidation - 13

Enable Consolidation on Source Connectors

5. Go to the Home page.

You can now see a Consolidation section below the Connectors section.

Home

Uze thiz page to manage indexing and monitor running processes for a selected host.

Connectors [i

Hame= O Types Status
consolidation-cox0 LUnmanaged (Push AFl) nia
country Database (JDBC) idle
countrfiles Files idle
default Unmanaged (Fush AP} nia
prices Database (JDBC) idle
storageSenvice Database (JDBC) idle
trades Database (JDBC) idle

Consolidation i
Consolidation server chxd IEI Clear | Force commit | Force aggregation

Transformation & aggregation
Transformation ldle 1
Aggregation ldle | i
Compaction ldle | 1

Enable Consolidation on Source Connectors

For each source connector on which consolidation must be applied, go to the Deployment tab.

2. For Push to PAPI server, select the Consolidation Server instance on which the connector
must push its documents.

3. Apply the configuration.

Configuring the Consolidation

This section describes the overall Consolidation Server configuration. Details and examples are
given further in this guide.

Configuring the Processors

Trigger and Synchronize Consolidation

14 - Consolidation

Configuring the Processors

Forwarding Documents to Other Build Groups

Configuring the Processors

By default, the consolidation configuration pushes the documents they receive without
transformation.

For more information, see Writing Transformation and Aggregation Processors and the examples
provided in Use Cases.

Define a Consolidation Configuration

1. Go to Index > Consolidation.

2. The documents received by the Consolidation Server first go through transformation
processor(s). The purpose of this transformation step is mainly to add arcs between
documents to create the object graph.

Note: If you are using a custom connector, you can configure it to handle the generation
of arcs directly. For more information, see "Consolidation Server directives" in the Exalead
CloudView Connector Programmer's Guide.

3. The second step is the definition of the aggregation processor(s), which creates a
consolidation view on top of the object graph.

Once processors are defined, click Apply.
Go to the Home page and under the connectors list, click Scan for the connectors managed by

the Consolidation Server.

In the Connectors list, a consolidation-<instance name> row displays status information about
consolidation.

Take into Account New Transformation Processors

To take into account changes made on your transformation processors, you need to rescan the
impacted sources. You can clear the sources and scan them again or clear the Consolidation
Server as described in Clearing the Consolidation Server.

1. Go to the Home page.

2. Clear the source connectors’ documents.

3. Re-scan your connectors.

Take into Account Aggregation Processors

1. In the Administration Console, go to the Home page

2. Clear the index.

Consolidation - 15

Trigger and Synchronize Consolidation

3. Under Consolidation, start a Force aggregation operation.
Note:

You can also start Force aggregation from the API Console.

A force aggregation behaves as a commit operation. The consolidation storage is fully
synchronized at the end of the operation.

If you specify a type, the force aggregation operation is not managed as a commit operation. If
the consolidation storage has not yet been synchronized (either by triggering an aggregation or
with a force commit operation), it stays in the same state after the operation. It only aggregates
the targeted content of the consolidation storage.

Important: Dynamically computed impact rules are based on old aggregation jobs. If you
change your aggregation processors, these rules may no longer be consistent. To get back
to a correct behavior, you either have to start a full Force aggregation operation or clear the
Consolidation Server and rescan all its source connectors.

Trigger and Synchronize Consolidation

This section describes how consolidated data is sent to the index.

Commit triggers define when to write documents to the index. You can link commit conditions to
inactivity, number, or size of documents, or elapsed time.

Aggregation triggers define when transformed documents and documents stored or
synchronized in the Consolidation Server storage are aggregated. You can also link these
conditions to inactivity, number, or size of documents, or elapsed time. Once complete, the result
of the aggregation job is sent to the target Indexing Server specified in the Forward rules section.

When launching a Force commit operation, you commit the transformation job and then start an
aggregation.

Important: By default, a connector does not send a synchronization order to the Consolidation
Server when its scan is finished. To enable this behavior, go to Connectors > Deployment >
Push API and select the Force indexing after scan option.

Forwarding Documents to Other Build Groups

By default, consolidated documents are forwarded to the Indexing Server of a specific build group,
for example, bg0. However, for advanced cases, consolidated documents can also be useful for
several build groups or other Consolidation Servers. To fulfill these needs, you can define forward

16 - Consolidation

Forwarding Documents to Other Build Groups

rules in your Consolidation configuration to forward consolidated documents to the target of your
choice.

The following diagram shows the forward of consolidated documents to another build group on the
same Exalead CloudView instance. Documents are sent to another Indexing Server and stored in
another Index.

rrlElm udView Cluster | ™

~&5

Forward to i Indexing

Connector A _
Full Index

* Build Group y

.
M % Full Index| |
another build i Server | |. | 1
group K\H ,-"II
A A

Important: Delete orders are pushed to all build groups without checking forward rules.

Write Forward Rules in the Administration Console

1. Go to Index > Consolidation > Forward rules.
2. In Forward to, select the target build group or Consolidation Server on which you want to
forward consolidated documents.

3. Inthe Document types field, enter the comma-separated list of document types that to
forward, that is to say the document types specified in the transformation and aggregation
processors. Leave this field empty to forward all document types.

4. Select Trigger indexing if you want to trigger an indexing job on the target build group or
Consolidation Server automatically. This bypasses the commit conditions defined on the target
build group or Consolidation Server.

Click Apply.
Clear and reindex your documents with the main Consolidation Server.

Consolidation - 17

Clearing the Consolidation Server

Write Forward Rules in the API Console

Open the Exalead CloudView API Console, <HOSTNAME> : <BASEPORT+1>/api-ui/
Click Manage.

Search for the setConsolidationConfigList method.

> e nh =

Edit the AggregationForwardProcessorConfigList node to write your forward rules.

<conso: Consol i dati onConfig ...>
<conso: Aggr egat i onFor war dPr ocessor Confi gLi st >
<conso: Aggr egat i onFor war dPr ocessor Confi g triggerl ndexi ng="true" pushAPI Server=
</ conso: Aggr egat i onFor war dPr ocessor Confi gLi st >
</ conso: Consol i dati onConfi g>

Click Save.
Click Apply.

7. Clear and reindex your documents with the main Consolidation Server.

Clearing the Consolidation Server

To clear the Consolidation Server content, you have the choice between the following options in
the Administration Console > Home page.

You can perform one of the following actions:

Action To ...

Home > Connectors > Clear Notify the object graph and the document storage to take this
documents for specific change into account and send the proper deletion orders to the
connectors pushing to the Indexing Server.

Consolidation Server.
Important: Impact analysis is performed on any deleted document

so it might take some time for large sources.

Consolidation > Clear Clear consolidated data from the Consolidation Server. The
Consolidation Server then sends delete orders to its aggregation
targets, that is to say, the target Indexing Server or another
Consolidation Server (if you specified forward rules). If you want to
accelerate the process and if possible, it is better to clear the index
first and then clear the Consolidation Server.

Clear documents action for Clear from the index all documents previously pushed by all

consolidation-<instance the Consolidation Server connectors. This action deletes all

name> consolidated documents from the Indexing Server but not from the
Consolidation Server. Therefore, we do not recommend this option

18 - Consolidation

Tuning and Sizing the Consolidation Server

Action To ...

as it may lead to inconsistent states between the Consolidation
Server and the Indexing Server. Yet it can be useful, if you then
launch a force aggregation action to make sure that the Indexing
Server does not contain results of previous aggregations.

Tuning and Sizing the Consolidation Server

Though the object graph is serialized on disk, it is also fully sent to memory for performance
reasons.

Tuning

Basic Tuning

In the Administration Console, you can adjust:

» The number of aggregation threads in Consolidation > Advanced Settings. For example, if
you set it to 4, you get 4 transformation workers, 4 aggregation workers, and 4 forwarders (* by
number of forward rules), all potentially running in parallel for an incremental batch.

* Your commit conditions to fit your current scenarios

Get the Initial Scan Recommended Settings

1. In Consolidation > Commit triggers, specify a commit trigger based on No. of tasks to
500,000 tasks.

2. Specify a commit trigger based on Inactivity set to 1 task and 60s of inactivity.

3. Add an Aggregation trigger based Inactivity set to 1 task and 60s of inactivity (so your
aggregation starts at the end of your initial push).

Get the Incremental Scan Recommended Settings

1. In Consolidation > Commit triggers, specify a commit trigger based on No. of tasks to
50,000 tasks.

Specify a commit trigger based on Inactivity set to 1 task and 60s of inactivity.

Adjust your aggregation triggers to fit your required freshness.

Consolidation - 19

Sizing

Advanced Tuning

In your <DATADIR>/config/Consolidation.xml file, you can add an AdvancedConfig
node to ConsolidationConfig to tweak internal queues used during aggregation. It might
increase throughput with more buffering, but you must take it into account in your sizing.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<conso:ConsolidationConfigList version="0" xmlns:bee="exa:exa.bee"
xmlns:edit="exa:com.exalead.editor.v10" xmlns:index="exa:com.exalead.mercury.mami.inc
xmlns:conso="exa:com.exalead.mercury.mami.consolidation.v1l0" xmlns:config="exa:exa.be
<conso:ConsolidationConfig name="cc0O standard" nbThreads="4"
maxNativeMemoryConsumptionThreshold="enabled" maxNativeMemoryConsumptionInMB="2048">

<conso:AdvancedConfig>
<conso:AdvancedAggregationConfig impactQueueSize="8" aggregationQueueSize="8"
forwardQueueSize="800" />
</conso:AdvancedConfig>
</conso:ConsolidationConfig>
</conso:ConsolidationConfigList>

Default values for AdvancedAggregationConfig are:
+ Impact Queue size / Aggregation Queue size = number of threads * 2

* Forward Queue size = number of threads * 200

Sizing

Heap Sizing (Estimation)

Process Sizing formula
Transformation MAX PAYLOAD SIZE * NB THREADS * 8192
Impact Detection ((VERTEX SIZE + ((MAX PATH LENGTH * MAX PATH COUNT)

* (VERTEX SIZE + (MAX ARC_COUNT PER VERTEX *
ARC_SIZE)))) * NB_THREADS) + (IMPACT QUEUE SIZE *
VERTEX_ SIZE)

Aggregation ((MAX_PAYLOAD SIZE + ((MAX PATH LENGTH
* MAX PATH COUNT) * (VERTEX SIZE +
(MAX_ARC_COUNT PER VERTEX * ARC_SIZE)))) * NB_THREADS)
+ (AGGREGATION QUEUE SIZE * VERTEX SIZE)

Forward MAX PAYLOAD SIZE * (FORWARD QUEUE SIZE +
(FORWARD RULES_ COUNT * 100))

20 - Consolidation

Sizing

Process Sizing formula

Caching 10 MB * NB_ THREADS

VERTEX_SIZE (in bytes) URI _SIZE + (TYPE COUNT * TYPE SIZE)

ARC_SIZE (in bytes) TARGET URI SIZE + ARC TYPE SIZE
PAYLOAD_SIZE (in (META COUNT * (META KEY SIZE + META VALUE SIZE))
bytes) + (DIRECTIVE COUNT * (DIRECTIVE KEY SIZE +

DIRECTIVE VALUE SIZE)) + (PART COUNT * (PART KEY SIZE
+ PART VALUE SIZE))
Hardware Sizing

Your graph structure on disk MUST fit in your system memory. Check the size of your
<DATADIR>/build/consolidation-INSTANCE/sdc-storage/objectgraph.

Consolidation - 21

Writing Transformation and Aggregation Processors

Writing Transformation and Aggregation
Processors

This chapter describes the elementary bricks to write consolidation and aggregation rules.
About Document Processing

Java Processors

Manage Documents Explicitly

Impact Detection

About Document Processing

You can write transformation and aggregation processors in several languages.
The Consolidation Server supports:
« Groovy — The optimal programming language for writing short rules.

« Java — The language developers are most accustomed to. It is more suitable for production
than Groovy.

+ DSL — The Domain Specific Language used in Exalead CloudView V6R2014x, which is still

supported in legacy mode.

Important: This chapter focuses on the use of Java. For information on the use of Groovy or
the legacy DSL, see Appendix - Groovy Processors and Appendix - Old DSL Functions.

Document Processing in the Consolidation Server
Processor Action Context
Control the Processing

Processor Type Inheritance and Runtime Selection

Document Processing in the Consolidation Server

The following diagram gives a detailed view of document processing in the Consolidation Server.

22 - Consolidation

Document Processing in the Consolidation Server

Connector 1 I Connectaor 2 I

SR
5 Y 9
. - — A
i =" —d /_
S J Y
Consolidation Store |
Jy
o o2 A
. # [=F ' T
. Agpregatian
J J
RV = Y

L
Forward Rules J

At the top level, connectors send documents to the Consolidation Server. The PushAPI Server
receives them and first pass them to the Consolidated Document Identifier Holder (CDIH), which
assigns them unique IDs.

Note: If we send a delete order for a particular document that the CDIH does not know, the
order does not even proceed to the transformation processors. This is the case for the document
depicted in black in the picture.

For each transformation thread, the PushAPI Server then dispatches them to a list of
transformation threads. In the processing chain of one transformation thread, a document tries to
be applied on all defined processors (here 4 in the diagram, 1 <= TPi <= 4). We say "try" since,
as we will see later, you can associate a processor code to a particular document type hierarchy.
As a result, some processors are skipped (colored in orange) and others are selected (colored in

Consolidation - 23

Processor Action Context

green) depending on the document type. For more information, see Processor Type Inheritance
and Runtime Selection.

At execution time, once the document is transmitted to a transformation processor, it is then
automatically passed to the next available and valid processor... unless told otherwise (using

a discard call). This the case, for example, for the processor highlighted in red where the
document is not transmitted to the next phase (either next processor or here the Consolidation
Store). Clearly when making such decision, this document does not participate to the Aggregation
Phase.

The Consolidation Store stores all the documents pushed to it as well as the potential relationships
created at the transformation phase.

Once some documents are available in the Store, the aggregation phase can start, independently
of the transformation phase. So, the transformation and aggregation phases are performed in
parallel. And similarly to the transformation phase, the aggregation is concurrently applied using
a number of threads defined at configuration time. The logic of selection and processing is then
totally similar to the one described for the transformation. The difference is that in this phase:
1. We execute aggregation processors (here 4, 1 <= APi <=4),

Then documents are passed to the forward rules handler,

3. The forward rules handler ultimately route (or not) consolidated documents to the Indexing
Servers or to other Consolidation Servers.

Processor Action Context

You have to define an action context for each processor in the Consolidation Server pipeline.
There are two different action contexts to specify the action performed on documents:

» create/update: to create or update documents coming from one or more connectors or the
Consolidation Store.

+ delete: to delete documents from the connectors or the Consolidation Store.

Delete Action Context

This is what occurs in the Consolidation Server when connectors push delete orders to remove
documents from the Indexing Server:

» If you defined a processor with a delete action context that matches the document types, the
processor code is executed and yields to the next processor or stage, unless a discard
operation is specified.

24 - Consolidation

Control the Processing

» If you did not define a processor with a delete action context, or if it does not match the
document types, the document proceeds as if a default processor was defined with auto-
yielding. This behavior is true for both transformation and aggregation phases.

In other words, unless a delete processor has been defined and matches the document types,
when connectors push delete orders, the Consolidation Server:

1. Pushes a delete order to the Consolidation Store and removes documents from it.
2. Pushes delete orders to the Indexing Servers and removes them from the Indexing Store.

In addition, default delete orders are also applied to all child documents.

Delete Orders in Create/Update Action Context

You can also perform delete orders in a create/update action context, using deleteDocument
operations. This is mostly in the Aggregation Phase that such operations can be useful. Indeed,
we recommend controlling the presence of documents in the Consolidation Store with orders
coming from the connectors.

Control the Processing

In Java and Groovy, the evaluation of documents in the list of transformation and aggregation
processors is:

» Ordered: They are processed in the order they are defined.

+ Automatic: Processed documents are allowed to pass to the next processor or the next stage
automatically without declaring a yield operation. However, you must yield explicitly all
documents created inside a processor. Calls to delete operations are automatically yielded.

Since the document is automatically passed to the next processor or the next stage available in
the processing pipeline, you must make a call to the discard method to prevent it from going
further.

This method stops the pipelining. If the document was already present in the Consolidation Store,
discarding it at the transformation phase does not delete it from the Consolidation Store. If you
want to discard it and ask for deletion, you can add a delete operation in the processor where
the discard operation occurs.

Important: As for the yield method, the discard method does not interrupt the runtime
execution flow of your processor.

In the following code snippet, the code after discard is executed. If you want to interrupt the flow,
you have to add a return; after the discard call. The documents to yield in an aggregation

Consolidation - 25

Processor Type Inheritance and Runtime Selection

processor are the current processed document and, potentially the documents created during the
process code execution.

Recommendation: Do not yield other documents that could have been grabbed using a match
function. Doing so would lead to undefined behavior on the receiving end (Indexing Server for
example).

@Override
public void process (final IJavaAllUpdatesAggregationHandler handler, final IAggregati
throws Exception {
if (someCondition) {
discard () ;

}
// Some other calls

}

For more code samples, see Discard Processor Code Samples.

Processor Type Inheritance and Runtime Selection

Every document, within the transformation or aggregation phase, has at least one type, but
possibly more. You can define a type inheritance for each of them.

To do so, see: IMutableTransformationDocumentParameterized.setType,

ICreateTransformationHandler.create'*', ICreateAggregateHandler.create'*"'.

For example, you could write:

@Override

public void process(final IJavaAllUpdatesTransformationHandler handler, final IMutak
document) throws Exception {

document.setType ("cat", "felid", "mamal", "vertebrate");

}

As a result, the processors selected for execution apply the following rules:
+ Either the transformation or aggregation has the all types pattern.

o In Java, this is achieved by returning null or an empty string.

o In Groovy, this is achieved with an empty string.
» Or the document type inheritance matches the defined processor type.

With the following sequence of Groovy aggregation processors, the document presented before is
executed in order within Processor 1, Processor 3, and Processor 4.

26 - Consolidation

Java Processors

Processor # Groovy code

1 process ("cat") { ...}

2 process ("dog") { ...}

3 process ("mamal") { ...}
4 process ("") { ...}

Java Processors

Every Java Processor defined in the Consolidation Server implicitly implements the CVvComponent
Exalead CloudView interface, required to define a Exalead CloudView Component.

For more information, see the "Creating custom components for CloudView" in the Exalead
CloudView Programmer's Guide.

Consequently, it is possible to:

» Create Java processors externally within your IDE,

« Package this appropriately in a Jar/Zip,

* And deploy it into the Exalead CloudView instance to enable your processors selectively.

This is one of the key advantages over Groovy, as Groovy processors are added and written
within the Exalead CloudView Administration Console. With the Exalead CloudView component
mechanism, you can also define runtime properties that to customize the component behavior.
It thus becomes possible to write a generic processor that can be customized using runtime
properties defined within the Administration Console later on.

Define Java Transformation Processors
Transformation Operations

Define Java Aggregation Processors
Aggregation Operations

Company Hierarchy Example

Define Java Transformation Processors

You can define transformation processors using a set of default processors made for generic
simple operations, or through custom java code if your needs are more specific.

Consolidation - 27

Define Java Transformation Processors

Use Default Transformation Processors

1. Under Transformation processors, click Add processor.

2. In Add processor, select Java, give a name to the processor, and then choose one of the

following default processors.

Transformation Processor

Basic Arc Creation Processor

Basic Document Creation
Processor

Set Directive Processor

Set Meta Processor

Set Type Processor

Split Text Processor

Description

Class Id:

com.exalead.cloudview.consolidation.processors.

java

CreateArcBasedOnMetaValueTransformationProcessor

Creates an arc from the processed document. The target is
the value of the given meta name.

Class Id:

com.exalead.cloudview.consolidation.processors.

Jjava

CreateDocumentBasedOnMetaValueTransformationProcess

Creates a managed document from the processed document.
The target is the value of the given meta name.

Class Id:
com.exalead.cloudview.consolidation.processors

SetDirectiveTransformationProcessor

Sets the given directive on the processed document

Class Id:
com.exalead.cloudview.consolidation.processors

SetMetaTransformationProcessor

Set the given meta on the processed document

Class Id:
com.exalead.cloudview.consolidation.processors

SetTypeTransformationProcessor

Sets the given type on the processed document

Class Id:
com.exalead.cloudview.consolidation.processors

SplitTextTransformationProcessor

Splits the given source meta using the specified delimiting
regex pattern, and add/set the result to the target meta.

28 - Consolidation

.Jjava

.Jjava

.Jjava

.Jjava

Define Java Transformation Processors

Transformation Processor Description

Note: The target meta must be multivalued to contain all text
chunks resulting from the split operation.

Storage Service Key Linker Class Id:
Processor com.exalead.cloudview.consolidation.processors.java

StorageServiceKeyLinkerTransformationProcessor

Create arcs between the Storage Service data and the
document it is linked to.

For a use case example, see UC-8: Consolidating Data from
Storage Service.

3. Click Apply.

Create Custom Transformation Processors

To define a Java Transformation processor in the create/update action context, you need to
implement the TJavaAllUpdatesTransformationProcessor interface.

/**
* Defines the interface for all the Java transformation processors that
* need to perform operations in a non-delete context.
*/
public interface IJavaAllUpdatesTransformationProcessor extends IJavaTransformationPr
/x %
* Performs the add or update operations of the clientd€™s processor for the
* the document transmitted, with the help of the handler provided.
* @param handler The transformation handler providing the allowed operations for
* @param document The reference document.
* @throws Exception Occurs for whatever reason in the client's implementation.
* The exception will most likely be wrapped with contextual information before fu
*/
public void process (final IJavaAllUpdatesTransformationHandler handler,
final IMutableTransformationDocument document) throws Excepti

}
The parent interface is defined as follows:

/**
* Defines the common operations for all Java transformation processors.
*/
public interface IJavaTransformationProcessor extends CVComponent ({
/**
* Returns a document type on which the processor will perform a transformation.
* If one returns null or an empty string, then it will be applied on all source c
* @return A valid document type or null or empty string.

Consolidation - 29

Define Java Transformation Processors

*/

public String getTransformationDocumentType () ;
The following picture shows the complete class hierarchy associated with the Java transformation

}

processors in the create/update action context.

|r [TransformationHandler<D>]
| IDeleteTransformationHandler< D>]
£

[ICreateTransformationHandler<D, MD> DavaTransformationHandler]
'\ ~ %
", _\ //
"\ ,
™, /’__,.z
N e
[1 JavaCreateTransformationHandler | | DavaDeleteTransformationHandler]
o
-
e

L
\ /_.--"ff
-

P
s
ry
III..
{ CViCompenent
Depends On
I'.I [UmnuTmn\sfmatlunPrmsur]
'|__
\
Y
., - .
e,
™
I"\
™
LIConsdl-datlunDowment] “~.\L
; \\ \
M Depends On
[1MutableConsolidationDocument <T> | !
.-" p ’:r.'l
[lTrnn;l'nnmtlonDocumantJ LIMutabIeTmnﬂonnulonDucumntParmetmmdch] Vi
‘\H - __.-"-
., "/"
.y 'f, f,/
x_‘x ____/"' f._’_.-
e ; =)

.
. -

[IMutahIeTmnsfurmutinnDomment]"'

30 - Consolidation

Define Java Transformation Processors

The handlers hierarchy (in green) defines the list of operations allowed for the processor and for
the particular action context. The documents hierarchy (in purple) defines the document received
with the transformations allowed on them.

If you implement the TJavaAllUpdatesTransformationProcessor interface as requested,

you then have to implement the two following methods with a particular constructor receiving the
component config.

Java Example 1

@CVComponentDescription ("My First Transformation Processor Component")
@CVPluginVersion ("1.0™)
@CVComponentConfigClass (configClass=MyComponentConfig.class)
public class MyFirstTransformationProcessor implements IJavaAllUpdatesTransformationt
public MyFirstTransformationProcessor (final MyComponentConfig config) {
}
@Override
public String getTransformationDocumentType () {
return "city";
}
@Override
public void process(final IJavaAllUpdatesTransformationHandler handler,
final IMutableTransformationDocument document) throws Except
// Do nothing, that is transmit all "city" documents to the next processor
// or to the Consolidation Store.

logger.info ("Processing " + document.getURI())

private final Logger logger = Logger.getlogger ("app-name.conso-server.transfc

}

Once the code above in packaged and deployed on the Exalead CloudView instance, you can
define its associated source as shown below.

= = 5 MylavaTransformationProc cities 4 ¥ .!:[_. W
Source connector | cities v Disable processor

Class Id: com.exalead.plugin.consclidation java.MyFirstTransformaticnProcessor

Document Type: city

In this simple example:

+ We defined a constructor with the component config instance that you can use to customize
the processor using end-user properties. Here we do not store the instance because we have
no use for it. In general, we would save the instance in the processor class and use it in the
process method to read specific properties. A component configuration is always required for
the definition of each of your Java processors.

Consolidation - 31

Define Java Transformation Processors

» The processor treats the documents coming from the cities source connector.

» The processor also treats, from such source, documents with the city type only. The rules of
selection are detailed in Processor Type Inheritance and Runtime Selection.

* The process method contains the processor implementation. Here it contains no action
(except from the logging), so all city documents from the cities source connector is
automatically transmitted to the next available transformation processor, or to the Consolidation
Store.

You can reduce the config class to the following implementation:

public final class MyComponentConfig implements CVComponentConfig ({
// No property defined
}

Similarly, in the delete action context you need to implement the
IJavaDeleteTransformationProcessor interface. The methods to implement are mostly
the same, except from the process method, which has a different signature, to emphasize that
in such context, allowed operations are different from in the other one. Here is the class hierarchy
defined in a delete action context:

32 - Consolidation

Transformation Operations

[ITransformatinnHandler{D:]

RN

[[JavaTransformationHand Ier] IDeleteTransformationHandler<D>]

.~

----- -[IJavaDeleteTransfonﬂatmn Handler

| S

f"‘;/”-r’
/
/
.-‘f [CUCDmpnnent]
/
Depends On
]l. [IJ avaTransformationProcessor]
.I'\I.
\
A
N i i
3
i
[IConsolidationDncument] D*j;"ds On
’/”H
.a-"""-r ‘

[ITra nsformationDocument }-—"’"“ﬁ

Transformation Operations

This section lists the available transformation operations.

Consolidation - 33

Transformation Operations

ITransformationHandler

The base interface of the transformation handler provides the two following methods, which control
how documents are transformed within the processing pipeline.

Method Description

discard() Discards the current processor document, that is to say, prevents it
from going to the next processor or next stage.

yield (doc) Yields the newly created document to the next
processor or to the Consolidation Store. Use this call for
documents created in a transformation processor with the
IJavaCreateTransformationHandler methods.

ICreateTransformationHandler

The interface to add new documents to the Consolidation Store provides three different create
methods.

Tip:

When child URI is forged using the method:

IMutableTransformationDocument childDoc (IJavaAllUpdatesTransformationHandler) handler.createCh
childDoc.getUri()

The created URI is "document.URI" + childSeparator + "sub-URI" but as the
childSeparator is a private string that is not visible in generated URIs, it is impossible
to reforge this URI later without the same method.

Recommendation: To handle partial update use cases, create links from child to parent from the
child only.

Instead of:

document.addArcTo("hasTextualElement", child.getUri());
Prefer:

child.addArcFrom("hasTextualElement"”, document.getUri());
Method Description

createDocument (uri, type, parentTypes) Creates a transformation document with the
required given properties and with automatic
memory management. In other words, if no
edges point on it at the end of the transformation
phase, the document is deleted by the
Consolidation Server automatically.

34 - Consolidation

Transformation Operations

Method Description

createChildDocument (parentDoc, subURI Creates a transformation document from a
parent one with the given properties.

createUnmanagedDocument (uri, type, par{Creates a transformation document with the
given properties without automatic memory
management. This is the opposite behavior
of the createDocument method in terms of
memory management.

getDocumentChildrenPath (String This method is useful to create a child URI when
parentURI, String childURI) you do not have access to the child himself.
Never forge a URI by hand.

IDeleteTransformationHandler

The interface to send delete orders to the Consolidation Store.

Method Description

deleteDocument () Sends a recursive delete order for the current
document.

deleteDocument (uri) Sends a recursive delete order for the document with

the given URI prefix.

deleteDocument (uri, boolean) Sends a delete order for the specified document URI,
recursively or not.

If the boolean flag is true, then all URIs with a prefix
matching the given URI are also deleted.

deleteDocument (doc) Sends a recursive delete order for the specified
document and possibly all documents with a prefix
matching the document URI.

deleteDocument (doc, boolean) Sends a delete order for the specified document,
recursively or not.
If the boolean flag is true, then all URIs with a prefix

matching the document URI are also deleted.

deleteDocumentChildren (doc, pathSends a delete order for all document children matching
the given path. The document itself is not deleted.

Consolidation - 35

Transformation Operations

Method Description

deleteDocumentChildren (doc) Sends a delete order for all document children. The
document itself is not deleted.

deleteDocumentChildren (parentURSends a deletion order for all document children
matching the path of the given parent URI. The
document itself is not deleted.

deleteDocumentChildren (parentURSends a deletion order for all document children with
the given parent URI prefix. The document itself is not
deleted.

deleteDocumentRootPath (rootURI) Sends a deletion order for all documents matching the
root URI prefix.
IMutableTransformationDocument

The following interface provides the operations specific to a Transformation document.

Method Description

addArcFrom (arcType, Registers an arc addition from the specified document to the
fromDoc) current one.

addArcFrom (arcType, Registers an arc addition from the document specified by the URI
fromDocURTI) to the current one.

addArcTo (arcType, toDoc) Registers an arc addition from the current document to the
specified document.

addArcTo (arcType, Registers an arc addition from the current document to the
toDocURT) document specified by the URI.

removeAllPredecessorArcs Registers for deletion all adjacent arcs heading to the current
one.

removeAllSuccessorArcs () Registers for deletion all adjacent arcs starting from the current
one.

removeArcFrom (arcType, Registers for deletion the arc starting from the specified
fromDoc) document to the current one, with the given type.

removeArcFrom (arcType, Registers for deletion the arc starting from the specified
fromDocURTI) document to the current one, with the given type.

36 - Consolidation

Transformation Operations

Method

removeArcTo (arcType,
toDoc)

removeArcTo (arcType,
toDocURI)

setType (documentType,
parentTypes)

IConsolidationDocument

Description

Registers for deletion the arc starting from the current document
to the specified document, with the given type.

Registers for deletion the arc starting from the document
specified by the URI to the current one, with the give type.

Defines the document type, as well as its possible parents as
defined in getTypeInheritance ().

The following interface gives access to the default data encapsulated within a consolidation
document, either for transformation or aggregation.

Method

1isOfType (type)

getAllDirectives ()
getAllMetas ()
getAllParts ()
getDirectiveNames ()
getDirective (name)
getDirectives (name)
getMetaNames ()
getMeta (name)
getMetas (name)
getOriginalSources ()
getPartNames ()
getPart (name)
getParts (name)
getSource ()

getType ()

Description

Indicates if the type transmitted is among the list of the current
document types.

Returns all the directives defined in this document.
Returns all the metas defined in this document.
Returns all the parts defined in this document.
Returns all the document directive names.

Returns the first directive value for the given name.
Returns all the directives for the given name.

Returns all the meta names.

Returns the first meta value for the given name.
Returns all the meta values for the given name.
Returns the list of original sources for the given document.
Returns all the document part names.

Returns the first document part for the given name.
Returns the list of document parts for the given name.
Returns the document original source that produced it.

Returns the document representative type.

Consolidation - 37

Method

getTypelnheritance ()

getUri ()

hasDirective (name)

hasMeta (name)

hasPart (name)

Transformation Operations

Description

Returns the type inheritance for the document.

The first one in the list is a descendant of the second one, the
second one of the third one, and so on. So types are ordered
from the most specific to the most generic.

Returns the document unique identifier.

Indicates if the directive name has an associated value within the
document.

Indicates if the meta name has an associated value within the
document.

Indicates if the part name has an associated value within the
document.

IMutableConsolidationDocument

This interface enriches the operations available within IConsolidationDocument with a list of

operations allowing the modifications of internal data.

Method

deleteDirective (name)

deleteDirectives (name,

values)

deleteMeta (name)

deleteMetas (name,

values)
deleteParts (name)

deleteParts (name,

documentParts)

setDirective (name,

value)

Description

Deletes all the directive values associated to the specified
directive name.

Deletes only the given values for the specified directive name.

Deletes all the meta values associated to the specified meta
name.

Deletes only the given meta values from the specified meta
name.

Deletes the document parts related to the specified part name.

Deletes all the part directive values for the specified part name.

Assigns the given value to the specified directive name.

setAllDirectives (directiAssigns all the directive name/values associated to the current

document.

38 - Consolidation

Define Java Aggregation Processors

Method Description

setMeta (name, value) Assigns the given meta value to the specified meta name.
setMeta (name, values) Assigns the given meta values to the specified meta name.

setAllMetas (metas) Assigns all the meta name/values associated to the current
document.

setPart (name, docPart) Assigns the given document part to the specified part name.

setParts (name, docParts) Assigns the given document parts to the specified part name.

setAllParts (parts) Assigns all the parts associated to the current document.

withDirective (name, Adds the value of a specific directive to the possible list of

value) predefined directive values. If none is defined, a new list is
created.

withDirectives (name, Adds the values of a specific directive to the possible list of

values) predefined directive values. If none is defined, a new list is
created.

withDirectives (directive Adds the list of directive key-values to the possible list of
predefined directive values.

withMeta (name, value) Adds the value of a specific meta to the possible list of predefined
meta values. If none is defined, a new list is created.

withMeta (name, values) Adds the values of a specific meta to the possible list of
predefined meta values. If none is defined, a new list is created.

withMetas (metas) Adds the list of meta key-values to the possible list of predefined
meta values.

withPart (name, docPart) Adds the document part to the list of existing predefined parts. If
none is defined, a new list is created.

withPart (name, docParts) Adds the sequence of document parts to the list of existing
predefined parts. If none is defined, a new list is created.

withParts (allParts) Adds the list of parts associated to the current document.

Define Java Aggregation Processors

In the Transformation phase, you have possibly filtered, modified, linked, and pushed documents
into the Consolidation Store. In the Aggregation phase, you are then ready to aggregate or enrich

Consolidation - 39

Define Java Aggregation Processors

them together for the Exalead CloudView Index. You can also decide to notify the Indexer to delete

some documents generated during the Aggregation.

You can define aggregation using default processors made for generic operations, or through

custom java code if your needs are more specific.

Use Default Aggregation Processors

1. Under Aggregation processors, click Add processor.

2. Inthe Add processor dialog box, select Java, give a name to the processor, and then choose
one of the following default processors.

Aggregation Processor

Basic Aggregation
Processor

Description

Class Id:
com.exalead.cloudview.consolidation.processors.java

BasicAggregationProcessor

.classi

Add/set metas, directives, or parts from documents at the end of paths,

returned by the given graph matching expression.

See the example below this table.

Classification Processor Class Id:

Discard Processor

Set Directive Processor

Set Meta Processor

com.exalead.cloudview.consolidation.processors.java

ClassficationAggregationProcessor

.classi

Generates classification metadata representing path nodes ('node1_id/

node2_id/node3 id...")

Class Id:
com.exalead.cloudview.consolidation.processors.java

DiscardAggregationProcessor
Discards documents matching the given document types.

For a use case example, see UC-8: Consolidating Data from Storage
Service.

Class Id:
com.exalead.cloudview.consolidation.processors.java

SetDirectiveAggregationProcessor
Sets the given directive on the processed document.
Class Id:

com.exalead.cloudview.consolidation.processors.java

SetMetaAggregationProcessor

.classi

.classi

.classi

40 - Consolidation

Define Java Aggregation Processors

Aggregation Processor Description

Sets the given meta on the processed document.

Storage Service Key Class Id:
Flattener Processor com.exalead.cloudview.consolidation.processors.java.classi

StorageServiceKeyFlattenerAggregationProcessor
Sets metas on a document coming from the Storage Service.

For a use case example, see UC-8: Consolidating Data from Storage
Service.

Interconnector Class Id:
Aggregator Processor com.exalead.cloudview.consolidation.processors.java.

InterconnectorAggregatorProcessor

Aggregates a parent document with its child document, given a graph
path from parent to child.

For a use case example, see in the Exalead CloudView Connectors
Guide.

For example, with the Basic Aggregation Processor, you can replace the following Groovy code,

which rewrites metas at the end of paths:
process("eno: bo: CATPart") {
for (node in match(it, "-eno:fronfeno:co:Viewabl e].eno:to[eno: bo: CgrVi ewabl e] . -en
it.metas."3dthb_46 phyi d" += node. netas. "physicalid";
it.netas."3dthb 46 nane" += node. netas."sdc 46 3dthb 46 nane";
it.metas."3dthb_46 format" += node. netas."sdc_46 3dthb 46 format";

}
}

By the following configuration:

Consolidation - 41

Define Java Aggregation Processors

4 ™ g3 basic + ¥+ = x

Dizable processor
Class ld: com. exalead cloudview. consoldation processors ava. classic BasicAggregationProcessor
Document Type: from ConsolidationManagerGwitxtendedService_Proxy getProcessorDocumentType
Processed Document type eno:bo:CATPart i
Verbose [l i
¥ Aggregation rules (1) | i
Yiemd 4+ ¥ X

Graph matching expres sion -eno: from{eno: co:Viewable].enotofeno bo:Corviewabile] -

enothumbnai
¥ Mera rufes (3) i
¥Yiemo 4 ¥ X
Source meta physicalid i
Target meta 3dthb_46_phyid i
Overwrite target [/ i
Yiem? 4+ ¥ X
Source meta sdc_46_3dthb_45_name i
Target meta 3dthb_46_name i
Overwrite target [J7] i
Yiem2 4+ ¥ X
sdc_46_2dthb_48_format
Source meta - - i
Target meta 3dthb_46_format i
Overwrite target [/ i
Add itemn

P Directive rules (0) i

P Partrules (0) i

3. Click Apply.

Create Custom Aggregation Processors

In Java, to define an Aggregation processor in the create/update action context, you need to
implement the TJavaAllUpdatesAggregationProcessor interface. Here is the actual
interface definition:

/*-k

* Defines the interface for all Java aggregation processors that need to perform dc
* in a non-delete context.

*/

42 - Consolidation

Define Java Aggregation Processors

public interface IJavaAllUpdatesAggregationProcessor extends IJavaAggregationProcess
/**
* Performs the aggregation operations of the client's processor for the document t
* with the help of the handler provided.

*

* @param handler The aggregation handler with the allowed operations for the proce

* (@param document The reference document.

* @throws Exception Occurs for whatever reason in the client's implementation.

* The exception will most likely be wrapped with contextual information before fur

*/

public void process (final IJavaAllUpdatesAggregationHandler handler, final IAggrec
throws Exception;

}
The parent interface is defined as follows:

/**
* Defines the interface for all Java aggregation processors that need to
* perform document operations in a non-delete context.
*/
public interface IJavaAllUpdatesAggregationProcessor extends IJavaAggregationProcessc
/**
* Performs the aggregation operations of the client's processor for the document t
* with the help of the handler provided.

* @param handler The aggregation handler with the allowed operations for the proce

* @param document The reference document.

* @throws Exception Occurs for whatever reason in the client's implementation.

* The exception will most likely be wrapped with contextual information before fur

*/

public void process (final IJavaAllUpdatesAggregationHandler handler, final IAggre
throws Exception;

}

Note: This time, there is no need to specify the source connector within the Administration
Console, since all documents are loaded from the Consolidation Store.

The class hierarchy is the following:

Consolidation - 43

Define Java Aggregation Processors

[IAggrEgatlunH andler-r.[}:-

/\

[ll’.‘.reat&hggregal:iunHandler-: o, MD}

IJa'.raAgg reg atmnHandIerJ

[-I DeleteAggregationHandler<D :-]
[[Java:reateﬁgg regationH undler]

I]ava Deletedgg regatlunHandler

N

_.[IJwaAIIUpdabesAgg regq atlmHandIer

CVComponent
Depends On
I
]III []Juvuﬁggmguﬂmﬁoceﬁsw]
|| L3

_-\

L
!
[IConsolidationDocument]

|
[IMutahle{:unsulidatimDumment-:T:-]

[lAgg regationDocumentParameterized <T>]

[1AggregationDocument]-—-"'*j

For the delete action context, you have to implement the
IJavaDeleteAggregationProcessor interface as follows

44 - Consolidation

Define Java Aggregation Processors

/**
* Defines the interface for all Java aggregation processors that need to perform del
* processing on documents.
*/
public interface IJavaDeleteAggregationProcessor extends IJavaAggregationProcessor {
/**
* Performs the aggregation operations of the client's processor for the document t
* with the help of the handler provided.
*
* @param handler The aggregation handler with the allowed operations for the proce
* (@param document The reference document.
* @throws Exception Occurs for whatever reason in the client's implementation.
* The exception will most likely be wrapped with contextual information before fur
*/
public void process (final IJavaDeleteAggregationHandler handler, final IAggregatic
throws Exception;}

And finally, the class hierarchy is:

Consolidation - 45

Define Java Aggregation Processors

[IAggregatinnHandler-::D:-]

DN

[IJauaAggregatiunHandler] [IDeIeteAggregatic-nHandIer-::D::-]

o~ 7

e {IJavaDeleteAgg regationHand IerJ

f [CVCun'\‘pan ent]

[IJ avaAggregatinancessar]

N\
[ICan solidationDocument] \"n
\
[IMutabIeConsolidatlonnﬂcu ment<T>] \1
Depends On
.:’
[IAggreg ationDocumentParameterized<T>] J,rf
x ;f.-“
/
f//
-

46 - Consolidation

(1AggregationDocument -

Aggregation Operations

Aggregation Operations

This section lists the available aggregation operations.

TAggregationHandler
The base interface of the aggregation handler provides the next fundamental methods.

Method Description

discard() Discards the current processor document, that is to say, prevent
it from going to the next processor or next stage.

getReason () Returns a string representing the reason why the document is
pushed to aggregation. It can have one of the following values:
ADDED, DELETED, IMPACTED.

match (doc, graphMatchingEsFinds the list of paths in the graph that start from the
specified IAggregationDocument and that satisfy the
graphMatchingExpression. Returns them as a list of
documents.

matchPathEnd (doc, graphMatFinds the documents at the end of each path in the graph, that
starts from the specified IAggregationDocument and that
satisfy the graphMatchingExpression. Returns them as a list
of documents.

This is useful when you do not want to overload the
Consolidation Server with a lot of useless intermediary
documents, found on the path between the starting document
and the document level you chose as path end. In other words,
instead of considering all the vertices on a given path, it only
considers the one at the end.

matchPathEnd (doc, graphMatFinds the documents at the end of each path in the graph, that
starts from the specified TAggregationDocument, satisfy
the graphMatchingExpression. Returns them as a list of
documents.

The goal of this method is to avoid impacting elements if the
meta that changed is not used. Instead of considering all the
vertices on a given path, it only considers the one at the end,
only if the meta used has changed. This is triggered when the
impact detection is launched during the incremental scan.

Consolidation - 47

Method

Aggregation Operations

Description

Warning: This method does not work with Date metas.

matchPathEnd (doc, graphMatFinds the documents at the end of each path in the graph, that
testDirectives, testParts,starts from the specified IAggregationDocument, satisfy

yield (doc)

yieldAndForward (doc)

IJavaAggregationHandler

the graphMatchingExpression. Returns them as a list of
documents.

The goal of this method is to avoid impacting elements if the
meta that changed is not used, and if directives and parts are
the same. Instead of considering all the vertices on a given path,
it only considers the one at the end, only if the meta used has
changed, or if directives are different, or if parts are different.
This is triggered when the impact detection is launched during
the incremental scan.

Warning: This method does not work with Date metas.

Yields the newly created document to the forward rules without
passing through the whole pipeline of aggregation processors.

Use this call for documents created in an aggregation processor
with the TJavaCreateAggregationHandler methods.

Yields the documents newly created in an aggregation processor
to the next aggregation processor in the pipeline of aggregation
processors.

Use this call for documents created in an aggregation processor
with the createDocument or the createChildDocument
methods. This is to make sure that the document is forwarded
to the next processor and not sent to the specified forward rules
directly, unlike the yield (doc) method.

This interface extends the TAggregationHandler interface to provide a different approach for

collecting graph matching results when using Java.

Method

Description

match (doc, graphMatchingExpression, maFinds the list of paths in the graph that start from

the specified TAggregationDocument and
that satisfy the graphMatchingExpression.

48 - Consolidation

Aggregation Operations

Method Description

Unlike the other match method, it provides

the results using the matchResultVisitor
instance with all unique documents matching the
graph matching expression (independently of the
paths reached).

ICreateAggregationHandler

The interface to add new documents to the forward rules provides two different create methods
and a specific service to fetch document parts from a connector instance.

Method Description

createDocument (uri, type,parentTypes) Create an aggregation document with the given
properties.
Unlike

ICreateTransformationHandler.createDocumes:
this document is not automatically deleted if

there are no edges point on it at the end of the
aggregation phase. It is pushed as is to the

forward rules, and sent (or not) to an Indexing

Server or another Consolidation Instance.

createChildDocument (parentDoc, subURI Creates an aggregation document from a parent
one with the given properties.

isFetchOperation () When a Fetch Server performs a fetch operation
request to the Consolidation Server, this handler
(and in this case only) returns true.

When this is the case, all the aggregation
operations performed in the processor are
directed in return to the Fetch Server. None

of the documents aggregated proceed to the
forward rules handler, and thus to the Indexing
Server. The operations allowed in such event
are the ones of a create/update context, and the
fetchParts operation.

In most cases, you do not have to deal with this
kind of situation.

Consolidation - 49

Aggregation Operations

Method Description

fetchParts (document, connectorName, Fetches the parts corresponding to the

connectorDocumentURTI) connectorDocumentURI document from the
connector specified by connectorName and
appends them to the given document.

This call makes sense only when the
isFetchOperation () method returns true.

IDeleteAggregationHandler

The interface to send delete orders to the forward rules. Unlike
IDeleteTransformationHandler, all methods are similar, apart from an extra parameter,
which receives a possible list of document types, that is added to all signatures.

When you create new custom documents during the aggregation phase using the create' *"'
methods of the ICreateAggregationHandler interface in one processor, and later try to send
a delete order for these documents in another processor, you no longer have access to any of
the document metadata, especially the document types.

Such information is only known by the Indexing Server or by another Consolidation Server
instance, depending on the routing strategy applied by the forward rules handler.

As a result, if you want to send a delete order to custom aggregated documents, you need to
specify their types so that the forward rules handler can apply a dedicated routing strategy.

You do not need to specify the types for all documents present in the Consolidation Store that are
processed during the aggregation phase (unlike the transformation phase). The Consolidation
Server provides all required metadata to the forward rule handler so that it can operate accurately.

Method Description

deleteDocument () Sends a recursive deletion order for the document
being aggregated, and all the other documents with a
prefix matching the current document URI.

deleteDocument (docTypes...) Sends a recursive deletion order for the document
being aggregated, and all the other subdocuments with
a prefix matching the current document URI.

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering
by the forward rules handler, a recursive deletion order
is sent for the specified document types matching the
current document URI.

50 - Consolidation

Aggregation Operations

Method

deleteDocument (uri, boolean)

deleteDocument (uri,

docTypes...)

Description

Sends a deletion order for the specified document URI,
recursively or not. If the boolean flag is true, then all
URIs with a prefix matching the given URI are also
deleted.

Sends a recursive deletion order for the document with
the specified URI prefix.

deleteDocument (uri, boolean, docTSends a deletion order for the specified document URI,

deleteDocument (doc)

recursively or not. If the boolean flag is true, then all
URIs with a prefix matching the given URI are also
deleted.

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering by
the forward rules handler, a deletion order (recursive or
not) is sent for the given document types matching the
specified document URI.

Sends a recursive deletion order for the specified
aggregated document and possibly all documents with
a prefix matching the document URI.

deleteDocument (doc, docTypes. . .) Sends a recursive deletion order for the specified

deleteDocument (doc,boolean)

aggregated document and possibly all documents with
a prefix matching the document URI.

Moreover, a recursive deletion order with the given
document is sent with the additional forward rule types
provided, to delete documents not recognized in the
Consolidation Store while allowing correct routing/
filtering by the forward rules handler (if required).

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering by
the forward rules handler, a recursive deletion order is
sent for the given document types matching the current
document URI.

Sends a deletion order for the given document,
recursively or not.

If the boolean flag is true, then all URIs with a prefix
matching the document URI are also deleted.

Consolidation - 51

Aggregation Operations

Method Description

deleteDocument (doc,boolean, docTSends a deletion order for the given document,
recursive or not. If the boolean flag is true, then all
URIs with a prefix matching the document URI are also
deleted.

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering by
the forward rules handler, a deletion order (recursive or
not) is sent for the specified document types matching
the document URI.

deleteDocumentChildren (doc, pathSends a deletion order for all document children
matching the given path. The document itself is not
deleted.

deleteDocumentChildren (doc, pathSends a deletion order for all document children
matching the given path. The document itself is not
deleted.

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering by
the forward rules handler, a recursive children deletion
order is sent for the specified document types matching
the current document URI.

deleteDocumentChildren (uri, pathSends a deletion order for all document children of the
given URI matching the given path. The document itself
is not deleted.

deleteDocumentChildren (uri, pathSends a deletion order for all document children of the
given URI matching the given path. The document itself
is not deleted.

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering by
the forward rules handler, a recursive children deletion
order is sent for the specified document types matching
the specified document URI.

deleteDocumentChildren (doc) Sends a deletion order for all document children. The
document itself is not deleted.

deleteDocumentChildren (doc, docTSends a deletion order for all document children. The
document itself is not deleted.

52 - Consolidation

Aggregation Operations

Method

deleteDocumentChildren (uri)

Description

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering by
the forward rules handler, a recursive children deletion
order is sent for the specified document types matching
the current document URI.

Sends a deletion order for all document children of the
given URI. The document itself is not deleted.

deleteDocumentChildren (uri, docTSends a deletion order for all document children of the

given URI. The document itself is not deleted.

Moreover, to delete documents not recognized in the
Consolidation Store and allow correct routing/filtering by
the forward rules handler, a recursive children deletion
order is sent for the specified document types matching
the specified document URI.

deleteDocumentRootPath (rootURI) Deletes all the documents matching the root URI prefix.

deleteDocumentRootPath (rootURI, Deletes all the documents matching the root URI prefix,

IConsolidationDocument

and with some forward rule types to allow correct
routing/filtering by the forward rules handler.

The following interface gives access to the default data encapsulated within a consolidation

document, either for transformation or aggregation.

Method Description

isOfType (type) Indicates if the type transmitted is among the list of the current
document types.

getAllDirectives () Returns all the directives defined in this document.
getAllMetas () Returns all the metas defined in this document.
getAllParts () Returns all the parts defined in this document.
getDirectiveNames () Returns all the document directive names.
getDirective (name) Returns the first directive value for the given name.

getDirectives (name) Returns all the directives for the given name.

Consolidation - 53

Method

getMetaNames ()
getMeta (name)
getMetas (name)
getOriginalSources ()
getPartNames ()
getPart (name)
getParts (name)
getSource ()
getType ()

getTypelnheritance ()

getUri ()

hasDirective (name)

hasMeta (name)

hasPart (name)

Aggregation Operations

Description

Returns all the meta names.

Returns the first meta value for the given name.

Returns all the meta values for the given name.

Returns the list of original sources for the given document.
Returns all the document part names.

Returns the first document part for the given name.
Returns the list of document parts for the given name.
Returns the document original source that produced it.
Returns the document representative type.

Returns the type inheritance for the document.

The first one in the list is a descendant of the second one, the
second one of the third one, and so on. So types are ordered
from the most specific to the most generic.

Returns the document unique identifier.

Indicates if the directive name has an associated value within the
document.

Indicates if the meta name has an associated value within the
document.

Indicates if the part name has an associated value within the
document.

IMutableConsolidationDocument

This interface enriches the operations available within IConsolidationDocument with a list of

operations allowing the modifications of internal data.

Method

deleteDirective (name)

deleteDirectives (name,

values)

Description

Deletes all the directive values associated to the specified
directive name.

Deletes only the given values for the specified directive name.

54 - Consolidation

Aggregation Operations

Method

deleteMeta (name)

deleteMetas (name,

values)
deleteParts (name)

deleteParts (name,

documentParts)

setDirective (name,

value)

Description

Deletes all the meta values associated to the specified meta
name.

Deletes only the given meta values from the specified meta
name.

Deletes the document parts related to the specified part name.

Deletes all the part directive values for the specified part name.

Assigns the given value to the specified directive name.

setAllDirectives (directiAssigns all the directive name/values associated to the current

setMeta (name, value)
setMeta (name, values)

setAllMetas (metas)

setPart (name, docPart)

document.
Assigns the given meta value to the specified meta name.
Assigns the given meta values to the specified meta name.

Assigns all the meta name/values associated to the current
document.

Assigns the given document part to the specified part name.

setParts (name, docParts) Assigns the given document parts to the specified part name.

setAllParts (parts)

withDirective (name,

value)

withDirectives (name,

values)

Assigns all the parts associated to the current document.

Adds the value of a specific directive to the possible list of
predefined directive values. If none is defined, a new list is
created.

Adds the values of a specific directive to the possible list of
predefined directive values. If none is defined, a new list is
created.

withDirectives (directive Adds the list of directive key-values to the possible list of

withMeta (name, value)

withMeta (name, values)

predefined directive values.

Adds the value of a specific meta to the possible list of predefined
meta values. If none is defined, a new list is created.

Adds the values of a specific meta to the possible list of
predefined meta values. If none is defined, a new list is created.

Consolidation - 55

Company Hierarchy Example

Method Description
withMetas (metas) Adds the list of meta key-values to the possible list of predefined
meta values.

withPart (name, docPart) Adds the document part to the list of existing predefined parts. If
none is defined, a new list is created.

withPart (name, docParts) Adds the sequence of document parts to the list of existing
predefined parts. If none is defined, a new list is created.

withParts (allParts) Adds the list of parts associated to the current document.

Company Hierarchy Example

In the following use case, we have people and companies, and we want to enrich the company
with a meta indicating the number of employees present at any time.

We have two types of documents:

* company: Contains the company name in its URI. It holds possibly many other metas that
identify the company.

+ employee: Contains the employee's name in its URI. It holds possibly many other metas that
identify the employee, but contains at least two metas:

o company name contains the company's name in which the employee is working.

o service name contains the service in which the employee is working (sales, R&D,
marketing, etc.).

Connect Employees to Services and Services to Companies

We want to connect each employee to the service, and the service to the appropriate company
with the following data model.

56 - Consolidation

Company Hierarchy Example

employee=Bob& employee=Alice& employee=John&

employee mployee employee

service=RandD& service=Sales&

service service

company=3ds&

The code for such a transformation may look like the following:

Example 1. Employee's Transformation Processor

@CVComponentConfigClass (configClass=CVComponentConfigNone.class)
public class EmployeeTransformationProcessor implements IJavaAllUpdatesTransformatior
public EmployeeTransformationProcessor (final CVComponentConfigNone config) {
}
@Override
public String getTransformationDocumentType () {
return "employee";
}
@Override
public void process(final IJavaAllUpdatesTransformationHandler handler,
final IMutableTransformationDocument document) throws Exception {

final String companyName = document.getMeta ("company name") ;
final String serviceName = document.getMeta ("service name");
if ((companyName != null) && (! companyName.isEmpty()) && (serviceName != nul
(! serviceName.isEmpty())) {
final ITransformationDocument serviceDoc = addService (handler, document, se
document.addArcTo ("employee", serviceDoc.getUri()):;

}
private ITransformationDocument addService (final IJavaAllUpdatesTransformationHar
final IMutableTransformationDocument document, final String serviceName, final
final IMutableTransformationDocument newDoc = handler.createDocument ("service
"service");
newDoc.addArcTo ("service", "company=" + companyName + "&");
handler.yield (newDoc) ;
// Note that the yield here is required because it is a document created
// during the Transformation phase
return newDoc;

Consolidation - 57

Company Hierarchy Example

}

The drawback of this implementation is that it pushes the arcs that link services to the company
several times. In the end, since these arcs have the same type, only the relevant ones persist (with
no redundancies in the store).

However, it is always better to minimize the number of redundant operations. If we had the
required information, we could create the different services that the company has, with unique
URIs, and then at the employee level, we would link employees to services.

A possible implementation could be:

@Override
public void process(final IJavaAllUpdatesTransformationHandler handler,
final IMutableTransformationDocument document) throws Exception {

final String serviceName = document.getMeta ("service name");
if ((companyName != null) && (! companyName.isEmpty()) && (serviceName != nul
(! serviceName.isEmpty())) {
document.addArcTo ("employee", "service=" + serviceName + " " + companyNan

Despite its imperfection, let us stick to this first implementation from now on. For more information
about the method used in this sample, see |IMutableTransformationDocument .

Keep the Business Logic Within the Connector

Sometimes, you might want to keep the business logic within your

connector, even if it is not recommended. You can do that using the
com.exalead.cloudview.consolidationapi.PushAPITransformationHelpers.
The sample below shows how to embed the graph modeling done by the
EmployeeTransformationProcessor directly within your connector.

final PushAPI employeePushAPI = CloudviewAPIClientsFactory.newInstance (GATEWAY URL).r
(PUSH API SERVER, CONNECTOR NAME) ;

final List<Document> employees = new ArrayList<Document> () ;
Document employee = new Document ("employee=Alice&");
employee.addMeta ("company name", "3ds");

employee.addMeta ("service name", "RandD");

employees.add (employee) ;

employee = new Document ("employee=Bob&") ;

employee.addMeta ("company name", "3ds");

employee.addMeta ("service name", "RandD");

employees.add (employee) ;

employee = new Document ("employee=Johné&") ;

employee.addMeta ("company name", "3ds");

58 - Consolidation

Company Hierarchy Example

employee.addMeta ("service name", "Sales");

employees.add (employee) ;

final Iterator<Document> employeesIt = employees.iterator();

while (employeesIt.hasNext()) {employee = employeesIt.next():;

final String serviceURI = getServiceURI (employee.getMetaContainer () .getMeta ("service
// Create service managed document
PushAPITransformationHelpers.createDocument (employee, serviceURI, "service");

// Add arc from employee to service

PushAPITransformationHelpers.addArcTo (employee, "employee", serviceURI) ;

// Add arc from service to company

final String companyURI = getCompanyURI (employee.getMetaContainer () .getMeta ("company
PushAPITransformationHelpers.addArcTo (employee, "service", serviceURI, companyURI) ;
employeePushAPI.addDocument (employee) ;

}

Count the Number of Employees and Push Updated Documents

Now, for each company document, we want to add a nb_employees meta that counts the total
number of employees, and push updated document to the Indexing Server. You can perform this
kind of task during the aggregation phase.

A possible implementation could be:

@CVComponentConfigClass (configClass=CVComponentConfigNone.class)
public final class CompanyAggregationProcessor implements IJavaAllUpdatesAggregationt
public CompanyAggregationProcessor (final CVComponentConfigNone config) {

}

@Override
public String getAggregationDocumentType () {
return "company";

@Override
public void process (final IJavaAllUpdatesAggregationHandler handler, final IAggre
throws Exception {
int nbEmployees = 0;
for (final IAggregationDocument serviceDoc : GraphMatchHelpers.getPathsEnd (ha
"-service"))) {

nbEmployees += handler.match (serviceDoc, "-employee").size();
}
document.withMeta ("nb employees", String.valueOf (nbEmployees)) :;

}

We first retrieve all the services that belong to a given company with the following call:

handler.match (document, "-service")

Consolidation - 59

Company Hierarchy Example

This returns all the paths starting from the company document that follow the service edge in
reverse order.

We know by design, and also from the match query, that such paths contain only one document,
the neighbors of the company document. So GraphMatchHelpers.getPathsEnd is
responsible for accessing it. The Java code for such helper method must be equal (or equivalent)
to:

public static <T> List<T> getPathsEnd(final List<List<T>> paths) {
return Lists.transform(paths, new Function<List<T>, T>() {
@Override
public T apply(final List<T> path) {
return Iterables.getlast (path) ;

b)) g
}

Then for each service document:

handler.match (serviceDoc, "-employee") .size()

Returns all the paths leading to a unique employee in the service. We need to get the number of
paths to get the number of employees in the service. The company document is then enriched
with the nb employee meta with the variable that allowed us to sum up all the different paths that
were found.

A better and simpler implementation is:

Example 2. Company's Aggregation Processor

@CVComponentConfigClass (configClass=CVComponentConfigNone.class)
public final class CompanyAggregationProcessor implements IJavaAllUpdatesAggregationt
public CompanyAggregationProcessor (final CVComponentConfigNone config) {
}
@Override
public String getAggregationDocumentType () {
return "company";
}
@Override
public void process (final IJavaAllUpdatesAggregationHandler handler, final IAggre
throws Exception {
int nbEmployees = handler.match (document, "-service.-employee").size ()
document.withMeta ("nb employees", String.valueOf (nbEmployees)) ;

60 - Consolidation

Company Hierarchy Example

Reach Employee Documents from the Company Document

The graph matching expression language allows us to specify an arbitrary long path, with various
quantifiers (see Appendix - Matching Expressions Grammar). We can therefore reach the
employee documents from the company document directly, with the expression:

handler.match (document, "-service.-employee")

Push the Number of Employees Present in Each Service

We could also want, as a refinement, to push the number of employees present in each service.
Writing the following code would then be enough:

@CVComponentConfigClass (configClass=CVComponentConfigNone.class)
public final class ServiceAggregationProcessor implements IJavaAllUpdatesAggregationt
public ServiceAggregationProcessor (final CVComponentConfigNone config) {
}
@Override
public String getAggregationDocumentType () {
return "service";
}
@Override
public void process (final IJavaAllUpdatesAggregationHandler handler, final IAggre
throws Exception {
document.withMeta ("nb employees", String.valueOf (handler.match (document, "-en

Important: If you have written the above processor first, avoid writing the following processor
afterward to aggregate the number of employees for the company.

@CVComponentConfigClass (configClass=CVComponentConfigNone.class)
public final class CompanyAggregationProcessor implements IJavaAllUpdatesAggregationF
public CompanyAggregationProcessor (final CVComponentConfigNone config) {
}
@Override
public String getAggregationDocumentType () {
return "company";
}
@Override
public void process(final IJavaAllUpdatesAggregationHandler handler, final IAggre
throws Exception {
int nbEmployees = 0;
for (final IAggregationDocument serviceDoc : GraphMatchHelpers.getPathsEnd (ha
"—service"))) {
final String nbServiceEmployees = serviceDoc.getMeta ("nb employees");
if ((nbServiceEmployees != null) && (! nbServiceEmployees.isEmpty()) {
nbEmployees += Integer.valueOf (nbServiceEmployees) ;

Consolidation - 61

Manage Documents Explicitly

}

document.withMeta ("nb employees", String.valueOf (nbEmployees)) :;

}

The code above collects all service documents, and for each of them, sums up the values
coming from its nb _employees meta.

This code works because even if we sum up the services meta values while more documents
are still arriving, the impact detection ensures that the processor for these specific company
documents is re-evaluated.

What may prevent this code from working properly is that the data visible during the Aggregation
phase comes from the data pushed to the Consolidation store only, and nothing more! In other
words, all document modifications and newly created custom documents that occur during the
Aggregation phase are not visible to one another. So the company meta does not have any
visibility on the new nb employees meta created during the aggregation phase by the service
processor.

Manage Documents Explicitly

You can set aside the subtleties about the lifecycle management of documents created during the
transformation and aggregation phases if rather than creating custom URIs (that is, documents
with URIs that do no share anything in common with the document that created them) you create
child documents.

Creating child documents from a given document managed by a connector, ensures that when
the connector pushes the document deletion, the Consolidation Server registers for deletion all
child documents automatically. This behavior is true for both the transformation and aggregation
phases.

Note: In such case, the deletion occurs whether the document is attached to another one or not.
The deletion criteria is URI-based.

As as result, this type of document creation is the preferred one if you do not want to bother with
the lifecycle management of these objects. If you choose this method, it is unlikely that you ever
need to write a processor in delete action context.

In the Transformation Phase

In the Company Hierarchy Example code, we pushed the creation and updates of employees
to the Consolidation Store. With them, we have possibly created manually new documents
representing the service they belong to.

62 - Consolidation

In the Transformation Phase

Note: Connectors do not manage service documents. In our use case, the CDIH would refuse
delete orders for a service document, as it is created afterward.

Deleting the documents created within the transformation phase is within the hands of the
developer writing the processor logic. If you create managed documents, like we did with the
call to createDocument, then the document is removed from the Store automatically once no
other documents are attached to it. If the connectors send delete orders for the 3ds company
as well as all its employees, then service documents become orphaned, and garbage collected
automatically.

What would happen if you sent an order to delete all the employees of a given service? In such
case, it would ultimately delete all employees from the Store, and with them all the edges that
were pointing to the associated service. However as services would still point to the company,
these documents would stay in the Store. Remember that managed documents are garbage
collected only when no edges are attached to them at the end of the transformation phase.

Consider that we have the following graph in the Consolidation Store.

Company's Hierarchy in the Consolidation Store

Research-Development Marketi@

'\B?/b/' A|IE9 @D

Consolidation - 63

In the Transformation Phase

Connectors push the blue documents. The Consolidation Server creates the purple ones

(as written in the previous section). If connectors send delete orders to all employees and
companies, all nodes and edges are properly deleted from the Store. In the following graphic,
transparency means that documents disappeared from the Store.

()

@search-Develo p@ @rketi@

CHEN

But if we send delete orders for all employees only, we end up in the following case, in which,
the colored nodes and arcs stay in the Consolidation Store.

64 - Consolidation

In the Transformation Phase

(Bob) (Aiice) (ohn)

What about the delete processor?

If we take the case of the Company's Hierarchy and send delete orders for all employees, we can
safely write a delete processor that for each employee, calls a deleteDocument method. For
example, this sends twice the same delete order for the Research-Development service when
we delete Bob and Alice sequentially. But this is okay, since the second one would become a no-
operation (like null or void).

What if the delete orders for the employees are incremental?

Do we know for sure that the employees delete operation is always global? We must not send a
delete order to the service that an employee belongs to. If you send a delete order for Bob, you
cannot delete the Research-Development service since it still has an employee (Alice) attached
to it. To do so, we would need to traverse the graph during the transformation phase, but such
operation is only allowed at the aggregation phase. To deal with a similar case, writing a custom
delete processor is not a viable solution. You would rather keep the default delete processor,
which deletes the employee visited.

Consolidation - 65

In the Aggregation Phase

In the Aggregation Phase

Every document manually created in the aggregation processors is pushed as is to the Indexing
Server once it has passed the forward rules phase.

If you want to associate that manually created document with the lifecycle of the "master”
document, use the createChildDocument method.

When a master document is deleted, the Consolidation Server does not send a delete order on
all existing child documents automatically, if any. This is because they are not in the storage and

the Consolidation Server cannot determine their types. To delete child documents automatically,

you must create a delete processor.

If you create a document manually, you have to handle its deletion by yourself. To do so, you can:
» Send delete orders to the PushAPI server of the Indexing Server directly.

+ Write a custom aggregation delete processor, which would send delete orders only on the
documents/URIs known/managed by you.

Impact Detection

The Impact Detection for the create/update and delete action contexts occurs only during the
aggregation phase.

In the Consolidation Store, there are typically some documents that are linked with other
documents, and some that are not. For the linked ones, we might want to aggregate/enrich some
information from the structural properties present in these graphs.

For example, if you have document 1 that has an aggregation processor to collect all documents in
purple, what will happen later on in the aggregation process if document 5 gets modified?

66 - Consolidation

Impact Detection

Ipha
alpha \gamma

gamma \beta

" NO

Famima

Since document 1 is collecting some information from document 5 to enrich its own metadata,
you have to relaunch the aggregation on document 1. This is precisely what the impact detection
algorithm does for you. The benefit of having such calculation happening for you undercover,

is that you can code your aggregation processors (and your transformation processors)
independently of the documents arrival order.

For more example of object graph matching expressions, see Appendix - Matching Expressions
Grammar.

Internally, the Impact Detection algorithm is based on the strings that flow to the match
operations. Consequently, every modification to your transformation and aggregation processor
implementations that might change such strings, need a force aggregation action in the
Administration Console or the API Console.

Two things may occur depending on how your trigger the action:

Consolidation - 67

Impact Detection

« Either you apply the action on a subset of pushed documents, by including or excluding some
URIs or types.

In that case, the internal state for the strings identified by Exalead CloudView stay as is. Keep
in mind that if you choose this option, the behavior of the impact detection might be affected
negatively. You might have missed to select documents that have to be reprocessed because
of past modifications in the processors. If you know this is not the case, then the operation is
safe.

« Or you apply the action on the whole set of documents, without specifying any URIs or Types.

In such case, the Impact Detection reconstructs its appropriate internal states as expected.
Such operation is safe in all cases.

In the contex of big bookmarks arborescence, you can reduce the number of impacted documents
to reduce index latency.

When modifying or updating a document, one or more metas are changed, or one or more arcs
are created or deleted in this document. Therefore, all documents below in the tree are reindexed.

To avoid reindexing all these documents, you can add a meta in addition to the name of the
document to reduce the impact of update. For more information on the meta, see Appendix -
Matching Expressions Grammar.

Thanks to this meta, there are less impactful aggregations, which results in smaller and faster
jobs.

68 - Consolidation

Troubleshooting the Configuration

Troubleshooting the Configuration

This chapter describes useful tips to troubleshoot and debug your Consolidation Server
configuration.

Where Can | Find the Consolidation Server Logs?
Monitoring the Object Graph

Exporting the Object Graph

Checking the Consolidation Storage Content
Observing the Processors' Consumption

Consolidation Server Fails with Out of Memory Error

Where Can I Find the Consolidation Server Logs?

The log file is located in: <DATADIR>\run\consolidationserver-<instance name>\.
You can also view logs in the Administration Console > Logs menu.

These logs contain the Consolidation Server process logs, and all the logs emitted by the
transformation and aggregation processors.

You can use a log function for debugging your processors, as in the following sample:

process ("Foo") {
// log the content of the processed node
log.info it

Monitoring the Object Graph

An introspection console is available in the Consolidation > Introspect tab. It is a simple
debugging tool, which lets you monitor your object graph graphically.

The object graph is useful to:

» Have a view of the graph node scope (what is included in the graph) to help you with refining
aggregation rules.

* Understand why aggregation rules do not behave as expected. For example, when no
document goes out of the Consolidation Server.

Consolidation - 69

1.

Click Expand neighbors

Use the Consolidation Server Introspection

Use the Consolidation Server Introspection

Launch a full scan to fill the object graph with data.

From Consolidation Server, select the Consolidation Server instance for which you want to
build an object graph.

In URI(s), select node URIs to generate the object graph starting from these nodes. It can be
helpful to filter on the node type.

In Max. depth, specify the maximum exploration depth of the graph. The nodes which are
beyond this maximum depth are not displayed in the graph.

In Max. arcs per node, specify the width of the object graph. It takes the n first arcs of each
node.

From Color, you can switch the highlight of either Nodes or Arcs.
Click Submit to generate and display the object graph.
With the generated object graph, you can:

o Zoom in and out using the + and - sign or using your mouse wheel, and also pan the view.

o Click Export to export the graph to a DOT file. You can also do that with the cvdebug
command line tool. See Exporting the Object Graph.

> Double-click a node to define it as the new root of the object graph.

o Click a node to view its details. In the Node details panel, you can then:

Possible Action to ...

Click Force aggregation Start the aggregation on a node URI or on a specific node type. This is

useful when you want to see the impact of the changes made on your
aggregation processors, without having to rescan all sources.

If the selected node has no arcs, it fetches its arcs with a depth = 1,
and displays at most the number of arcs specified in Max. arcs per
node.

» |If the selected node has some arcs, it replaces truncated arcs by
real arcs for at most the number of arcs specified in Max. arcs per
node.

For example, if a node has 25 arcs, and Max. arcs per node is 10.
When the graph is displayed, only 10 arcs are displayed for this node,
and an extra arc labeled "15 truncated arcs" is added. To see these 15
hidden arcs, select the node and click Expand neighbors. 10 extra
arcs from the truncated arcs are added to the graph. The node now

70 - Consolidation

1.

Simulate Matching Elements and Impact Detection

Possible Action

to ...

has 20 arcs and 5 truncated arcs. Click Expand neighbors again, and
the node have its 25 arcs displayed.

Check Document payload See the metas, parts, and directives contained in the document.

Check Node arcs

Node details

URI nodes
Type closure
Managed Mo

Operations

Force aggregation

Document payload

Name=
PAPI stamp
| file size
lastmodifieddate
master
original source
SDCTYPE
title

(=fcfof-f=f=

MNode arcs

Type=

[i] alpha
alpha

B B beta

See the arcs pointing to the selected node. For each, you can see its
name, its direction (From/ To) and if the node is the Owner of arc (if
not, the arc comes from another document).

Expand neighbors

Value
1455033308018

5
2016/02/059 04:55:08

default
or_node_type | c (2 values)

nodes

Connection
node
noded
nodes

Close

Simulate Matching Elements and Impact Detection

The Simulate tab allows you to test matching rules on a node to identify which graph elements are
impacted. With this tool, you can also check for impacted nodes, according to existing detected
rules, when a change occurs.

Choose between the two following modes:

o Match simulator to enter a matching expression and see its results on the object graph

(see step 4).

Consolidation - 71

Introspection Client API Usage

o Impact detection simulator to see the results of the impact detection for all existing rules
present in your aggregation processors that have already been executed.

2. From Consolidation Server, select the Consolidation Server instance for which you want to
simulate the impact detection an object graph.

In URI(s), select node URIs to simulate the impact detection starting from these nodes.

In Matching expression, enter the matching rule.

From Color, you can switch the highlight of either Nodes or Arcs.

Click Submit.

2L

You see the impact of the matching rule on the selected node URIs.

m — _

ol * iiaich gl impad dsischon mmlsor

Conusldilion sarver ol T i
Suibsenit

L LY progect-1 x R——
Miching expression -[rgec reguinement i Colr B b B pecal
MNode details
¥ Nodes 58 . i
: T project
progect (1) Yoo Sl
u Managed Mo
B rojesci_requiremen |5
= Operations
ﬂ.‘\mﬁd regqureant |§) B el _requissmasst- 1-7
) § proect_requinsnent-1-1 Farce sggiegaticr

W [OphD) i v 1

Document payload i

& progect_requrstrend-1-1

Maime & Value

B delamodsl clies prepeei

A — ;

@ projec: B pame project-
’ i) original source -

@ pmgect requirsmesnt- -4 E - st
B proiec 1

B sDCcTYPE progect

B zeex CRAA201E 180514

Introspection Client API Usage

The following code snippet shows the java introspection client used by the Consolidation
Introspection Console for the object graph and document store introspection.

import com.exalead.consolidationapi.client.answer.Arc;

import com.exalead.consolidationapi.client.answer.Arcs;

import com.exalead.consolidationapi.client.answer.Document;
import com.exalead.consolidationapi.client.answer.DocumentDetails;
import com.exalead.consolidationapi.client.answer.Documents;

72 - Consolidation

Introspection Client API Usage

import com.exalead.consolidationapi.client.answer.Vertices;
import com.exalead.consolidationapi.client.answer.Type;
import com.exalead.consolidationapi.client.answer.Types;
import com.exalead.consolidationapi.client.query.GetDocumentQuery;
import com.exalead.consolidationapi.client.query.ListArcsQuery;
import com.exalead.consolidationapi.client.query.ListDocumentsQuery;
import com.exalead.consolidationapi.client.query.ListVerticesQuery;
import com.exalead.consolidationapi.client.query.ListTypesQuery;
import com.exalead.consolidationapi.client.answer.Vertex;
/**
* Demonstrate the use of the Consolidation Server introspection client
*/
public class IntrospectionClientDemo ({
public static void main(String[] args) {
final IntrospectionClient iC = new IntrospectionClientImpl ("localhost", "105C
// product host name, Consolidation Server monitoring port

try |

[/ mmmmmmmmmm oo
// Graph introspection
[/ mmmmmmmmmm oo
// List arcs from uris "project-1" & "project-2", using a max exploration depth of

final Arcs arcs = iC.listArcs(new ListArcsQuery () .withUris ("project-1", "

.withMaxExplorationDepth (5)) ;
for (final Arc arc : arcs) {
System.out.println ("Arc: " + arc.getSource() + " -> " + arc.getTarge

}
// List arc types starting with prefix "rel", and returns only five types
Types types = iC.listArcTypes (new ListTypesQuery ("rel") .withLimit (5));
for (final Type type : types) {
System.out.println ("Arc type starting by 'rel': " + type.getName());
}
// List vertex types starting with prefix "a", and returns an unlimited number of
types = iC.listVertexTypes (new ListTypesQuery ("a") .withLimit (0))
for (final Type type : types) {
System.out.println ("Vertex type starting by 'a': " + type.getName())
}

// List vertices starting with prefix "a", returns only five nodes

final Vertices nodes = iC.listVertices (new ListVerticesQuery("a").withLin
for (Vertex vertex : vertices) {
System.out.println ("Vertex with a uri starting by 'a' : " + vertex.ge
[type="" + vertex.getType() + "'1");
}
/] ——mmmmmmm
// Storage introspection
[/ =mmmmmmmmmmmmmm

// List documents with uri starting with prefix "a", and print details for each
final Documents documents = iC.listDocuments (new ListDocumentsQuery("a"))
for (final Document document : documents) ({

Consolidation - 73

Example: My Aggregation Does Not Perform What I Am Expecting

System.out.println ("Stored document with a uri starting by 'a': " + ©
System.out.println ("Details") ;
final DocumentDetails details = iC.getDocument (new GetDocumentQuery (c
if (details !'= null) {
System.out.println ("No. of metas: " + details.getMetas().size());
System.out.println ("No. of directives: " + details.getDirectives
System.out.println ("No. of parts: " + details.getParts().size());

}

} catch (final IntrospectionClientException e) {
System.err.println ("An error happened during introspection: " + e.getMess

Example: My Aggregation Does Not Perform What I Am Expecting

Make sure that the objects are correctly connected in the object graph. To do so, use the
Consolidation Introspection Console.

2. Then you can look for stack traces in the Consolidation Server logs. You can also modify your
transformation and aggregation processors to add logs.

Exporting the Object Graph

If Exalead CloudView is not running, use the cvdebug command-line tool solution.
Otherwise, use the Consolidation Introspection Console described in Monitoring the Object Graph

The goal is to generate an image from a text file describing the object graph in DOT format.

Export the Object Graph to a DOT File

Launch at least one full scan to fill the object graph with data.

Go to the <DATADIR>/bin directory and start the cvdebug command-line tool.

2. Run the following command:
consol i dati on export-object-graph outputFile=<fil epath> [instanceDi r=<i nstance dir
[i nst ance=<Consol i dati on Server instance nanme>] [seedNode=<nodes to export>] [nmaxA
[dept h=<i nt eger >]

Where:
Argument Description
outputfile Required to indicate the file path and name of

the exported . dot file.

74 - Consolidation

Convert the DOT File to Another Image Format

Argument

[instanceDir]

[instance]

[seedNodes]

[maxArcsPerNode]

[depth]

Description

Optionally, it can be useful if you do not have

a standard CV instance (for example, a debug
instance or a copy of the object graph) and
need to specify a Consolidation Server instance
directory for the object graph to generate

properly.

Optionally, you can specify the Consolidation
Server instance for which you want to generate
the object graph. If no instance is specified, the
default Consolidation Server instance cs0 is
used.

Optionally, you can specify a comma-separated
subset of nodes to export only a subpart of

the object graph starting from these nodes.

You cannot generate and display an SVG with
millions of nodes and millions of arcs. This option
therefore allows you to drastically reduce the
graph to be exported.

Optionally, you can specify the object graph
width. It takes the n first arcs of each node.

Optionally, you can limit the graph exploration
starting from the nodes specified with the
seedNodes argument. The nodes which are
beyond this maximum depth are not displayed in
the graph.

Once the DOT file is generated, you see all the nodes and arcs according to the arguments

passed to the export-object-graph command. Nodes that do not exist, but to which arcs are

pointing, are highlighted in red in the object graph. This is useful to spot them.

Convert the DOT File to Another Image Format

From the generated DOT file, it is then possible to generate the image to SVG, PNG, etc. formats,
using the dot binary delivered with the GraphViz free suite.

1. Use SVG as the output format, since it allows you to search for text within the graphical display.

This is convenient when you want to find a node in the generated graph. Here is the typical

Consolidation - 75

Checking the Consolidation Storage Content

command line used to create an SVG image from a text file describing the object graph in DOT
format: dot -Tsvg store.dot -o store.svg

Checking the Consolidation Storage Content

If you have pushed many documents to the Consolidation Server and observe missing output
views or unexpected behavior, you can directly export the documents from the Consolidation
storage and check their consistency.

For example, you can verify that metas have correct values.

1. Go to the <DATADIR>/bin directory and start the cvdebug command-line tool.

2. Run the following command:

consol i dati on export-docunent-store outputFil e=<filepath> [instanceDi r=<instance d
[nstance=<Consol i dati on Server instance nane>]

Where:

o outputfile — (Required) This argument indicates the file path and name of the exported
.dot file.

o [instanceDir] — Optionally, it can be useful if you do not have a standard CV instance
(for example, a debug instance or a copy of the object graph) and need to specify a
Consolidation Server instance directory for the object graph to generate properly.

o [instance] — Optionally, you can specify the Consolidation Server instance for which
you want to generate the object graph. If you do not specify any instance, the default
Consolidation Server instance cs0 is used.

Once the Consolidation storage is exported (to a JSON file), you are able to see all the documents
(nodes) it contains, and check their metas.

Observing the Processors' Consumption

Get a Global View of the Consolidation Server Processors

1. Go to the Monitoring Console.

2. Expand <HOSTNAME> > Services > Exalead > Consolidation > cbx.
The graphs show you:

o In Latency — the duration of the overall consolidation job and the duration for each
processing phase in seconds.

76 - Consolidation

Check If the Consolidation Storage Compact Works Properly

> In Volume — the overall number of documents treated by the consolidation job and the
number of documents that went out of each processing phase.

> You also have separate folders containing the details of each processor used by the
Consolidation Server, if perfMonitored="true" in the ProcessorConfig defined in the
API Console. See Get a Finer Debugging Granularity on a Specific Processor).

Using the graphs, you can spot which processing phase takes too long to perform its job, and if the
number of documents going out of it is not consistent.

Check If the Consolidation Storage Compact Works Properly

Go to the Monitoring Console.
2. Expand <HOSTNAME> > Services > Exalead > Consolidation > cbx > Compacter > Slot

counts.

If the number of slots for the object graph store and the number of slots for the document
store, exceeds 100 slots or keeps growing, start a full compact operation on the Consolidation
storage, as explained in the following steps.

Go to the API Console.

Select Manage.

Search for compactStorage and:

a. Specify your instance name.

b. Click Send.

6. Restart Exalead CloudView processes
a. Search for the restartHost method
b. Click Send.

Get a Finer Debugging Granularity on a Specific Processor

1. Go to the API Console.
2. Select Manage.
3. Search for setConsolidationConfigList and:

a. Forone processor, define perfMonitored="true" as attribute. For example:

<conso:AggregationProcessorConfig perfMonitored="true" enabled="true"
code="process (" ") {
 yield it
}" mime="text/x-groovy" name="dx

b. Click Save.
4. Restart Exalead CloudView processes

a. Search for the restartHost method.

Consolidation - 77

Consolidation Server Fails with Out of Memory Error

b. Click Send.
5. Go to the Monitoring Console.

6. Expand <HOSTNAME> > Services > Exalead > IConsolidation > cbx.

You now have monitoring logs specific to the processor specified in step 3.

Consolidation Server Fails with Out of Memory Error

This procedure details what you can do if the Consolidation Server crashes with a
java.lang.OutOfMemoryError during the transformation phase.

1. First, you may want to increase the xmx of your Consolidation Server, but it is not the only
solution.

It is better to add a Commit trigger based on size which fits your use case. Consolidation
server commits are cheap. Do not hesitate to commit regularly but review your aggregation
trigger conditions, as committing frequently does not necessarily mean that you want to run an
aggregation for each commit.

78 - Consolidation

Use Cases

Use Cases

This chapter describes use cases for the Consolidation Server illustrated by sample application
scenarios.

About Consolidation Use Cases

Deploy the Coffee Sample Data

UC-1: Consolidating Data from Two Sources

UC-2: Enriching Child Documents with Parent Document Metas
UC-3: Consolidating Information on a View Document

UC-4: Calculating Trends

UC-5: Incremental Scan - Propagating Node Changes

UC-6: Incremental Scan - Propagating Arc Changes

UC-7: Generating Child Documents

UC-8: Consolidating Data from Storage Service

About Consolidation Use Cases

This chapter shows typical consolidation use cases through a predefined application. This means
that you do not have to create the data model nor the mashup application pages. You only have to
create and configure connectors, transformation and aggregation consolidation processors.

What Are Our Data Sources

For this tutorial, we use two kinds of data sources both contained in <INSTALLDIR>/docs/

cvapp-coffee-sample/coffee data.zip:

+ the coffee.db sample SQLite database contains four tables and the country id field as
primary key (PK) to make inner joins between them.

Note: organization does not have country id as primary key.

+ A set of pdf files containing text and graphics.

Database Schema for the Sample Database

Consolidation - 79

What We Want to Do Functionally

trade
™ PK |country id (FK)
type (PK)
year (PK)
volume
countries organization
PK | country_id PK |org_id
name -
ico_status price name
timestamp
= PK |country_id (FK)

coffee_type (PK)
year (PK)
price

What We Want to Do Functionally

We want to use this database and these PDF files to consolidate data in a prepackaged
application contained in <INSTALLDIR>/docs/cvapp-coffee-sample/

cvapps coffee vl 4.zip. Through several use cases, we will try to expose the various
capabilities offered by the Consolidation Server.

About Code Samples

The code samples in this chapter use cases are written in Groovy. Groovy allows you to add inline
coding within the product is therefore easier for Training purpose.

Recommendation: For production deployment and maintainability, use Java language.

Deploy the Coffee Sample Data

The sample is provided in: <INSTALLDIR>/docs/cvapp-coffee-sample
It contains two archives: coffee data.zip and cvapps coffee vl 4.zip.

Exalead CloudView must be installed and running.

Extract Coffee Data

1. Create a directory for coffee data outside of the <INSTALLDIR>.

80 - Consolidation

Deploy the Coffee Sample Configuration

This directory is referred to as <INPUTDIR>.

2. Copythe coffee data.zip archive within this directory and unzip it.

Deploy the Coffee Sample Configuration

Create a temporary directory <TMPDIR> outside of the <INSTALLDIR>.
Copy the cvapps coffee vl 4.zip archive within this directory.

Go to the <DATADIR>/bin directory.

W=

Start the import using the following command:

cvadmi n apps install apps-fil e=<TMPDI R>/ cvapps_coffee vl 4.zip noversi oncheck=true
For <TMPDIR>, enter the full path of the zip file.

If successful the following lines display on your prompt:

[debug] [main] [gateway.cvapps-installer] Applying configuration...

[info] [main] [gateway.cvapps-installer] Installation of application

completed.
5. Wait until Exalead CloudView is fully restarted.
You now have a coffee data model in your instance and a cof fee application.

6. Clear the index.

UC-1: Consolidating Data from Two Sources

For this use case, we want to gather document information about countries coming from a
database and a file system on the same index.

The prerequisite is that there is a known link between database records and files. In the provided
sample, the file name contains the id of the database record (stored in the country id field).

What we want to do is create a link between a country record and a PDF document inside the
Consolidation Server. The country object is enriched with the PDF file during the aggregation step.

Step 1 - Define the Connectors Corresponding to Each Source

Create the Filesystem Connector

In this use case, we have a very small set of PDF documents to push to the Consolidation Server
using the Files connector. To reproduce this example with a real corpus, if your documents have
large binary parts, the Consolidation Server cache ends up with a disk footprint close to the size of
the indexed corpus.

Consolidation - 81

Step 1 - Define the Connectors Corresponding to Each Source

For real use cases, convert document binary parts before pushing documents into the
Consolidation Server:

* Go to the Advanced tab and a Convert PushAPI Filter to the Files connector.

» Extract text content only (and exclude binary parts) by setting the Conversion mode to Text.

—

In the Administration Console, go to Index > Connectors and click Add connector.
In Name, enter countryfiles.

For Type, select the Files connector.

For Push to PAPI server, select the Consolidation server cbx0 instance.
Click Accept.

2. For Store documents in data model class, choose the document class.

o o oo

3. In Filesystem paths, enter the following path: <INPUTDIR>/pdf
4. Click Save.

Create the Database Connector

1. In the Administration Console, go to Index > Connectors and click Add connector.
In Name, enter country.

For Type, select the JDBC connector.

For Push to PAPI server, select the Consolidation server cbx0 instance.
Click Accept.

For Store documents in data model class, choose the country class.

o o oo

W n

In Connection parameters:
a. For Driver, enter org.sglite.JDBC
b. For Connection string, enter jdbc:sglite://<INPUTDIR>/coffee.db

c. Click Test connection. The database connector automatically connects to the database.

s

In Query parameters:
a. For Synchronization mode, select Full synchronization

b. For Initial query, enter: Select country id, ico status, name from

countries
5. Click Retrieve fields.
6. Define the country id field as primary key.

a. Click the country id field to expand it.
b. Select Use as primary key.
Click Save.

N

82 - Consolidation

Step 2 - Configure Consolidation

Step 2 - Configure Consolidation

Configure the Transformation Processor

1. Go to Index > Consolidation
2. Add a new transformation processor:
a. Select Groovy as format
b. For Name, enter Files
c. Click Accept
3. For Source connector, select countryfiles

4. Replace the default code by the following one:

Groovy code

/1l Process all nodes com ng fromthe sel ected source connect or
process("") {

/[l Extract the country id fromthe fil enane.

/'l For exanple, for "brazil.pdf", we want to extract "brazil".

String filenane = it.netas.getValue("file name");

def values = filenanme.split('\\.");

log.info "doc uri:[" + it.getUi() + "] countryld:[" + values[0] + "]";
/1 Link the filesystem docunent to its related “countries” database record.
/'l The default URI of a database record is: "<fieldnane>=<val ue>&"
it.addArcFron("describedBy", "country id=" + values[0] + "&");

}

Java equivalent code

@verride
public void process(lJavaAl | Updat esTransf or mati onHandl er handl er, | Mt abl eTr ansfo
docunent . set Type("docunent");
final String filenane = docunent.getMeta("fil e nanme");
if (filename == null || filename.isEnpty()) {
t hrow new Exception("File name not avail abl e");

}
final String[] values = filenane.split("\\.");
if (values == null || values.length == 0) {

t hrow new Exception("lnvalid file nanme");
}

LOGGER i nfo("doc uri:[" + docunent.getUri() + "] countryld:[" + val ues[O0]
docunent . addAr cFron{ "descri bedBy", "country_ id=" + values[0] + "&");

}

With this transformation processor, we have achieved to link files to their related database records.

Consolidation - 83

Step 2 - Configure Consolidation

Configure the Aggregation Processor

1. Add an aggregation processor:
a. Select Groovy as format
b. For Name, enter Countries UC 1
c. Click Accept

2. Replace the default code by the following one:

Groovy code

/'l Process nodes having the “country” type
/!l The node type is deduced by the docunent class automatically
process("country") {
l og.info "country found: " + it.netas. nane;
/1 Find nodes related to the country
/'l Coal: Create a “country” consolidated docunment with information comng fromth
it.nmetas. hasfile = "no";
for (path in match(it, "describedBy[docunment]")) {
/1l 1f avalid path is found, retrieve its |ast el enent
| ast = path.last()
log.info "File found: " + last.getUri();
/'l Retrieve the binary parts of the found nodes
/1l To get all parts: it.parts.getMap().putAll(last.parts.getMp());
/'l To get the master part only:
it.parts. master += | ast.parts. master;
it.metas. hasfile = "yes";

}
}

Java equivalent code

@verride
public void process(lJavaAl | Updat esAggr egati onHandl er handl er, | Aggregati onDocumne

final String countryNanme = document.get Meta("nane");
if (countryName == null || countryNane.length() == 0) {
t hrow new Exception("Invalid country nane '" + countryNane + "'");
}
LOGGER. i nfo(" Country found: " + countryNane);
/1 find docunent related to the country
/1 Goal: be able to consolidate information of pdf docunent with country d
final List<lAggregati onDocunent> pat hsEnds = G aphMat chHel pers. get Pat hsEnd
for (1Aggregati onDocunent file : pathsEnds) {
LOGCER info("File found: " + file.getUi());
docunment . wi t hPart ("master", file.getPart("nmaster"));
document . wi t hMet a(" hasfile", "yes");

84 - Consolidation

Step 3 - Scan Source Connectors and Check What Is Indexed

3. Save and apply the configuration.

Note: It is also possible to consolidate security tokens, using the security meta. After

it.metas.hasfile = "yes"; add it.metas.security += last.metas.security;

Step 3 - Scan Source Connectors and Check What Is Indexed

1. Go to the Home page and under the connectors list, click Scan for the Files and JDBC
connectors.

Note: In the Connectors list, a consolidation-<instance name> row displays status
information about consolidation. All documents and countries are indexed.

2. Open the Mashup Ul application search page: http://<HOSTNAME>: <BASEPORT>/
mashup-ui/page/search

3. Check that country documents have associated parts (thumbnails/previews are available).

P
Results » 1-10 of 294 Sortby Relevance Dale Size

w Data model class

country_id=Lesatho& Download Preview

country
defaull
= ICO Membership

Non Member

Memibe

B AR A A A A A A A A AN o O O O O O o o o

Turkey. pdf Download |Preview
TURKEY Data for calendar year commencing: 2011 GEMNERAL |
NFORMATION [
—
Organization Corporation > EU LD Source consolidation-chx0
C
Data Jel class default Perso IGO0 Contact
Place Country = Turkey

4. To get a consolidated view, go to: http://<HOSTNAME>: <BASEPORT>/mashup-ui/page/

searchcountry vl

Consolidation - 85

©

UC-2: Enriching Child Documents with Parent Document Metas

INTERNATIOMNAL
COFFEE Countries - Analytics -

ORGANLZATION

Search

w ICO Membership

Name File? ICO Status Details Non Hembor o X
Serbia yes MNon Member see details Wember g3 X
Sweden yes Member see details
Saint Vincent & the Grenadines no MNon Membear see datails
Botswana no Mon Member see details
Paraguay yes Member see details
United Arab Emirates no MNon Member see details
Sierra Leone YES Member see details
Libyan Arab Jamahirya no MNon Membser see details

The following graphic shows what we achieved on the object graph.

@ country_id=Australias

L

m

E

z

v .

® %%2Fdata%2F o %ZFcoffee data%ZFpdffAustralia.pdf

UC-2: Enriching Child Documents with Parent Document Metas

Flattening data allows you to build powerful queries in Exalead CloudView, and the Consolidation
Server is the right tool to achieve this kind of operation.

86 - Consolidation

Step 1 - Define the Source Connector for Trades

In the provided coffee sample, trade records contain, for each year and each country, a volume of

exchanges for each type of trade (import, export, re-export). However, the ICO membership status
is only present on the country record. For a relational database, you could write an SQL join query
to retrieve trade only for the countries that are members of the ICO. For an index engine, it is more
efficient to move down this information directly to the trade record at indexing time.

We assume that UC-1 has been completed.

Step 1 - Define the Source Connector for Trades

1. In the Administration Console, go to Index > Connectors and click Add connector.
In Name, enter trades.

For Type, select the JDBC connector.

For Push to PAPI server, select the Consolidation server cbx0 instance.
Click Accept.

For Store documents in data model class, choose the trade class.

o o o o

W N

In Connection parameters:
a. For Driver, enter org.sglite.JDBC
b. For Connection string, enter jdbc:sglite://<INPUTDIR>/coffee.db

c. Click Test connection. The database connector automatically connects to the database.

s

In Query parameters:
a. For Synchronization mode, select Full synchronization
b. ForInitial query, enter select country id, type, volume, year from trade
Click Retrieve fields.

Define the country id, type, and year fields as primary keys.

2

a. Click the country id field to expand it.

b. Select Use as primary key.

c. Repeat the operation for the type and year fields.
7. Click Apply.

Step 2 - Configure Consolidation

Configure the Transformation Processor

1. Go to Index > Consolidation
2. Add a new transformation processor:

a. Select Groovy as format

Consolidation - 87

Step 3 - Scan Source Connectors and Check What Is Indexed

b. For Name, enter Trades
c. Click Accept
3. For Source connector, select trades

4. Replace the default code by the following one:

/!l Process all nodes
process("") {

/1 Link trade records to nodes having the “country” type with a |ink based on the
[l (i.e.; Inport / Export / reExport) as arc | abel
it.addArcFron(it. metas.getValue("type"), "country id=" + it.nmetas.getVal ue("count

}

With this processor, we have achieved to link trades to their related countries.

Configure the Aggregation Processors

1. Add an aggregation processor:
a. Select Groovy as format
b. For Name, enter Trades UC 2
c. Click Accept

2. Replace the default code by the following one:

/'l Process nodes having the “trade” type

process("trade") {

log.info "trade found : " + it.nmetas.year + " " + it.netas.country_id + " " + it.
/1 Find the I CO status nmenber from nodes.

/1 1t is now possible to use a dynam c path based on node neta

for (path in (match(it, "-" + it.nmetas.getValue("type") + "[country]"”))) {

/'l Retrieve the |ast path el ement

| ast = path.last();

log.info "Country found : " + last.getUri();

/[l Get the “menbership” neta value from nodes having the “country” type
it.metas. menbership = | ast. netas. get Val ue("ico_status");

}

}

3. Save and apply the configuration.

Step 3 - Scan Source Connectors and Check What Is Indexed

1. Go to the Home page and under the connectors list, click Scan for the trades JDBC
connector.

Trades are indexed.

2. Open the Mashup Ul application search page: http://<HOSTNAME>: <BASEPORT>/

mashup-ui/page/search

88 - Consolidation

Step 3 - Scan Source Connectors and Check What Is Indexed

3. Check that trade documents have an ICO Membership facet available.

| country_id=SaintVincentthe Grenadines&type=import &year=1996&

country_id SaintVincenttheGrenadines
valume 32280
membership Mon Member

Mon Member
trade

ICO Membership
Data model class

Source consolidation-chbx0

Download = Preview

year 1996

type import

lastyearvolume 39240

Trade year 1996

Trade type import

Country Id SaintVincenttheGrenadines

id: country_id=SaintVincenttheGrenadines&type=import&year=1396&

The following graphic shows what we achieved on the object graph.

@ /e2Fdata¥%2F o %2Fcoffes data%2FpdflAustralia.pdf
a4

.'pnu ntry_id=Australis&year=1902&

5
F
‘%€ _‘_;‘;; N
o P
@ =country_id=Australiafyear=19048 z P
"SExp pExpolt
@ country_id=Australisé
H
(&E'-“;C{" EE}‘;-'-"er:
g
8% cuntry_id=Austrslisfyear=19354 e
"_‘I'

o
&
Pl

&

':%;
T
B

|
@ country_id=Australiafyear=19974

'. country_id=Australiafyear=19938

p® country_id=Australiafyear=15084

k@ country_id=Australisfyear=19915

". country_id=Australisfyear=13984

4
@ country_id=Australiafyesr=138058

Consolidation - 89

UC-3: Consolidating Information on a View Document

UC-3: Consolidating Information on a View Document

When flattening data, it is also interesting to build the most complete "View" to answer global
queries.

In the coffee sample, we might want to search for ICO country members, having some trade
record of import type, and filter the global volume of trade above a specific threshold. We also
want to add the coffee varieties sold by producing countries.

We assume that previous UCs have been completed.

Step 1 - Check Existing Data

You can see the provided application sample. To access its front page:

1. Open the Mashup Ul application: http://<HOSTNAME>:<BASEPORT>/mashup-ui/page/

searchcountry vl
Countries are displayed with their ICO status and yes flags show if they have associated PDF
files (UC-1).

2. You can click the see details link of a country. It provides a 360° view of all known data for this

country.

90 - Consolidation

Step 2 - Add Trade Info on Countries

INTERMHATIOMNAL
COFFEE Countries - Anailtics -
DRGANITATION o

ICO Status : Member

Last import trade year :

Last import trade volume : 0.00 Kg
Average impor trade volume : 0.00 Kg Diata for crop caendsr ve

Indimn eominslbad

; tard . Hashmic
Irade volume per Year (Kg) controted —

Eashmir o Dl
m Table Caloutta o
IMDIA
- Mumbal BANGLADESH
Bangalore N
Froclianr
BRI LANHA Ocoan (=1

3 Dorpastc consmepeion (crop vear) (000 bags)
Par cape moesmEprise (k'

Exports of green coffes (50-kz bags)

Expornt of mresn Arabica coffss (60-kp bage)

B =xport Expen of gresm Robusm cofias (00-kg bags)
Expoos of procesed coSe (60-kg begs GBE)
(Greax s =t vizrt of crop yeer (000 bag)
Vilne af exparts of a1 frms of coffes (min T133)
Coffee price for grower per year (US $ per Ib) VAl of Expans of 2 marchandis: (m USS)
Value of cedfes 23 2 parcesress of all marchandise

200M
OOFFEE SECTOR.
100 mamberdh Sy
120 Cozact
100M Tipe of cofee produced
Hervestng vear
Mlsthod of procswing
Toral precurna {crop year) (000 hegs)
o . A L 2
R S K. . .

oM
,\l'\i‘

Step 2 - Add Trade Info on Countries

This procedure describes how to calculate for each country: the quantity of imported coffee for the
last year, and the average quantity of imported coffee through time.

1. Add an aggregation processor:
a. Select Groovy as format
b. For Name, enter Countries UC 3 1
c. Click Accept

2. Replace the default code by the following one:

/'l Process nodes having the “country” type

process("country") {

/1 Add the inport volunme value of the |ast year

/1l Goal: Be able to sort countries based on inport trade activity
year = 0;

vol ume = O;

nbTrade = 0;

/'l Big |Integer

def avgVol une = 0G

/'l Get inport trade only, using the path |abel, i.e., "inport"

Consolidation - 91

3.

Step 3 - Scan the Source Connector and Check What Is Indexed

for (path in match(it, "inmport[trade]")) {
/[l 1f avalid path is found, retrieve its |ast el enent
| ast = path.last();
log.info "trade found: " + last.getUri();
/'l Cet trade volune for the |ast year
if (last.nmetas.getValue("year")?.tolnteger() > year) {

year = | ast.netas.getValue("year")?.tolnteger();
}
/1 Add volunme to calculate the total inport trade vol une
vol ume = | ast. nmet as. get Val ue("vol une") ?. tol nteger();
avgVol une += vol une;
nbTr ade++;

}

/!l Add netas to countries having inport trade
if (nbTrade!=0) {
it.metas.inport | astvol ume = vol une;
it.metas.inport_| astyear = year;
avgVol une = Mat h. ceil (avgVol unme / nbTrade).intVal ue();
it.metas.inport_averagevol une = avgVol une;
}
}

Save and apply the configuration.

Step 3 - Scan the Source Connector and Check What Is Indexed

1.
2.
3.

Go to the Home page.
Click Force aggregation, and enter country as type.

Open the following Mashup Ul application search page: http://
<HOSTNAME>:<BASEPORT>/mashup-ui/page/searchcountry v2

Check that countries now have the following metas: Last import year, Last import volume,
Average import volume.

You can now use the average import volume as search criteria. For example, sort by Avg
import volume.

92 - Consolidation

Step 4 - Add New Categories on Countries

INTERMNATIOMAL
COFFEE Countries -
DRGANIZATION

Results » 1-30 of 191 Sort by Relevance

Name File? Last import year Lastimport volume Average import volume | 1CO 5tatus = Details

Libyan -

Arab no 1998 2447 880.00 3,780 887.00 Mon Member |~ .t- |

Jamahiriya detalls

Caibbsan | no 1998 8,633.220.00 3,746,340 00 Mon Member C*‘T |
aetans

Cantral N cag

) no 1998 886,620.00 886,620.00 Maon Member

Amenca details

Mamibia |no 1998 1.749,300.00 732,980.00 Mon Member 'C*T '|
aetans

Bangladesh no 1998 599,940.00 £99,940.00 Non Member “: '|
aetlais

Lesotho |mo 1998 180,000.00 £20.000.00 Mon Member C*T '|
aetans

Bermuda | no 1998 243,000.00 294.107.00 Non Member “”t“ |
aetais

Step 4 - Add New Categories on Countries

Define the Connector for the Prices Source

1. In the Administration Console, go to Index > Connectors and click Add connector.
In Name, enter prices.

For Type, select the JDBC connector.

For Push to PAPI server, select the Consolidation server cbx0 instance.
Click Accept.

2. For Store documents in data model class, choose the price class.

o o oo

3. In Connection parameters:
a. For Driver, enter org.sglite.JDBC
b. For Connection string, enter jdbc:sglite://<INPUTDIR>/coffee.db
c. Click Test connection. The database connector automatically connects to the database.

4. In Query parameters:

Consolidation - 93

Step 4 - Add New Categories on Countries

a. For Synchronization mode, select Full synchronization
b. For Initial query, enter select country id, coffee type, year, price from
price
5. Click Retrieve fields.
6. Define the coffee type, country id, and year fields as primary keys.
a. Clickthe coffee type field to expand it.
b. Select Use as primary key.
c. Repeat the operation for the country idand year fields.
7. Click Apply.

Configure the Transformation Processor

1. Go to Index > Consolidation
2. Add a new transformation processor:
a. Select Groovy as format
b. For Name, enter Prices
c. Click Accept
For Source connector, select prices

Replace the default code by the following one:

/1l Process all nodes

process("") {

/1 Link prices records to nodes having the “country” type

it.addArcTo(" producedBy", "country id=" + it.nmetas.getValue("country id") + "&");
}

Configure the Aggregation Processor

1. Add an aggregation processor:
a. Select Groovy as format
b. For Name, enter Countries UC 3 2
c. Click Accept

2. Replace the default code by the following one:

/'l Process nodes having the “country” type
process("country") {

/1 Add all trade types on countries

if (match(it, "inport[trade]")) {
it.nmetas.tradetype.add("inport")

}

if (match(it, "export[trade]")) {
it.metas.tradetype. add("export");

94 - Consolidation

3. Save and apply the configuration.

1.

Step 5 - Rescan Source Connectors and Check What Is Indexed

}

if (match(it, "reExport[trade]")) {
it.metas.tradetype. add("reExport")

/1 Add all coffee types to producing countries
it.nmetas. coffeetype +=
[/l Get all paths to price nodes
mat ch(it, "-producedBy[price]") *.last()
/1l fetch the | ast node of each path
/'l retrieve the coffee type neta values for all price nodes
.collect{n-> n.netas. get Val ue("coffee_type") }
.uni que() // dedup collected neta val ues

[/ or if multi

val ued:

.collect{n-> n.netas. coffee_type}.flatten().unique()

Step 5 - Rescan Source Connectors and Check What Is Indexed

Go to the Home page and under the connectors list, click Scan for the country JDBC

connector and the prices JDBC connector.

Open the Mashup Ul application search page: http://<HOSTNAME> : <BASEPORT>/

mashup-ui/page/searchcountry v3

Check that countries now have the following facets: Country Trade type and Country Coffee

types (the metas created previously in the aggregation processor are mapped to these facets).

w» ICO Membership
Non Member

Member

w Country Trade type
import

reExport

export

w Country Coffee types
Other Milds

Fobustas

Brazilian Naturals

Colombian Mild=

Consolidation - 95

UC-4: Calculating Trends

UC-4: Calculating Trends

Calculating trends with an index is really complex to achieve, as you can only calculate
aggregates using the data of a single result. The easiest way to calculate trends is therefore to
precompute data. You can perform this operation with an aggregation processor.

We assume that previous UCs have been completed.

Step 1 - Configure an Aggregation Processor for Trades

1. Add an aggregation processor:
a. Select Groovy as format
b. For Name, enter Trades UC 4
c. Click Accept

2. Replace the default code by the following one:

/1l Process nodes having the “trade” type
process("trade") {
log.info "trade found for tendencies: " + it.nmetas.year + " " + it.netas.countr
it.metas.type ;
/| default value
it.nmetas. | astyearvolunme = it.netas. getVal ue("vol une");
/1 Find previous year value to show tendencies
/[l 1t is possible to build the path using a nmeta of the node
for (path in match(it, "-" + it.netas.getValue("type") + "[country]" + "." + it
+ "[trade]”)) {
/'l searching for path -export.export or -inport.inport or -reExport.reExport
/!l Retrieve the |ast elenent of the path
last = path.last();
|l og.info "Node found: " + last.getUri();
if (last.netas.getValue("year").tolnteger() == (it.netas.getValue("year").toln
it.metas. | astyearvol une = | ast. netas. get Val ue("vol une");

}
}
}

3. Save and apply the configuration.

Step 2 - Rescan the Trades Connector and Check What Is Indexed

1. Go to the Home page and under the connectors list, click Scan for the trades JDBC
connector.

2. Open the Mashup Ul application page: http://<HOSTNAME> : <BASEPORT>/mashup-ui/

page/searchcountry v3

96 - Consolidation

Step 2 - Rescan the Trades Connector and Check What Is Indexed

3.
4.
5,

Search for a country, for example, Brazil or France.
Click the see details link.

In the detail page, on the Trade volume per Year (Kg) tab, check the Variation / Year graph.

Trade volume per Year (Kg)

H00M
400M
o M L o L O - mE Sm A=
p o & o) %{ 1 \h- = o o R an \.\._\,] . al \d“‘-‘:

B impont B reExport

Variation [Year

— import — reExport

You can also go to the analytics page: http://<HOSTNAME>: <BASEPORT>/mashup-ui/
page/analytics vl

This page provides various graphics. Choose the Trades tab. For each Export / Import and
Re-Export tabs, you can see the trends for each year.

Consolidation - 97

UC-5: Incremental Scan - Propagating Node Changes

QLGN | Prices || 100 Membership

Global QSHGLE |mport || Re-Export

Export volume per year & per country (Kg)

6G

&

20

—
—
—
I
||
0
f\!'
Y

k¥

/:u'
5

o
&
- ..II ||I |
‘o
v.-'
‘5,
-3
/,
.-’.._

.

&
£,

Export volume variation per year & per country (Kg)
400M

200M

-200M

UC-5: Incremental Scan - Propagating Node Changes

One of the most interesting features of the Consolidation Server is the ability to propagate any
node change on related views.

In the coffee sample, we provide an extra year of trade values. When adding new trade values, we
want to be sure that countries information is updated accordingly (UC-2 and UC-3).

We assume that previous UCs have been completed.

Step 1 - Set the Trades Connector to Incremental Mode

1. In the Administration Console, go to Connectors and click the trades JDBC connector.
2. In Query parameters:

a. For Synchronization mode, select Query-based incremental synchronization

b. For Checkpoint query, enter: select max (year) from trade

c. ForIncremental variable, enter: YEAR

98 - Consolidation

Step 2 - Rescan the Trades Connector and Check What Is Indexed

d. ForIncremental query, enter: select country id, type, volume, year from
trade where year > "S$S(YEAR)"

3. Click Apply.

Step 2 - Rescan the Trades Connector and Check What Is Indexed

1. Go to the Home page and under the connectors list, click Clear documents for the trades
JDBC connector.

2. Once the clear operation is done, click Scan for the trades JDBC connector.
Wait for data to be fully indexed.

Check that if you click Scan once again for the trades JDBC connector, nothing more is pushed
to the index.

Step 3 - Add a New Year of Trades

In our example, we are going to add the year 1999 to the coffee database.
For this operation, you need to access the server.
1. Go to the <INPUTDIR> containing the coffee sample data.
You can find the following files: coffee.db and trades 1999.csv.

2. Import the year 1999 into the coffee database:
a. Inyour command-line tool, run sqlite3 ./coffee.db

b. Run the following commands one after the other:

.separator ";"
.import trades 1999.csv trade
.exit

Step 4 - Rescan the Trades Connector and Check What Is Indexed

1. Go to the Home page and under the connectors list, click Scan for the trades JDBC
connector.

Wait for data to be fully indexed.

2. Open the Mashup Ul application: http://<HOSTNAME>:<BASEPORT>/mashup-ui/page/

searchcountry v3

3. Check that countries now have 1999 as last import year.

Consolidation - 99

UC-6: Incremental Scan - Propagating Arc Changes

Results » 1-30 of 191 Sort by

Name File? Lastimportyear Lastimport volume @ Average import volume
India yes

Bosnia and Herzegovina VES 1999 5,061,900.00 3,184,530.00

Swaziland 1999 534.420.00 568.476.00

Guyana

El Salvador VES

Saint Lucia 1999 142 ,350.00 142_.380.00

UC-6: Incremental Scan - Propagating Arc Changes

Another interesting feature of the Consolidation Server is the ability to propagate any arc changes
on related views.

We assume that previous UCs have been completed.

Step 1 - Set the Country Connector to Incremental Mode

1. In the Administration Console, go to Connectors and click the country JDBC connector.
2. In Query parameters:
For Synchronization mode, select Query-based incremental synchronization

For Initial Query, enter: select country id, ico status, name, timestamp

from countries
c. For Checkpoint query, enter: select max (timestamp) from countries
d. ForIncremental variable, enter: TIMESTAMP

e. ForliIncremental query, enter: select country id, ico status, name,

timestamp from countries where timestamp > "$ (TIMESTAMP)"

3. Click Apply.

100 - Consolidation

Step 2 - Create Organization from Countries

Step 2 - Create Organization from Countries

Configure the Transformation Processor

1. Go to Index > Consolidation

2. Add a new transformation processor:

a.
b.

C.

Select Groovy as format
For Name, enter Countries
Click Accept

For Source connector, select country

Replace the default code by the following one:

/1l Process all nodes

process("") {

/1 Link country docunents to the correct organizati on dependi ng on its mnenbership
if (it.nmetas.getValue("ico_status").equal s("Mnber"))

{

/1l create the organi zati on docunent.

/1 This is a managed docunent, neaning that if no nore |inks are pointing
[/ it deletes itself automatically

organi zati on = createDocunent ("organi zation_|I CO', "organi zation")

organi zati on. netas. org_i d="1CO'

or gani zati on. net as. nanme="Internati onal Coffee O ganization"

organi zati on. di recti ves. dat anodel cl ass = "organi zati on"

/[l 1t is required to "yield" created docunents explicitly if they should b
/1l the aggregation step

yi el d organi zati on

[/l create the link to the created docunent

it.addArcTo("i sMenberOF", "organization_ | CO");

} else {

/'l create the organi zati on docunent.

/!l This is a managed docunent, nmeaning that if no nore |inks are pointing
/1 it deletes itself automatically

organi zati on = creat eDocunent (" organi zati on_NONE", "organi zation")

organi zati on. met as. or g_i d=" NONE"

organi zati on. met as. nane="not nenber"

organi zati on. di recti ves. dat anodel _cl ass = "organi zati on"

[/ It is required to "yield" created docunents explicitly if they should b
/1 the aggregation step

yi el d organi zation

/] create the link to the created docunent

it.addArcTo("i sMenmber OF", "organi zati on_NONE");

Consolidation - 101

Step 3 - Rescan the Country Connector and Check What Is Indexed

Organization documents are generated from countries. If you delete countries, they are deleted
too, automatically.

Configure the Aggregation Processor

1.

2.

3.

Add an aggregation processor:
a. Select Groovy as format
b. For Name, enter Organization UC 6

c. Click Accept

Replace the default code by the following one:

/! Process nodes having the “organization” type

process("organi zation") {
/1l Log the content of the docunent passing through this processor
|l og.info "Organi zation: " + it
/1 Add all nmenbers of Countries to Organization
it.metas. menbers +=
/1l Get all paths of related country nodes
match(it, "-isMenmberOf[country]") *.last() // fetch |last node
.collect{n-> n. netas. get Val ue("nanme") }
it.metas. nunber +=
/1l Get all paths to related country nodes
match(it, "-isMemberCOf[country]").size();

}

Save and apply the configuration.

Step 3 - Rescan the Country Connector and Check What Is Indexed

1.

Go to the Home page and under the connectors list, click Clear documents for the country
JDBC connector.

Once the clear operation is done, click Scan for the country JDBC connector.

Wait for data to be fully indexed.

Check that if you click Scan once again for the country JDBC connector, nothing more is
pushed to the index.

Go to the analytics page: http://<HOSTNAME>: <BASEPORT>/mashup-ui/page/

analytics vl

Select the ICO Membership tab. The tab displays the members count and a list of members.

102 - Consolidation

Step 3 - Rescan the Country Connector and Check What Is Indexed

Trades | Prices [E[EeFWEIETET

Members count: 85
List of members:

+ Slovenia = Malta

« Metherlands = Philippines
« Cyprus = Greece

* Portugal = Thailand

+ Bulgaria = Japan

- Estonia = Gabon

» Lao, People’'s Dem. Rep. of = Panama

« Burundi = Kenya

* Ireland » Guyana

« Congo, Rep. of = Cate dlvoire
« Luxembourg = Ethiopia

« India = Denmark

» Papua New Guinea = Costa Rica
+ Ghana = Equatorial Guinea
+ Sweden

= Dominican Republic
= Angola

= Yemen

* Colombia

* LUiganda

= Paraguay

» Switzerland

= Congo, Dem. Rep. of
« [taly

= Tanzania

= El Salvador

« Austria

= Latvia

= Hungary

* Cuba
= Togo
« Belgium
« Romania

« Ecuador

» Venezuela, Bol. Rep. of

» Madagascar
= Jamaica

» Finland

» Guinea

« Germany

+ Morway

» Spain

» France

Note: You can also check existing arcs in the Index > Consolidation > Introspect tab.

The following graphic shows what we achieved on the object graph at step 3. Arcs (of type
isMemberOf) are added to a managed document (called organization ICO) linked to

countries that are part of the ICO.

Consolidation - 103

Step 4 - Update the Membership of a Country

'. {o2Fdata®e2F o Se2Fcoffee datate?Fpdfifrance. pdf
A

.*EGIJ ntry_id=Francefyear=1992&
@ country_id=Francefyear=12968

4
= coun id=France&year=1990&
.‘pau ntry_id=France&year=19045 Ei 1'. - v
¢ 3
& =
<% R4 ® id=Francefyear=19924
1:,,/ 4 2 N v country_id=Fran YEEr=
?G‘E_a. I -:.._'ll /.-‘:?:-.
23 .
@ <country_id=Francefyear=13994& o ". country_id=France&year=1997&
'réE’I?Dr: _‘_E&_{;:-ﬁ
o . country_id=France&
reERpatt -
-) BEn o
@ *cuntry_id=Francefyear=19914 ‘g,
= @ country_id=Francedyear=1998&

*. country_id=France&year=19958
® country_id=DominicanRepublicd

o
@ munw_idﬂangaﬂepﬂf@f
N & ® country_id=C¥%C3I%B4tedlvoired
= 7
®_ cou nhy_idﬂpgn[?emﬂ:épﬂf&
% = 'ta{j
S ':';"__I._ ki &u_aﬁ\
) e > &4 fruncsted nodes
@ - country_id=Denmaiks .
|3'l.-'|‘r_.-,-'l-lt__&ro‘
izati [ea]
jemberCt @wanm S E VS —
o o
L] m-ul'l‘tl‘_l,l'_ld—EE:_'Ijl'IBS_n_,-- tr @ country_id=Austriaé
ST g o Empg
B it el
& g ey,
® country |d,='Cent§Tﬂﬁj_JcanREpublin& .3-1__'/__@ e,
N & 5 | y "a{,-‘_-r %@ @ country_id=Cyprus&
F g £ E L w % :
F§Fs 2e% % @
) X g E T <
@ country_id=Bulgariad & = % 9 T
z :: T?-l [+} ® country_id=Bolivia

@ country_id=Colombia&
® country_id=Burundi&

@® country id=Cubaf
@ country_id=CzechRepublic&k

Step 4 - Update the Membership of a Country

For this operation, you need to access the server.

1. Go to the <INPUTDIR> containing the coffee sample data.
2. Change the membership of a country in the coffee database, for example, Brazil.

a. Inyour command-line tool, run sglite3 ./coffee.db

Run the following commands one after the other:

delete from countries where country id="Brazil";

ico status) values ("Brazil"

insert into countries(country id, name,

.exit

14

"Brazil",

104 - Consolidation

Step 5 - Rescan the Country Connector and Check What Is Indexed

Note: The insert statement adds the current timestamp to the record automatically. The
JDBC connector uses it to detect this modification.

Step 5 - Rescan the Country Connector and Check What Is Indexed

1. Go to the Home page and under the connectors list, click Scan for the country JDBC
connector.

Wait for data to be fully indexed.
2. Open the Mashup Ul application: http://<HOSTNAME>:<BASEPORT>/mashup-ui/page/
searchcountry v3

3. Search for Brazil, and click its see details link.
o In the detail page, the ICO Status is Non Member.

o If you select the Trade volume per Year (Kg) > Table tab, every trade now has its
membership updated to Non Member.

ICO Status : Mon Member

Last import trade year :

Last import trade volume : 0.00 Kg
Average import trade volume : 0.00 Kg

Trade volume per Year (Kg)

by pe year volume membership lastyearvolume
export 1999 1,386,952,240.00 MNan Member 1,088,663,280.00
export 1998 1,088,663,280.00 Mon Member 1,008,075,600.00
export 1997 1,008,075,600.00 Maon Member 915,036,540.00
axport 1996 915,036,540.00 Mon Member 868.105,920.00
export 1935 868,105,920.00 Man Member 1.036,338,680.00
expon 1994 1,036,338,880.00 MNan Member 1,070,264 88000
export 1993 1,070,264,880.00 Man Member 1,127,443,140.00
export 1952 1.127.443,140.00 MNon Member 1.270,965,660.00
export 1991 1,270,965,660.00 MNon Member 1.016.147,280.00
export 1930 1,016,147,280.00 Man Member 1,016,147 28000

4. Go to the analytics page: http://<HOSTNAME>: <BASEPORT>/mashup-ui/page/

analytics vl

5. Choose the ICO Membership tab.

Brazil is not present in the list anymore.

Consolidation - 105

UC-7: Generating Child Documents

UC-7: Generating Child Documents

When flattening data, it is sometimes useful to be able to generate multiple documents from a
parent document. These child documents are not pushed by any source but are interesting to
simplify queries performed later on the index.

We assume that previous UCs have been completed.

Step 1 - Create Child Documents from Organization with an Aggregation
Processor
1. Add an aggregation processor:

a. Select Groovy as format

b. For Name, enter Organization UC_7

c. Click Accept

2. Replace the default code by the following one:

[l Process nodes having the “organi zation” type
process("organi zati on") {
/1 Log the content of the docunent passing through this processor

log.info "Child creation for organization: " + it

/1l Find the top country for inport trade per year

trades =

/1l Get all paths to related country nodes

match(it, "-isMenmberOf[country].inmport[trade]") *.last() [// fetch |last node

year _top = [:].withDefault() { [:].withDefault() {0} }

/1 Big Integer

def bint = 0G

year top volunme = [:].withDefault() { blnt }

/1 Build the child collection

trades. each {

trade -> if (year_top[trade. netas. getVal ue("year")]["volune"] < trade. netas. getVa
.tolnteger()) {

year _top[trade. netas. getVal ue("year")]["volunme"] = trade. nmetas. get Val ue("vol une")
year top[trade. netas. getVal ue("year")]["country"] = trade. netas. getVal ue("country
year _top_vol une[trade. net as. get Val ue("year")] += trade. netas. get Val ue("vol une").t

}
}

/1 Caution! Before pushing any new docunent, renove existing child docunents, if
/1 This operation is yielded automatically.
del et eDocunent Chi l dren(it, "/year inport/");
/] create child docunments
year top.each { key, value ->
log.info "Year:" + key + " - " +

106 - Consolidation

Step 2 - Relaunch the Organization Aggregation and Check What Is Indexed

val ue["vol une"] + " - " + value["country"] +
" - " + year_top_vol une[key] ;
child = createChil dDocunent (
it, // root
"/year inport/' + key, // child UR
"ico_trade" // type
);
/1 Add netas to the child docunent
child. metas. parent _identifier = it.getUi();

chil d.directives. datanodel class = "ico_trade";
/] directly set with the type defined in createDocunent but it can be overrid
child.metas.org id = it.netas["org_id"];

chil d. met as. year = key;
child. metas.country id = val ue["country"];
chi |l d. met as. vol une = val ue["vol ume"];
chi | d. met as. gl obal vol une = year _top_vol une[key] ;
yield child;
}
}

3. Save and apply the configuration.

Step 2 - Relaunch the Organization Aggregation and Check What Is Indexed

Go to the Home page.
Click Force aggregation and enter organization as type.

Open the following Mashup Ul application page: http://<HOSTNAME>: <BASEPORT>/
mashup-ui/page/analytics v2

4. Select the ICO Membership tab.

You can now see the Top Import country and Global import volume for each year.

i

Members count: B4
List of members:

| ; - Year Top Import country Top Import volume [Kg) Global import volu
* Slovenia « Malta
« Nicaragua . Liber ;,': 1991 USA 1,190,377,800.00 1,703,479,680.00
* Angola * Togo e 1999 USA 1,364 TE5,920.00 1,706,594 BED
& Cun = Greaca

e J'E“'; 1992 USA 1,376,341,980.00 1,836,731,340.00
» USA « Malawn
+ Colomibia + Rormad® 1997 USA 1,220,564, 760.00 1,564,789, 560.00
= Japan = Uganda 19440 USA 1,260 407 16000 1,776,676, 080 0
* Nigeria 'EﬂDriﬂ 1998 USA 1,261,824,060.00 1,831,795,620.00
= Vanezuela, Bol. Rep. of = 5ri Lan®

P a Switzerlad 1935 USA 1,026,411, 420.00 1,340 467, 7400
= Fananms = awWiZers
« Siarra Leone . Elun.r:-'# 1996 USA 1,166, 671,980.00 1,498 671,720.00

A

+ Jamasca + Czech H 1993 USA 1,159,723 ,260.00 1.674 618,900.00

Consolidation - 107

Step 3 - Change the Membership of a Country

For this operation, you need to access the server.

1. Go to the <INPUTDIR> containing the coffee sample data.

Step 3 - Change the Membership of a Country

2. Change the membership of a country in the coffee database, for example, USA.

a. Inyour command-line tool, run sglite3 ./coffee.db

Run the following commands one after the other:

delete from countries where country id="USA";
ico status) wvalues ("USA", "USA", "Non

insert into countries(country id, name,

.exit

Note: The insert statement adds the current timestamp to the record automatically. The

JDBC connector uses it to detect this modification.

Step 4 - Rescan the Country Connector and Check What Is Indexed

1. Click Scan for the country JDBC connector.

Wait for data to be fully indexed.

2. Go to the analytics page: http://<HOSTNAME>:<BASEPORT>/mashup-ui/page/

analytics v2

3. Select the ICO Membership tab.

USA is not displayed in the Top Import country column anymore.

(LSS) (OO Membership

Members count: 83
List of members:

= Slovenia

+ Macaragua
= Angola

* Cyprus

= Malaws

= Romania
+ Uganda

+ Estonia

= 30 Lanka
= Switzerland
* Burund

= Czech Republic

!
-

= Malta

Liber

- tood
* Gredf
= Port
ool
. .:r.uﬂi

= Gabl

Hail

- ‘-13'!

-ﬂie?
= Hoift

Yaar
1887
1956
1998
1584
19490
1885
1883

1831

1982

Top Impen country

Garmany
Germany
Germany
Germany
Gslrnan}'
Germany
Germany

Germany

Germanm,

Top Impart volume [Kg) Global import voly

B34 311,100.00
B10,427, 740.00
824 374 DED.DD
814,992 900,00
820256, T60.00
7.110.100.00
B46,420,160.00
793,731,060.00

B27,313.240.00

1,936,059, 50000
1,901,645, 000 o]
2,150,524 920, 00
1,995, 518, 34004
2,034 38394000
1,787,332 44000
2,082,851, 100004
2,030,623 62004

2003 G52 G20 0

108 - Consolidation

UC-8: Consolidating Data from Storage Service

UC-8: Consolidating Data from Storage Service

It is interesting to combine the information coming from Exalead CloudView features like tagging or
comments, relying on the Storage Service, with original data to search or refine on new values.

In this use case, we want to index the tags defined on country documents (that is,
storageKey tags)and use them as new facets.

* We assume that previous UCs have been completed.

« The Storage Service is activated. For more information, see "Configuring Data Storage for
Collaborative Widgets" in the Exalead CloudView Mashup Builder User's Guide.

* The RepushFromCache setting must be setto false in the <DATADIR>/config/360/
StorageService.xml file (default configuration).

Step 1 - Define the Source Connector for StorageService

1. In the Administration Console, go to Index > Connectors and click Add connector.
In Name, enter storageService.

For Type, select the JDBC connector.

For Push to PAPI server, select the Consolidation server cbx0 instance.
Click Accept.

2. For Store documents in data model class, enter storagevalue.

a0 oo

Note: This class is not present in the data model yet. It is only used by the Consolidation
Server.

3. In Connection parameters:
For Driver, enter org.sglite.JDBC

For Connection string, enter jdbc:sqglite://<DATADIR>/storageService/
storage.db.sglite

c. Click Test connection. The database connector automatically connects to the database.
4. In Query parameters:
a. For Synchronization mode, select Query-based incremental synchronization

For Initial query, enter: select ikey, ukey, value, res type,
res 1d, modified date, source, app id, build group from

cv360 storage service

c. For All URI Query, enter: select ikey, ukey from cv360 storage service

Consolidation - 109

Step 2 - Link storageService Tags to Countries

d. For Checkpoint query, enter: select max (modified date) from

cv360 storage service
e. ForIncremental variable, enter: TS

For Incremental query, enter: select ikey, ukey, value, res type,
res id, modified date, source, app id, build group from

cv360 storage service where modified date > 'S (TS)'

5. Click Retrieve fields.
6. Define the ukey and ikey fields as primary keys.

a. Click the ukey field to expand it.

b. Select Use as primary key.

c. Repeat the operation for the ikey field.
7. Forthe value field:

a. Delete the automatic processor.

b. Click Add column processor and add a MultipleMetas processor.

c. For Meta Name, enter value.

value @ use this fiel

Use as primary key [|

MultipleMetas (value) X
Meta Name value
Meta Name Column i
Verbose false

Add column processor

8. Click Apply.

Step 2 - Link storageService Tags to Countries

Configure the Transformation Processor

Important: For this Use Case step, we are going to use a Java processor delivered by default.

1. Go to Index > Consolidation

2. Add a new transformation processor:

110 - Consolidation

Step 2 - Link storageService Tags to Countries

a. Select Java as format.
b. For Name, enter StorageService.
c. For Processor, select Storage Service Key Linker Processor.
d. Click Accept.
3. For Source connector, select storageService
4. Click Save.

With this processor, we have achieved to link storageService tags to country documents.

Note: To get the same result with Groovy code, replace the default code by the following one:

// Process all nodes
process ("") {
// Logs the content of the document passing through this processor
log.info "Received document: " + it
// Adding parent type
it.setType ("storageValue", "storage"):;
// Create the virtual object depending on the name used for storing tag values
// URI = <key store name (tags[] for example)> + delimiter + link object key (res ic
// Type: "storage " + key store name without [] (tags[] for example)
keystoreObject = createDocument('storageKey ' + it.metas.getValue ("ikey") + "—#-"
+ it.metas.getValue ("res id"), // keystore URI
"storageKey " + it.metas.getValue("ikey")[0..-3], "storage" // type
) ;
// Add key name to the document (for debugging purpose only)
// remove last 2 characters:|[]
keystoreObject.metas.name = it.metas.getValue ("ikey") [0..-3]
yield keystoreObject;
// Add link from keystore value to keystore object
it.addArcFrom('hasForValue', 'storageKey ' + it.metas.getValue("ikey") + "-#-"
+ it.metas.getValue ("res id"));
// Add link from keystore object to linked object
keystoreObject.addArcFrom('hasStorageKey', it.metas.getValue ("res id"));
}

Configure the Aggregation Processors

Important: For this Use Case step, we are going to use Java processors delivered by default.

1. Add an aggregation processor:

Select Java as format.

For Name, enter Countries UC 8.

For Processor, select Storage Service Key Flattener Processor.
Click Accept.

o o o o

Consolidation - 111

Step 3 - Add Tags to Countries

2. Configure the processor as follows:
a. For Processed Document type, enter country.
b. For Key store document type, enter storageKey tags.

c. For Target meta, enter tags.

Note: To get the same result with Groovy code, replace the default code by the following one:

/'l Process nodes having the “country” type
process("country") {
/1 Add "tags[]" keystore values on countries
/1 by matching on nodes with the type [storageKey_ tags]
/'l For other keys, use [storageKey <whatever >]
for (node in (match(it, "hasStorageKey[storageKey_ tags]. hasFor Val ue[st or ageVa
| og.info "keystore value found : " + node. netas. get Val ues("val ue");
it.metas.tags. addAl | (node. et as. get Val ues("val ue"))

log.info "country after tags : " + it
}

3. Add another aggregation processor to discard storage nodes:
Select Java as format.

For Name, enter Storage UC_8.

For Processor, select Discard.

Click Accept.

4. For Discard document types, click Add item and enter storage.

a0 oo

Note: To get the same result with Groovy code, replace the default code by the following one:

process("storage") {

log.info "discard for : " + it
/! discard storage nodes
di scard()

}

5. Save and apply the configuration.

Step 3 - Add Tags to Countries

1. Open the following Mashup Ul application page: http://<HOSTNAME>: <BASEPORT>/

mashup-ui/page/searchcountry v4
Search for a country, for example, Singapore .
Click the see details link.

Click the Tag this country link to add a tag to the selected country. For example, for
Singapore, enter asian country and press ENTER.

112 - Consolidation

Step 4 - Index Tags

asian country displays as tag.

Name : Singapore
Modify tags

5. Perform the 3 previous steps to tag Japan as asian country too.

Step 4 - Index Tags

1. Click Scan for the storagesService JDBC connector and wait for data to be fully indexed.
Two documents are indexed for the storageService connector.

2. Open the Mashup Ul application again: http://<HOSTNAME>: <BASEPORT>/mashup-ui/

page/searchcountry v4

You can now see a new Tags facet in the Refinements panel, displaying the values entered for
the tagged documents.

- ICO Membership

Mon Member

Member

w Country Trade type
import

reExport

export

w Country Coffee types

Other Milds 27
Robustas 76
Brazilian Maturals 4

Colombian Milds
w Tags

azian country 7

The following graphic shows what we achieved on the object graph (Max. arcs per node has
been set to 10 for more readability).

Consolidation - 113

Step 4 - Index Tags

. %e2Fdatat%2f o Ye2Fcoffee data%2Fpdfifrance. pdf e mh!@yﬁ*yﬁﬂﬁ‘@q’g%ﬁ; b
& ® country_id=Colombiza @ Gountry_id=C%C2%

@ country_id=Bu
@ countryZid=Francefyear=19994 @ country_id=Bgliviah =
L9 g '@} E'% %&E ﬁ @ country_
= @ country_id=Francefyear=19355 .r) EO-_ 22 g Q{}
l,munty_id:ﬁaﬁg_aaygg‘;ms?a 5 b B % § 5 o ® count
S %
o ome I {E =3 W &
@ d=Francefyear=19988 L= E]
£ % 1 ?_P“;,. country_id=France&year= ® county id=CostaRicsd & 5% amn;,e":}
. i .
E\{fé eEmot P munty_ldfFranna&yem=1992& Embﬁ-‘ﬂf "?;.,mmbeﬂ & ocou
.'ﬂx:unﬁiﬁﬁgﬁﬁnm&y.%"ﬁﬁ@_id=Franm& isMambardt @:ﬂaniﬂqp:[ﬁﬂ
& &g « {4y ® cou
g™ 5 .f% E'*'h"be,@r
" 5 2 B® country_id=Francefyear=18914& ﬁ:,p _,-‘{ng ‘5-':35 ’
3 L e 5
®" country_id=Fran =1995& 4, 5 E %-316”35 i ® coun
g & = -.f}b) LS
e = "é = = [‘o
L S’s&,ﬁ = mﬁ e} @ country
v b L Dﬂunt'_l.r_ld=DenrrE|l:&,_ﬁ . .
@ country_id=France&year=1994& country_id=
v @ country_id=Cuba,
) ® &4 fruncated godes in&
@ county_id=France&ysar=1990& ". storagekey_tags[l4E-country_id=Franced L muﬁ_"ﬁﬂnﬂoﬁﬁi
5
JGE%
‘e

@, e

‘. ikey=tags®EBWEDE&EUkey=ivnwlxBcedzbrl &

114 - Consolidation

Appendix - Groovy Processors

Appendix - Groovy Processors

A Groovy processor is a piece of Groovy code defined with a Closure named process, taking one
constant string (and one only) as parameter.

The string value has two possible interpretations:

« If empty, it means that the processor is executed on all document types pushed to the
Consolidation Server.

» If non-empty, then the processor is executed by checking if the type provided belongs to the
document type inheritance. See Processor Type Inheritance and Runtime Selection.

Recommendation: Read the Groovy documentation.

The similar behavior is achieved in Java with
IJavaAggregationProcessor.getAggregationDocumentType () and

IJavaTransformationProcessor.getTransformationDocumentType ().

process ("city") {
log.info ("Processing " + it.getUri());

}

The code above is equivalent to Java Example 1. You do not find for which source it is associated
to, because it is defined in the Administration Console as shown below.

@ & [J cityTransformation cities & x

Source connector gities L Disable processor

process("city")
log.info("Processing " + it.getURI()}:

Although it is not explicitly visible in the method signature, the process method receives
the current document being processed (transformation or aggregation) using the special it
variable. You can see it in the above example with it .getUri (), which is the equivalent of

IConsolidationDocument.getUri ().

Groovy Transformation and Aggregation Operations

The Java interfaces defining the allowed operations for Transformation and Aggregation are
shared with the Groovy language.

As a result, all the operations present in Java are also available in Groovy. Specific shortcuts are
however available in Groovy only:

Consolidation - 115

http://www.groovy-lang.org/documentation.html

Company's Hierarchy Example in Groovy

* You can access all getters directly without specifying a method call and the get prefix. For
example, you can rewrite it .getUri () @S it.uri.

* You can also access the following properties with similar shorthands:

o it.metas: The document metadata. For example, it .metas.company name returns a
Groovy list of strings containing the meta values for the company name meta. You can also
specify the meta name between quotes. So you could write it .metas."company name".
It is even more interesting to make it dynamic by writing it .metas."$myVar", where the
variable ' 'myVar'' would be defined with the assignment myvar = "company name".

o it.directives: The document directives. Usage is similarto it .metas.

o it.parts: The document parts. Usage is similar to it .metas except that values are now
instances of IDocumentPart as in Java.

Company's Hierarchy Example in Groovy

Let us see how you can implement the Connect Employees to Services and Services to
Companies in Groovy.

process ("employee") {
def addService = { serviceName, companyName ->
serviceDoc = createDocument ("service=" + serviceName + "&", "service")
serviceDoc.directives.datamodel class = "service"

serviceDoc.addArcTo ("service", "company=" + companyName + "&")
yield serviceDoc
serviceDoc //return object

}

if (it.metas.company name && it.metas.service name) {
serviceDoc = addService (it.metas.service name[0], it.metas.company name[0])
it.addArcTo ("employee", serviceDoc.getUri())

}

For Count the Number of Employees and Push Updated Documents, a possible implementation

could be:

process ("company") {
it.metas.nb employees = match(it, "-service.-employee").size();

116 - Consolidation

Discard Processor Code Samples

Discard Processor Code Samples

DiscardAggregationProcessor. java

package com.exalead.samples.consolidation;
.exalead.cloudview.consolidationapi.processors.IAggregationDocument;

.exalead.cloudview.consolidationapi.processors.java.lJavaAllUpdatesAggregat
.exalead.cloudview.consolidationapi.processors.java.IlJdavaAllUpdatesAggregat

import
import
import

import

com
com
com

com

.exalead.mercury.component.config.CVComponentConfigClass;

@CVComponentConfigClass (configClass = DiscardAggregationProcessorConfig.class, confic

DiscardAggregationProcessorConfigCheck.class)
public class DiscardAggregationProcessor implements IJavaAllUpdatesAggregationProcess
private final String[] discardedDocumentTypes;
public DiscardAggregationProcessor (final DiscardAggregationProcessorConfig confic

}

final String[] configDocumentTypes = config.getDocumentTypes () ;

if (configDocumentTypes != null) {
this.discardedDocumentTypes = new String[configDocumentTypes.length];
for (int i = 0; i < configDocumentTypes.length; i++) {

} else {

}

this.discardedDocumentTypes[i] = configDocumentTypes[i].trim()

this.discardedDocumentTypes = null;

@Override
public String getAggregationDocumentType () {

}

return null;

@Override
public void process (IJavaAllUpdatesAggregationHandler handler,

Exception {

if

IAggregationDocume

(this.discardedDocumentTypes != null) {
for (int i = 0; 1 < this.discardedDocumentTypes.length; i++) {
if (document.getTypelnheritance().contains (this.discardedDocumentTyps

handler.discard() ;

DiscardAggregationProcessorConfig. java

package com.exalead.samples.consolidation;

import com.exalead.config.bean.IsMandatory;

Consolidation - 117

import
import
import
public

¥

DiscardAggregationProcessorConfigCheck.java

com.exalead.config.bean.PropertyDescription;
com.exalead.config.bean.PropertyLabel;
com.exalead.mercury.component.config.CVComponentConfig;

class DiscardAggregationProcessorConfig implements CVComponentConfig ({
public final static String[] METHODS = {

"DocumentTypes"

public static final String[] getMethods () {

}

return METHODS;

private String[] documentTypes;

}

public DiscardAggregationProcessorConfig() {

@IsMandatory (true)

@PropertyLabel ("Discard document types")

@PropertyDescription ("Specifies types of documents to be discarded")
public void setDocumentTypes (String[] documentTypes) {

}

this.documentTypes = documentTypes;

public String[] getDocumentTypes () {

return this.documentTypes;

DiscardAggregationProcessorConfigCheck. java

package com.exalead.samples.consolidation;

import com.exalead.config.bean.ConfigurationException;

import com.exalead.mercury.component.config.CVComponentConfigCheck;

public class DiscardAggregationProcessorConfigCheck implements
CVComponentConfigCheck<DiscardAggregationProcessorConfig> {

@Override
public void check (final DiscardAggregationProcessorConfig config, final boolean vu

ConfigurationException, Exception {

if (config != null) {
final String[] documentTypes = config.getDocumentTypes () ;
if (documentTypes != null && documentTypes.length == 0) {

final ConfigurationException error = new ConfigurationException
("Discard aggregation processor: 'documentTypes' property can't be
error.setConfigKey ("documentTypes") ;

throw error;

for (String documentType : documentTypes) {
final String trimmedDocumentType = documentType.trim() ;
if (trimmedDocumentType.isEmpty()) {
final ConfigurationException error = new ConfigurationException
("Discard aggregation processor: empty 'documentTypes' entry");
error.setConfigKey ("documentTypes") ;

118 - Consolidation

DiscardAggregationProcessorConfigCheck.java

throw error;

Consolidation - 119

Appendix - Matching Expressions Grammar

Appendix - Matching Expressions Grammar

Define object graph matching expressions with the following grammar.

Element Syntax

paths path { "." path }

path (" (" paths ")" { quantifier } { ("|" | "|>") path }) | edge

edge { "-" } string { "[" nodeTypes "]1" } { quantifier } { ("|" | "|
>") edge }

nodeTypes (regex | string) { "|" nodeTypes }

meta [regex|string] { ‘meta’ |'meta2’}

Note: For more information, see Impact Detection.

quantiﬁer (R CR-L E U E CA U

regex "/" regex string "/"

Protect Specific Characters from Interpretation

Theoretically, it is possible that your documents URIs contain some characters that may enter
in conflict with the characters used in the grammar described. In such case, to avoid a parsing
exception, you can protect these special characters using the simple quote character to protect
your graph matching expression.

So the expression: —-node ['xd/df-ty/x.b*'].'a|b" is equivalent to the expression: -
node [X] .Y

Examples

In the following examples the starting node is highlighted in maroon, and the matching nodes are
highlighted in purple. Resulting paths are listed afterward.

Note: Using the minus sign - before the name of an arc reverses its direction.

120 - Consolidation

Case Involving a Simple Path

Case Involving a Simple Path

ME: -alpha.beta

alpha\beta

Resulting path:
e 2->3

Consolidation - 121

Case with The "?" Operator

ME: alpha.beta?.gamma

Resulting path:
e 2->3->4
e 2->5

Case with The "?" Operator

122 - Consolidation

Case Involving a Star

Case Involving a Star

ME: alpha.beta*®.gamma

Consolidation - 123

Case with an OR on an Arc

Resulting paths:
 2->3->4->5->7->8
s 2->9

Case with an OR on an Arc

1 (a)
alpha
2 (d.b)
Ipha alpha
delta = 4 (a)

gamma alpha

|
3 (b) beta = 5 (c)
ta
6 (a)

Resulting paths:

« 4->3

« 4->2->1->5
« 5>4->2->1

124 - Consolidation

Case with an OR on a Path Element

Case with an OR on a Path Element

ME: -beta.(-alpha[b]+lgamma[c])

alpha
2 (d,b)
Ipha
delta 4 (a)
gamma alpha

i

alpha

Co) e

6 (a)

Resulting path:
c 4->2

Consolidation - 125

Case with a Closure Operator

1 (a)
alpha
2 (d,b)
Ipha alpha
delta = 4 (a)

gamma alpha

|
@ beta 5 (c)
ta
6 (a)

Resulting paths:

« 4->2

c 4->2->1

« 4>2->1->5

Case with a Closure Operator

126 - Consolidation

Case with an OR Operator for Node Type

Case with an OR Operator for Node Type

alpha
2 (d,b)
Ipha alpha
delta = 4 (a)
gamma alpha
|
@ beta 5 (c)
ta
6 (a)

Resulting paths:
s 4->2
° 5 -> 4

Consolidation - 127

Case with an OR Operator on Path

Case with an OR Operator on Path

ME: ((alpha.beta)l(omega.theta)).delta

Resulting paths:
e 2->4->5
c 6->4->5

128 - Consolidation

Case with Fallback Operator If the First Path Is Selected

Case with Fallback Operator If the First Path Is Selected

ME: (alpha.beta)l>gamma+.delta

1 (a)

Resulting path:
s 2->4->5

Consolidation - 129

Case with Fallback Operator If the second Path Is Selected

Case with Fallback Operator If the second Path Is Selected

ME: (alpha.beta[b])I>gamma+.delta

1 (a)

alpha [zFamma

@ 3 (a,fl-x)

beta amma

omega

theta

4 (a.f2-y)

elta

5 (a)

Resulting path:
« 3->4->5

130 - Consolidation

Case with Fallback and OR Operators Together

Case with Fallback and OR Operators Together

ME: (((alpha.beta[b])I>gamma+)l(omega.theta)).delta

Resulting paths:
+ 3->4->5
* 6->4->5

Consolidation - 131

Case with Fallback Operator Using regexp in Node Type

Case with Fallback Operator Using regexp in Node Type

ME: (alpha.beta[b])I>gammal[/N\d+\-./]+.delta
1 (a)

alpha fgamma

@ 3 (a.fl-x)

beta amma

omega

theta

4 (a,f2-y)

elta

5 (a)

Resulting path:

« 3>4->5

Another similar example

132 - Consolidation

Case with Fallback Operator Using regexp in Node Type

1 (a)

alpha jzamma \ omega

3 (a,fl-x)

Resulting path:
« 3

Consolidation - 133

Appendix - Old DSL Functions

Appendix - Old DSL Functions

This appendix lists the main old Domain-Specific Language (DSL) functions that you could use
with Structured Data Consolidation (SDC), the Consolidation Server's ancestor. For each, you can
find the Groovy and Java equivalent functions.

DSL delete ()

Groovy deleteDocument (it, false /* shouldBeRecursive */)

Java handler.deleteDocument (document, false /* shouldBeRecursive */)
DSL delete (uri)

Groovy deleteDocument (uri, false /* shouldBeRecursive */)

Java handler.deleteDocument (uri, false /* shouldBeRecursive */)
DSL addCustomDirective (name, value)

Groovy it.withDirective (name, value)

Java handler.withDirective (name, value)

DSL clearCustomDirective (name)

Groovy it.deleteDirective (name)

Java handler.deleteDirective (name)

DSL vertexGet (path ("path.to.nodes"))

Groovy match (it, "path.to.nodes™)*.last().flatten()

Java GraphMatchHelpers.getPathsEnd (handler.match (document,
"path.to.nodes"))

DSL deleteParts (metaName)

Groovy it.deleteParts (metaName)

Java document.deleteParts (metaName)

DSL distinct (["Foo", "Bar", "Foo"])
Groovy ["Foo", "Bar", "Foo"].unique ()

Java ImmutableSet.of ("Foo", "Bar", "Foo")

DSL hasMeta (name)

134 - Consolidation

Appendix - Old DSL Functions

Groovy
Java
DSL
Groovy

Java

DSL
Groovy
Java
DSL

Groovy

Java

DSL

Groovy

Java

DSL
Groovy
Java
DSL

Groovy

it.hasMeta (name)
document .hasMeta (name)

skipIf (docType, expression)

process (docType) { if (expression) { discard() } ... }
public String get|[Transformation|Aggregation]Type () { return
docType; } public void process (... handler, ... document) { if

(expression) { handler.discard(); } }
metaDel (metaName)

it.deleteMeta (metaName)
document.deleteMeta (metaName)

metaGet (pathExpression, metaName)

match (it, pathExpression) *.last().flatten().collect
{ it.getMetas (metaName) }.flatten ()

final List<String> result = new ArrayList<>(); or (final
IAggregationDocument doc

GraphMatchHelpers.getPathsEnd (handler.match (document,
pathExpression))) { result.addAll (doc.getMetas (metaName)); }

return result;
metaGet (paths list, metaName, metaDefaultValue)

paths list*.last().flatten().collect { value =

it.getMeta (metaName) (value) ? value : metaDefaultValue }

final List<String> result = new ArraylList<>(); for (final

IAggregationDocument doc : GraphMatchHelpers.getPathsEnd (paths

list)) { final String value = doc.getMeta (metaName)) ;
result.add ((value == null) ? metaDefaultValue : value); } return
result;

metaSet (metaName, metaValue)
it.withMeta (metaName, metaValue)
document .withMeta (metaName, metaValue) ;
metaSet (metaName, metaValues)

it.withMeta (metaName, metaValues)

Consolidation - 135

Java
DSL

Groovy

Java

DSL

Groovy

Java

DSL

Groovy

Java

DSL

Groovy

Java

Appendix - Old DSL Functions

document.withMeta (metaName, metaValues) ;
metaSet (pathExpression)

for (doc in match(it, pathExpression)*.last().flatten())
{ it.withMetas (doc.getAllMetas()) }

for (final IAggregationDocument doc
GraphMatchHelpers.getPathsEnd (handler.match (document,
pathExpression))) { document.withMetas (doc.getAllMetas())); }

metaSet (targetMetaName, pathExpression, sourceMetaName)

metas = match(it, pathExpression)*.last().flatten().collect
{ it.getMetas (sourceMetaName) } for (m in metas)
{ it.withMeta (targetMetaName, m) }

final List<List<String>> selection = new

ArrayList<>(); for (final IAggregationDocument doc
GraphMatchHelpers.getPathsEnd (handler.match (document,
pathExpression))) { selection.add(doc.getMetas (metaName))); }
for (final List<String> metas : selection)

{ document.withMeta (targetMetaName, metas); }
metaSet (pathExpression, metaslList)

docs = match(it, pathExpression)*.last().flatten() for
(doc in docs) { for (metaName in metasList) { values =
doc.getMetas (metaName) if (values) { it.withMeta (metaName,

values) } } }

for (final IAggregationDocument doc

GraphMatchHelpers.getPathsEnd (handler.match (document,

pathExpression))) { for (final metaName : metasList) { final
List<String> values = doc.getMetas (metaName); if (values != null)
{ document.withMeta (metaName, values); } } }

metaSet (targetMeta, pathExpression, sourceMeta, allowedTypes)

docs = match(it, pathExpression)*.last().flatten().collect
{ if (allowedTypes.contains(it.getType()) { it } } for (doc in
docs.flatten () .minus (null)) { values = doc.getMetas (sourceMeta) if

(values) { it.withMeta (targetMeta, values) } }

final List<IAggregationDocument> selection = new

ArrayList<>(); for (final IAggregationDocument doc

136 - Consolidation

Appendix - Old DSL Functions

GraphMatchHelpers.getPathsEnd (handler.match (document,

pathExpression))) { if (allowedTypes.contains (doc.getType()))

{ selection.add(doc); } }for (final IAggregationDocument

doc : selection) { final List<String> metas =

doc.getMetas (sourceMeta); if ((metas != null) && !

metas.isEmpty()) { document.withMeta (targetMeta, metas); } }
DSL metaSet (targetMeta, pathExpression, sourceMeta, conditionMeta,

allowedValues)

Groovy docs = match(it, pathExpression)*.last().flatten().collect
{ 1if (allowedValues.contains(it.getMetas (conditionMeta))
{ it } } for (doc in docs.flatten () .minus (null)) { wvalues =
doc.getMetas (sourceMeta) if (values) { it.withMeta (targetMeta,

values) } }

Java final List<IAggregationDocument> selection = new
ArrayList<>(); for (final IAggregationDocument doc
GraphMatchHelpers.getPathsEnd (handler.match (document,
pathExpression))) { if
(allowedValues.contains (doc.getMetas (conditionMeta))

{ selection.add(doc); } } for (final IAggregationDocument

doc : selection) { final List<String> metas =
doc.getMetas (sourceMeta); if ((metas != null) && !
metas.isEmpty()) { document.withMeta (targetMeta, metas); } }

Consolidation - 137

	Table of Contents
	Consolidation Server
	What's New?
	About the Consolidation Server
	Why Use Consolidation
	Consolidation Server Terminology
	How the Consolidation Server Fits into Exalead CloudView
	About the Consolidation Object Graph
	Object Graph and Index Incremental Updates
	Object Graph Node
	Object Graph Arcs
	Object Graph Matching Expressions

	Configuring the Consolidation Server
	Deploying the Consolidation Server
	Add Consolidation Support at Exalead CloudView Installation Time
	Add Consolidation Support Manually
	Enable Consolidation on Source Connectors

	Configuring the Consolidation
	Configuring the Processors
	Trigger and Synchronize Consolidation
	Forwarding Documents to Other Build Groups

	Clearing the Consolidation Server
	Tuning and Sizing the Consolidation Server
	Tuning
	Sizing

	Writing Transformation and Aggregation Processors
	About Document Processing
	Document Processing in the Consolidation Server
	Processor Action Context
	Control the Processing
	Processor Type Inheritance and Runtime Selection

	Java Processors
	Define Java Transformation Processors
	Transformation Operations
	Define Java Aggregation Processors
	Aggregation Operations
	Company Hierarchy Example

	Manage Documents Explicitly
	In the Transformation Phase
	In the Aggregation Phase

	Impact Detection

	Troubleshooting the Configuration
	Where Can I Find the Consolidation Server Logs?
	Monitoring the Object Graph
	Use the Consolidation Server Introspection
	Simulate Matching Elements and Impact Detection
	Introspection Client API Usage
	Example: My Aggregation Does Not Perform What I Am Expecting

	Exporting the Object Graph
	Export the Object Graph to a DOT File
	Convert the DOT File to Another Image Format

	Checking the Consolidation Storage Content
	Observing the Processors' Consumption
	Get a Global View of the Consolidation Server Processors
	Check If the Consolidation Storage Compact Works Properly
	Get a Finer Debugging Granularity on a Specific Processor

	Consolidation Server Fails with Out of Memory Error

	Use Cases
	About Consolidation Use Cases
	What Are Our Data Sources
	What We Want to Do Functionally
	About Code Samples

	Deploy the Coffee Sample Data
	Extract Coffee Data
	Deploy the Coffee Sample Configuration

	UC-1: Consolidating Data from Two Sources
	Step 1 - Define the Connectors Corresponding to Each Source
	Step 2 - Configure Consolidation
	Step 3 - Scan Source Connectors and Check What Is Indexed

	UC-2: Enriching Child Documents with Parent Document Metas
	Step 1 - Define the Source Connector for Trades
	Step 2 - Configure Consolidation
	Step 3 - Scan Source Connectors and Check What Is Indexed

	UC-3: Consolidating Information on a View Document
	Step 1 - Check Existing Data
	Step 2 - Add Trade Info on Countries
	Step 3 - Scan the Source Connector and Check What Is Indexed
	Step 4 - Add New Categories on Countries
	Step 5 - Rescan Source Connectors and Check What Is Indexed

	UC-4: Calculating Trends
	Step 1 - Configure an Aggregation Processor for Trades
	Step 2 - Rescan the Trades Connector and Check What Is Indexed

	UC-5: Incremental Scan - Propagating Node Changes
	Step 1 - Set the Trades Connector to Incremental Mode
	Step 2 - Rescan the Trades Connector and Check What Is Indexed
	Step 3 - Add a New Year of Trades
	Step 4 - Rescan the Trades Connector and Check What Is Indexed

	UC-6: Incremental Scan - Propagating Arc Changes
	Step 1 - Set the Country Connector to Incremental Mode
	Step 2 - Create Organization from Countries
	Step 3 - Rescan the Country Connector and Check What Is Indexed
	Step 4 - Update the Membership of a Country
	Step 5 - Rescan the Country Connector and Check What Is Indexed

	UC-7: Generating Child Documents
	Step 1 - Create Child Documents from Organization with an Aggregation Processor
	Step 2 - Relaunch the Organization Aggregation and Check What Is Indexed
	Step 3 - Change the Membership of a Country
	Step 4 - Rescan the Country Connector and Check What Is Indexed

	UC-8: Consolidating Data from Storage Service
	Step 1 - Define the Source Connector for StorageService
	Step 2 - Link storageService Tags to Countries
	Step 3 - Add Tags to Countries
	Step 4 - Index Tags

	Appendix - Groovy Processors
	Groovy Transformation and Aggregation Operations
	Company's Hierarchy Example in Groovy
	Discard Processor Code Samples
	DiscardAggregationProcessor.java
	DiscardAggregationProcessorConfig.java
	DiscardAggregationProcessorConfigCheck.java

	Appendix - Matching Expressions Grammar
	Protect Specific Characters from Interpretation
	Examples
	Case Involving a Simple Path
	Case with The "?" Operator
	Case Involving a Star
	Case with an OR on an Arc
	Case with an OR on a Path Element
	Case with a Closure Operator
	Case with an OR Operator for Node Type
	Case with an OR Operator on Path
	Case with Fallback Operator If the First Path Is Selected
	Case with Fallback Operator If the second Path Is Selected
	Case with Fallback and OR Operators Together
	Case with Fallback Operator Using regexp in Node Type

	Appendix - Old DSL Functions

