
CloudView CV23

Mashup

Table of Contents

Table of Contents

Mashup Builder... 5

What's New?...6

About Mashup Builder..7
Mashup Builder or Mashup Builder Premium..7

Mashup Builder Terminology..8

Overall Description of the Menus... 9

Understanding the Edit Application Menu.. 10
Pages.. 10
Feeds view...11
Design view... 13
Code view..16
The Preview... 17
Application tools... 17

Keyboard Shortcuts.. 18

Building Mashup Applications.. 20
Adding Feeds... 20

About Mashup Builder feeds...21
Add a feed...22
Make parallel requests with feeds...23
Enrich hits with nested feeds... 26
Synchronizing feeds on a page...29
Enable security on a Exalead CloudView Search feed.. 30

Adding Widgets..31
Add widgets... 31
Specify widget interactions.. 40

Adding Triggers..41
About Feed and Design Triggers... 42
Add triggers to an application or a page... 43
Add triggers to a widget... 50
Add triggers to a feed...51

Configuring Data Storage for Collaborative Widgets..51
Configure storage to index collaborative data...52
Storage Administration.. 54
Troubleshooting.. 55

Creating Composite Widgets..56
Create composite widgets from scratch... 57
Create custom widget properties.. 64
Create a composite from a page or widget..69
Delete a composite widget...70

Modifying the Search Results Display..70
Filter metas in the result list..70
Set the facet order... 70
Modify how search results display...71
Display results in a new page.. 71
Customize icons in the search results... 71

Display hits depending on meta values...72
Conditionally display hits with the Result List widget...72
Conditionally display hits with the For Each Hit widget..72

Using the Google Maps Widget.. 73
Textual address Vs GPS coordinates..74
Restrict the search results to a Geographical Area..74
Link the search results list to a Google map..77

Adding Trusted Queries...78
Configure Category facets for trusted queries.. 78
Add trusted queries in Mashup Builder.. 79

Customizing the Look and Feel.. 80
2 - Table of Contents

Table of Contents

Modify the logo.. 80
Switch to another theme... 81
Customize the look and feel for a whole application..81
Customize the look and feel of a page..82
Add custom code to a page...82
Customize the layout of a widget with a CSS call...82
Customize the layout of a widget with JavaScript... 83
Edit the layout of widgets within a widget container... 83

Managing Applications..85
Creating New Applications... 85

Create a new application... 85
Select the application to edit... 86
Deploy an application to another Exalead CloudView instance.. 86

Managing Custom Components.. 87
Install plugins...87
Import custom components... 88
Use plugin controllers..89
Export widget...90

Adding Security to Your Application..90
Add a CloudView Security Provider... 90
Add a Kerberos Security Provider... 92

Enabling the Reporting Services...95
Enable reporting on your Mashup Builder applications... 96
Enable reporting for the Mashup API.. 97

Enhancing Application Response Time with Gzip Compression..98

Clearing Application or Widget Storage... 98

Deleting an Application... 99

Troubleshooting your application.. 99
Check the Mashup logs... 99
I can’t see any data for a specific widget in my Mashup Builder...99
My charts don’t display correctly.. 100
How to test my MEL expressions and calculations?... 100
How to change IE compatibility to a higher version?... 100

Running an Application in 3DDashboard... 102
Overview... 102

What is Mashup Builder?..102
How do Exalead CloudView and 3DDashboard communicate?... 102
What can I do with my Mashup App?..103
Components... 104
Security... 105
Limitations..106

Installing your Mashup App... 106
Install 3DExperience Mashup Builder plugin... 106
Generate UWA widget..107
Setup reverse proxy..107
Run Mashup App in 3DDashboard... 108

Configuring your Mashup App.. 108
Configure the 3DSearch Behavior... 109
Define the mapping between Facets and 6WTags..109
Trigger the App Display in the 3DDashboard.. 112
User Authentication from 3DPassport.. 113

Troubleshooting.. 115

Appendix - Mashup Expression Language... 116
About Mashup Expression Language... 116

Syntax...116
Simple variables..117
Fallbacks.. 117
Dynamic variables and functions...118
Operations..118
Functions..120
Internationalization functions..121
Combinations..122

Table of Contents - 3

Table of Contents

Ternaries.. 122
If statements..123
Foreach loop statements..123
Flags..124
Code samples... 124

Handling Categories, Facets and entries.. 125
About Relative access in a given context... 125
Sample data...126
Facet and Category access...127
Entry access...129
Result set access.. 130
Feed access..131
Request, Cookie and Session MEL Manipulation.. 131
Use cases...132

4 - Table of Contents

Mashup Builder

Mashup Builder

The Mashup Builder application allows you to design the search application, also called Mashup
UI, which is the front end of the Exalead CloudView solution.

It lets you customize the home page, the search results page and additional pages, through a
user-friendly drag and drop interface. This guide gives procedures and examples illustrating the
most common use cases of the Mashup Builder, but does not cover all the possibilities of the
application.

Audience

This guide is mainly destined to consultants, developers, or system administrators who are new to
Exalead CloudView and its Mashup Builder application.

Access the Mashup Builder

The Mashup Builder application is accessible at: http://<HOSTNAME>:<BASEPORT+1>/mashup-
builder

The default Mashup UI front end is accessible at: http://<HOSTNAME>:<BASEPORT>/mashup-ui

Further Reading

You might need to refer to the following guides:

Guide for more details on

Mashup Programmer Mashup UI customization.

Configuration indexing and search concepts, as well as
advanced functionality.

Mashup - 5

What's New?

What's New?

There are no enhancements in this release.

6 - Mashup

About Mashup Builder

About Mashup Builder

This section describes the basic background information to understand the Mashup Builder
environment.

Mashup Builder or Mashup Builder Premium

Mashup Builder Terminology

Overall Description of the Menus

Understanding the Edit Application Menu

Keyboard Shortcuts

Mashup Builder or Mashup Builder Premium

There are two editions of the Mashup Builder application:

• By default, Exalead CloudView includes a standard Mashup Builder that lets you work with two
feeds and several widgets.

• With an additional license, you can use the Mashup Builder Premium edition, which extends
Mashup Builder with more feed and widget types.

The following table presents the differences between the Mashup Builder and the Mashup Builder
Premium editions.

Mashup Builder VS Mashup Builder Premium

Element Mashup Builder Mashup Builder Premium

Widget access Limited set of widgets. Unlimited

Premium widgets are flagged by
in the Widget Reference.

Feed access Exalead CloudView Search &
Exalead CloudView Data Model
feeds only.

One feed per page only.

Unlimited

Trigger access No Yes

Create Mobile
Applications

No Yes

Mashup - 7

Mashup Builder Terminology

Mashup Builder Terminology

This section describes the most important terms and concepts in Mashup Builder.

Note: All throughout the application, you can hover over the ‘i’ information icons to display tooltip
descriptions.

• CloudView Administration Console is the main interface for configuring data sources, indexing
options and search processes in the Exalead CloudView platform. To access, go to the
product’s BASEPORT+ 1 (for example, if the installation is at http://host:10000, admin
will be at http://host:10001/admin). Log in with the user app-admin and password
exalead.

• Composite widgets can be created with the standard widget library to handle very specific
needs. Your new composite widgets are added to the Widgets > Composite Widgets group.
They can then be reused as any other widget on any page of your application. Updating a
composite widget updates all its instances at once, which is useful when the same widgets are
repeated on every page (for example, menus, headers, etc.).

• Facets are used to narrow search results. Use them to drill-down into an area, such as
language, author, or file type. They are typically used in dashboard analytics widgets, or in the
Refinements panel for enterprise search.

• Feeds are generic content fetchers for heterogeneous sources. The Mashup API retrieves and
searches hits from feeds and returns the results in standard Atom format. Feeds can also be
enriched using nested and/or parallel requests.

• Mashup API is the API which retrieves the contents of data sources to make them accessible
to the data feeds. Note that Mashup Builder Premium also uses other APIs for non-Exalead
CloudView feeds (for example, FlickR search).

• Mashup UI is the search front-end of the Exalead CloudView solution.

• MEL Functions (Mashup Expression Language) are dynamic variable expressions which
allow you to construct text that contains dynamic content from your feeds, for example,
${feeds["persons"].metas["name"]}. These expressions provide much more than just
dynamic variables and support common operations that would usually require editing JSP files.

• Triggers can be added to the applications created with a Mashup Builder Premium instance.
They allow you to launch specific actions and alter the default behavior of feeds, widgets and
pages.

• Widgets are the graphic components which build up the Mashup Builder. There are widgets for:

◦ Creating search forms

8 - Mashup

Overall Description of the Menus

◦ Displaying search results in different forms (lists, tables, charts, maps...)

◦ Controlling search refinements (facets)

For complete widget descriptions, see the Widget Reference.

Overall Description of the Menus

Mashup Builder contains the following menus.

Menu Description

Edit <application name>
application

This is the main menu where you design your Mashup UI
applications, using feeds and widgets.

See Building Mashup Applications.

This is also here that you can administer you mashup
applications, deploy and delete them, etc. using the Application
tools.

See Understanding the Edit Application Menu.

Create application This is the main menu where you can create new web or mobile
applications.

See Creating New Applications.

Dashboard This menu displays the following panes:

• Users – listing all the users connected to the Mashup Builder
instance. You can log out users if necessary.

• Storage – listing all the components using the data storage.

• Statuses - listing the statuses of the various mashup
services.

Mashup - 9

Understanding the Edit Application Menu

Understanding the Edit Application Menu

This section shall give you the basics to understand the key components of the Edit application
menu.

Pages

Feeds view

Design view

Code view

The Preview

Application tools

Pages

In Mashup Builder, applications are made of different pages, for example /index, /search, etc.

Each page has the following views:

• Feeds: which lets you add and configure the data sources.

• Design: a canvas where you can set up the look and feel of the Mashup Builder and display
feeds using widgets.

• Preview: which gives you a preview of your page as it will be displayed in the Mashup Builder.

Index & Search page

By default, the mashup application contains:

• An /index page which stands as the home page of your Search Based Application. It is the
only required page.

Index page on Mashup Builder

• A /search page that displays the search results/hits.

10 - Mashup

Feeds view

Search page on Mashup Builder

Page tools

To create an interface you can then add, copy, modify and delete pages. To do so, use the Add
page button and the page editing tools at the right of the screen.

Use the page settings to control the behavior of your current page, and customize the:

• Page Title

• Page description

• Additional meta headers

• CSS attributes (CSS id, CSS class, CSS rules)

Feeds view

The Feeds view allows you to configure the feeds that can be integrated into your page.

These are the data sources that can be used by your application.

Mashup - 11

Feeds view

To the left of the screen, the Data Feeds panel lists the various feeds that you can configure and
make available in the design of your application.

No.Element Description

1 Data Feeds This panel lists the various feeds that you can configure and make available in
the design of your application.

Note: The search field at the top of the panel lets you search in all feed
categories. When a query is launched the Data Feeds panel turns into a
Search Results panel displaying all corresponding entries.

2 Feed drop zone To add a feed, drag and drop it from the panel to the drop zone.

3 Subfeed drop
zone

To add a subfeed, that is to say a feed depending on a parent feed, drag and
drop it from the panel to the drop zone.

4 Feed properties Each feed has a set of properties which define its behavior. For most
properties, you can click in the field to display a contextual menu listing all
available Values and MEL Functions on the left.

5 Feed tools To disable, copy or delete the feed.

6 Page
Parameters

To declare reusable parameters for your page. Once declared, parameters are
available in the Values tab of the contextual menu which opens when you click
in the Feed properties fields.

You can notice that by default:

The index page does not contain any parameters. As it is the required home
page of the search application, this page is static.

Unlike the index page, the search page is dynamic and takes a parameter q
(our query).

12 - Mashup

Design view

No.Element Description

Note: In your Mashup Builder, you can notice that the page parameter is
shown in the URL field, between a question mark and an equal sign. For
example, search?q= means that on the search page, the q parameter is
passed with the value defined after the = sign. You will also frequently see
several page parameters in URLs, separated by ampersands (&).

Design view

The Design view allows you to design your page and integrate the feeds defined in the Feeds
view. Adding widgets to the Design view can be done with simple drag-and-drops from the
Widgets panel into cells. You can then select the feeds that will be called by each widget.

Each page is structured as a table, with columns, rows and cells. To build your page, select the
Page Layout panel and add as many columns, rows and cells as you need.

Widgets

The following screenshot and its accompanying legends describe the main elements of the
Design > Widgets view.

No.Element Description

1 Widgets The Widgets panel contains many standard widgets grouped by categories.
You can easily drag and drop widgets on the Design view to create your own
page(s).

Mashup - 13

Design view

No.Element Description

To configure a widget, you must define its properties (see No. 4).

The search field at the top of the panel lets you search in all widget categories.
When a query is launched the Widgets panel turns into a Search Results
panel displaying all corresponding entries.

For widget descriptions, see the Widget Reference.

2 Widget drop
zone

To add a widget, drag and drop it from the panel to the drop zone.

3 Widget tools To edit the widget properties, annotate the widget title, use the widget to create
a composite widget, and disable, delete, copy or delete the widget.

4 Widget
properties

To configure a widget, just click its header. A panel opens at the bottom of the
screen to let you define the widget properties.

For example, in a search form, the main properties are:

Input parameter: Parameter name of the input search form that will be sent to
the action page (just like in a standard HTML form).

Action: Name of the page where the form should send parameters. If you click
on the field, you will see a list of possible values (pages) on the left.

5 Contextual
menu

Provides the available widget configuration options depending on the content
of the option (for example, when a facet is required, it will list the available
facets for the selected feed(s)).

Index page widgets

The following screenshot and its accompanying table describe the default widgets of the index
page Design view.

No.Widget Description

1 Spacer An empty block to center the search form with the logo.

14 - Mashup

Design view

No.Widget Description

2 Image Exalead logo.

3 Standard
Search form

Our standard search form made of a free-form field and a Search button.

Search page widgets

The following screenshot describes and its accompanying table describe the default widgets of the
search page Design view.

No.Widget Description

1 Image A small Exalead logo.

2 Spacer An empty block to center the search form.

3 Standard
Search form

Exactly the same search form as on the index page.

4 Navigation
Header

Our first dynamic widget, displaying information on the number of hits and on
the number of pages.

Mashup - 15

Code view

No.Widget Description

5 Result List A dynamic widget displaying the hits (results) of the feed, in our case the
CloudView Search feed.

6 Pagination Displays the pagination for the given feeds, in our case the CloudView Search
feed.

7 Standard
Facets

The refinements widget that is configured to display facets from the feed, in
our case the CloudView Search feed.

Page Layout

The following screenshot and its accompanying legends describe the main elements of the
Design > Page Layout view.

No.Element Description

1 Width and width
format

Specify the width and the width format (pixels or percentage) of the page.

2 Predefined
Layouts

You can select between a variety of different row layouts depending on your
needs, or use the row tools (3 & 5) to add cells above or below.

3 Add row (+) To add a row below.

4 Horizontal ruler This ruler allows you to measure the widgets’ width. The units of measurement
are expressed in pixels or percentage, depending on the selected Width
format.

5 Cell designer The cell designer allows you to split or merge the current cell.

Code view

Use the Code view to customize an application page by adding custom CSS or JavaScript code.

16 - Mashup

The Preview

In:

• Styles: Enter the inlined CSS code that you want to use on the page.

• JavaScript: Enter the JavaScript code that you want to use on the page.

The Preview

The Preview allows you to verify the behavior and the look and feel of your page.

It is useful to tune your page and avoid saving and applying the whole configuration to see its
results on the Mashup Builder.

Note: When you select the Preview, a Save action is performed in the background.

The Query parameters panel lets you enter other parameters than the default q parameter. You
can test the behavior of your feed queries as defined in the Query properties of your feeds.

Application tools

Mashup Builder contains a set of application tools allowing to configure settings globally on all your
application pages.

You can access application tools by clicking the Application button at the top left of the screen.

The following screenshot and its accompanying legends give an overview of the application tools.

Mashup - 17

Keyboard Shortcuts

No.Element Description

1 General tools These tools allow you to parameter general settings for your mashup
application.

You can:

• Tune the overall look and feel, reference CSS and javascript.

• Set up security.

2 Application
Properties view

You can configure applications properties to control the behavior of your
current application. For example, you can specify the default home page
of the application, the icon to display in the URL bar (favicon), the theme to
use, etc.

3 Manage
components

Mashup Builder Premium gives you the possibility of adding plugins for
feeds, widgets and triggers. You can therefore install and deploy custom
components on your applications.

4 Developer area The Developer area includes several tools that can be useful to develop
and debug your own search applications. For more information, see "Using
Developer Tools" in the Exalead CloudView Mashup Programmer's Guide.

Keyboard Shortcuts

Mashup Builder includes many keyboard shortcuts allowing you to get a quick access to features.

Press H to display the Keyboard Shortcuts dialog box that lists all shortcuts.

18 - Mashup

Keyboard Shortcuts

Mashup - 19

Building Mashup Applications

Building Mashup Applications

This section describes how to build your own mashup applications within Mashup Builder.

The behavior and the layout of your applications can be fully designed using the various
functionalities of the Edit <application name> application menu. You can add and configure
feeds and widgets, create pages, add triggers, customize the look and feel of your application, etc.

Adding Feeds

Adding Widgets

Adding Triggers

Configuring Data Storage for Collaborative Widgets

Creating Composite Widgets

Modifying the Search Results Display

Display hits depending on meta values

Using the Google Maps Widget

Adding Trusted Queries

Customizing the Look and Feel

Adding Feeds

The Feeds view lets you add and configure the feeds (data sources) that will then be available in
the Design view, to be called by widgets.

About Mashup Builder feeds

Add a feed

Make parallel requests with feeds

Enrich hits with nested feeds

Synchronizing feeds on a page

Enable security on a Exalead CloudView Search feed

20 - Mashup

About Mashup Builder feeds

About Mashup Builder feeds

The following table describes the various Feeds available in Mashup Builder Premium edition. The
Mashup Builder edition only contains the Exalead CloudView Search and Exalead CloudView Data
Model feeds.

Mashup Builder Premium Edition - Feeds

Category - Feeds Description

CloudView Feeds

CloudView Data
Model

This feed is linked to the data model defined in the Administration Console.
Its search capabilities are therefore enhanced by the classes, semantic
types, advanced processors, etc. used in the data model.

CloudView Search This is the standard Exalead CloudView search feed.

It is independent from the data model defined in the Administration Console.
It works for search on versions V6R2012x and higher.

Database Feeds

Advanced JDBC
Query

This feed allows you to query a JDBC database directly.

You need to specify the following SQL queries:

• One to retrieve results with both a LIMIT and an OFFSET clauses (for
pagination).

• One to retrieve the total number of results.

• One to retrieve only one result (when a hit is opened directly via its URL).

Drupal Query This feed allows you to query a drupal database (Opens Source CMS tool)
directly.

JDBC Query This feed allows you to query a JDBC database directly.

You need to specify a single SQL query to retrieve results.

Feed Tools

Concat Feeds This feed must gather one or more subfeeds (nested feeds).

It merges the hits of feeds based on their IDs. A comparison is performed
and if:

• IDs are equal, only one hit is displayed for the two feeds.

• IDs are different, all hits are displayed.

Mashup - 21

Add a feed

Category - Feeds Description

Note: Concat feeds do not support synthesis. You cannot use this feed on
widgets rendering synthesis, for example, the Pie Chart widget.

Joined Feed This feed must gather one or more subfeeds (nested feeds).

It combines the hits of nested feeds based on a join key meta. A comparison
is performed and if:

• Keys are equal, only one hit is displayed for the two feeds.

• Keys are different, all hits are displayed.

Add a feed

The CloudView Search feed is usually at the very heart of your application. As already stated, it is
independent from the data model defined in the Administration Console.

Everything that can be done using the Search Logic, can also be done at query time by the
CloudView Search and the CloudView Data model feeds. Using these feeds to perform the
query is a way to capitalize the default Search Logic when you have specific needs. For example,
if you want to call Exalead CloudView with a few parameters that are different from those defined
in the default Search Logic, you don’t need to create another Search Logic and you can just edit
these parameters at the feed level instead.

This section describes how to add a CloudView Search feed and configure its main properties.

1. In Mashup Builder, select an application page, for example, the index page.

2. Select the Feeds view.

3. Drag a CloudView Search feed in the drop zone.

4. In the Feed properties panel, expand the Feed settings section and using the Feed ID field,
call it cloudview.

The feed now displays cloudview in the drop zone.

22 - Mashup

Make parallel requests with feeds

5. Set its properties as needed. The following table describes the main properties of the
CloudView Search feed.

Property Description

Query The dynamic query to send to the index.

For example the ${page.params["q"]} variable stands for parameter q
applied to the current page.

Note: Using #all queries, to retrieve all documents, is not recommended
since it can impact the performances of the search server.

Hits per page Number of hits (results) to display per page.

Default User QueryThe default query executed when the Query parameter is empty.

Properties/
Mappings

The output format of the Mashup API is a standard XML output format, Atom .

This format has specific tags for defining the title or the thumbnail of an entry,
this is why these parameters can be configured at the feed level, but they can
also be configured on a hit displaying widget.

PRE: Maps the property before subfeeds execution.

POST: Maps the property after subfeeds execution.

6. Click Save.

Make parallel requests with feeds

Creating parallel requests is useful if you have different indexes or if you want to search for
specific content in the same index using different queries.

The following use case describes how to proceed if you want your application to fetch hits from
two sources using the same query basis:

• One of these source is a filesystem crawl retrieving data through a Files connector. In our
example, the set of documents located under the <INSTALLDIR>/docs/ directory.

• The other one is a web crawl retrieving data through an HTTP connector. In our example, the
Exalead website (http://www.exalead.com/software/).

Our application is configured in the Mashup Builder to use two CloudView Search
feeds that will select the 2 most relevant hits for the request on the search results page
${page.params["q"]} to focus on the two specific data sources.

By making a query on the Mashup Builder, we see below that the search page displays results
coming from the two data sources; one from an Exalead website URL and another from the
filesystem.

Mashup - 23

http://fr.wikipedia.org/wiki/Atom

Make parallel requests with feeds

Using more than one feed per page is only possible with Mashup Builder Premium.

This procedure describes the steps to create the example presented above.

1. In Mashup Builder, open one of your application pages, for example search, and select the
Feeds view.

2. Drag and drop a CloudView Search feed, and from the Feed ID field, call it files.

3. Set the feed properties as follows:

a. For User query > Query, enter for example source:fs ${page.params["q"]}
(where fs stands for a file system source managed by a Files connector).

b. For User query > Hits per page, enter 2.

c. Under Properties / Mapping, for TITLE, enter ${entry.metas["file_name"]}

4. Drag and drop another CloudView Search feed below the first one, and call it crawls.

5. Set the feed properties as follows:

a. For User query > Query, enter for example source:web ${page.params["q"]}
(where web stands for a web source managed by an HTTP connector).

b. For User query > Hits per page, enter 2.

The configuration should look as follows.

6. Select the Design view, and add the two feeds (files and crawls) to a widget, for example
Result List.

24 - Mashup

Make parallel requests with feeds

7. Select the Preview to check your configuration changes.

8. Click Apply.

The Mashup Builder displays results coming from the 2 data sources.

Example of parallel requests on the Mashup Builder

Mashup - 25

Enrich hits with nested feeds

Enrich hits with nested feeds

Nesting feeds in one another gives you the possibility of enriching the hits of a query with other
sources to bring related content to the user. This can be achieved because nested feeds can use
parent metas.

In the following use case, our application starts by retrieving information about TV series
using a CloudView Search feed. It then tries to enrich each hit with images retrieved by a
Google Search feed using the TV series title. We assume that the data source (http://
www.allocine.fr/series/) is crawled by an HTTP connector called series, properly
configured in the Administration Console.

Using more than one feed per page is only possible with Mashup Builder Premium.

1. In Mashup Builder, open one of your application pages, for example search, and select the
Feeds view.

26 - Mashup

Enrich hits with nested feeds

2. Drag and drop a CloudView Search feed and from the Feed ID field, call it tvseries.

3. Set the feed properties as follows:

a. For Query, enter source:series ${page.params["q"]} where source:series
specifies the name of the HTTP connector that crawls TV series in the Administration
Console.

b. For Hits per page, enter the number of hits to display on the search results page, for
example 4

4. Drag and drop an Google Search feed within the CloudView Search feed, and call it
pictures.

5. Set the feed properties as follows:

a. For Query, enter ${entry.metas["title"]} (the title meta for each result of the
tvseries CloudView Search feed).

b. For Type, select images.

6. Select the Design view, and add the parent feed (tvseries) to a widget, for example Result
List.

7. Expand for For each hit, and drag and drop another widget within the parent widget.

By default the nested feed (pictures) is selected in the second widget.

Mashup - 27

Enrich hits with nested feeds

8. Select the Preview to check your configuration changes.

9. Click Apply.

The Mashup UI displays results coming from the 2 data sources. The data retrieved by the HTTP
connector is enriched by pictures retrieved by Google.

Example of hit enrichment in Mashup UI

28 - Mashup

Synchronizing feeds on a page

Synchronizing feeds on a page

With Mashup Builder Premium, you can use more than one feed per page.

By default, feeds are executed in parallel but sometimes, you need to wait for the result from a
previous feed to execute another feed. This can be done using the Synchronized option.

When you enable the synchronized option on one of your feeds, remember that feed order is
important.

Feeds that are located after a synchronized feed will wait for it to answer before triggering
themselves.

Mashup - 29

Enable security on a Exalead CloudView Search feed

Enable security on a Exalead CloudView Search feed

The following procedure describes how to enable security on a CloudView Search feed. When
the user authenticates on a page, the security provider retrieves his tokens from the security
source(s) which in turn, sends the user’s query and the security tokens to the index.

The index only fetches documents that match both the user’s query and the security tokens.

For example, if a user has the Everybody and group1 tokens, and if security is enabled on
the feed, Exalead CloudView will filter the documents and return only the documents matching
Everybody and group1.

• A security source has been set in the Administration Console. For more information, see
"Configuring security sources" in the Exalead CloudView Administration Guide.

• A security provider has been set, see Adding Security to Your Application.

1. In Mashup Builder, select an application page, for example, the search page.

2. Select the Feeds view and add two CloudView Search feeds.

Call the first feed secured and the second feed unsecured.

3. For the first feed, select Enable Security.

4. Select the Design view, drag the Table widget, and drop two Result List widgets inside it.

a. In the first Result List widget, select the secured feed.

b. In the second Result List widget, select the unsecured feed.

5. Click Save and Apply the configuration.

6. Open the Mashup Builder search page:

30 - Mashup

Adding Widgets

◦ The secured result list shows only the documents matching the users' security tokens.

◦ The unsecured result list shows all documents, as security tokens are not taken into
account.

Adding Widgets

Once you have defined a feed in the Feeds view, you can add the widget(s) that will use this feed
in the Design view.

Add widgets

Specify widget interactions

Add widgets

Mashup Builder and particularly its premium version comes with many widgets grouped by type.
This section focuses on three widgets, the Result Table, Pie Chart and Stacked Column Chart
widgets. You will find examples using other widgets throughout this guide.

Note: Most chart widgets come from the highcharts and highstock libraries, we recommend
reading their documentation on http://www.highcharts.com/ for advanced configuration
(in the Javascript tab of the chart widget properties).

Add a Result Table widget

This example shows how to display results in a Result Table widget, and set it to refine document
search.

1. In Mashup Builder, go to the search page and select the Design view.

2. In the Widgets panel, expand the Results Rendering group, and drag the Result Table
widget just above the Result List widget.

3. Click the Result table widget header.

The widget properties panel opens at the bottom of the screen.

4. On the Hit Config tab:

a. For Hit title, select Hit Metas > title from the Values contextual menu on the left.

You will get ${entry.metas['title']}

b. For Hit URL, select Hit Metas > url from the Values contextual menu on the left.

You will get ${entry.metas['url']!uh}

5. On the Hits metas tab, deselect Display metas.

Mashup - 31

http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/

Add widgets

6. On the Hit facets tab, set the list of facets to include as columns in the table. For example, we
want to get three columns displaying the File extension, the language, and the last modification
of each document.

a. For Facet list mode, select include.

b. In the Facet List field that displays, select the facets to include in the Result Table,
using the Values contextual menu on the left. These must be separated by commas.
For example: Top/language, Top/classproperties/file_extension,Top/
classproperties/lastmodifieddate

7. Select the Preview to check your configuration changes.

8. Click Apply.

To see your changes, go to http://<HOSTNAME>:<BASEPORT+1>/mashup-builder.

Your Mashup UI application should now have a search result page with a Result Table above the
standard result list. You can use this table to refine your document search.

Add a Pie Chart widget

In this example, we will add a Pie Chart widget to refine on result segments.

This example is based on the set of documents located under the <INSTALLDIR>/docs/
directory.

Example of Mashup UI application with Result Table

32 - Mashup

Add widgets

This widget is available in Mashup Builder Premium only.

1. In Mashup Builder, go to the index page and select the Design view.

2. In the Widgets panel, expand the Visualizations > Charts group, and drag the Pie Chart
widget to the last row of the canvas.

3. Click the Pie Chart widget header.

The widget properties panel opens at the bottom of the screen.

4. From the General tab, set up the pie chart to launch a search with the corresponding
refinement when you click a slice of the pie.

a. Enter a Widget title, for example Document Types.

b. In Facet, select the facet to refine on from the Values contextual menu on the left, for
example Top/classproperties/file_extension to refine on document file extensions.

5. From the Advanced tab, set the search page as the page that will display the result
corresponding to the slice selected on the pie chart.

a. In Destination page on click select search.

b. In Max number of categories, increase the default number if there are more than 5
categories (for example, 7). This is to avoid having an Other category gathering all the
categories that will not be displayed with the default value.

6. If you want to customize the colors used by the pie chart, go to the JavaScript tab and specify
the HTML hexadecimal codes of your favorite colors.

a. Uncomment the colors line by removing /* and */

b. Specify your favorite colors. For example, for the 7 categories we can define the following
HTML colors: colors: ['#058DC7', '#50B432', '#ED561B', '#FF9900',
'#CC33CC', '#660099', '#FF00FF']

7. Select the Preview to check your configuration changes.

8. Click Apply.

Mashup - 33

Add widgets

To see your changes, go to http://<HOSTNAME>:<BASEPORT+1>/mashup-builder.

Your Mashup UI application should now have a Home (index) page that resembles the
following screenshot.

Example of Mashup UI application with integrated pie chart.

You can refine your search by selecting a pie chart section, and view its related results only.

Add a Stacked Column Chart

This section gives several examples of Stacked Column Chart widget configuration:

• display multiple dimension in stacked bars

• display both bars and lines

• remove legends

• add labels to the chart axes

This widget is available in Mashup Builder Premium only.

Display multiple dimensions in stacked bars

This example is based on the sales sample database located under the <INSTALLDIR>/docs/
sample_database directory.

We assume you have followed the “Connect to the database” and “Create a new class in the data
model” sections of the CloudView Getting Started Guide.

1. In the Administration Console, go to Search Logics > Facets.

2. Click Add facet and:

a. For Name, enter multidim

b. For Type, select Multi-dimension.

c. Click Accept.
3. Add two dimensions to the multidim facet.

34 - Mashup

Add widgets

Facet Sort by

store_city Count

category Count

4. Click Apply.

5. In Mashup Builder, drag the Stacked Column Chart widget on a page.

6. Click the widget header.

The widget properties panel opens at the bottom of the screen.

7. On the General tab:

a. For Widget title, enter Multidim.

b. For Facet type, select multi_dimension.

c. For X, select multidim from the Values contextual menu on the left.

8. Go to the JavaScript tab and uncomment the /*stacking: 'normal'*/ line, to get
stacking: 'normal'

Note: Press F11 to switch the code editor to fullscreen mode

9. Click Apply.

To see your changes, go to http://<HOSTNAME>:<BASEPORT+1>/mashup-builder.

Your Mashup Builder application should now have a Chart that resembles the following
screenshot.

Display of multiple dimensions in stacked bar

Mashup - 35

Add widgets

Display both bars and lines

This example is based on the set of documents located under the <INSTALLDIR>/docs/
directory

1. In the Administration Console, go to Search Logics > Facets.

2. Expand the file_extension facet and define the following aggregations:

Id Type Expression

file_size_avg AVG document_file_size

file_size_min Min document_file_size

file_size_max Max document_file_size

3. Click Apply.

4. In Mashup Builder, select a page and then select the Design view.

5. In the Widgets panel, select Visualizations > Charts, and drag the Stacked Column Chart
widget on your page.

6. Click the widget header.

The widget properties panel opens at the bottom of the screen.

7. On the General tab:

a. For Widget title, enter Bars & Lines.

b. For X, select file_extension from the Values contextual menu on the left .

c. For Y , create the following series:

36 - Mashup

Add widgets

Aggregation Series type Legend

file_size_avg column Avg file size

file_size_min line Min file size

file_size_max line Max file size

8. Select the Preview to check your configuration changes.

9. Click Apply.

To see your changes, go to http://<HOSTNAME>:<BASEPORT+1>/mashup-builder.

Your Mashup Builder application should now have a Chart that resembles the following
screenshot.

Display of bars and lines in Stacked Column Chart widget

Remove the chart legend

This example is based on the set of documents located under the <INSTALLDIR>/docs/
directory.

1. In Mashup Builder, drag the Stacked Column Chart widget on a page.

2. Click the widget header.

The widget properties panel opens at the bottom of the screen.

3. On the General tab:

a. For Widget title, enter No Legend.

b. For Facet type, select normal.
c. For X, select file_extension from the Values contextual menu on the left.

4. Go to the JavaScript tab and in the legend node, set the enabled attribute to false.

Mashup - 37

Add widgets

5. Select the Preview to check your configuration changes.

6. Click Apply.

To see your changes, go to http://<HOSTNAME>:<BASEPORT+1>/mashup-builder.

Your Mashup Builder application should now have a Chart without legend, as shown in the
following screenshot.

Chart without legend

Add labels to the chart axes

This example is based on the set of documents located under the <INSTALLDIR>/docs/
directory.

1. In Mashup Builder, drag the Stacked Column Chart widget on a page.

2. Click the widget header.

The widget properties panel opens at the bottom of the screen.

3. On the General tab:

a. For Widget title, enter Labels on axes.

b. For Facet type, select normal.
38 - Mashup

Add widgets

c. For X, select file_extension from the Values contextual menu on the left.

4. Go to the JavaScript tab and enter the labels of your choice for the text attributes of the
xAxis and yAxis nodes.

5. Select the Preview to check your configuration changes.

6. Click Apply.

To see your changes, go to http://<HOSTNAME>:<BASEPORT+1>/mashup-builder.

Your Mashup Builder application should now have a Chart with labels on axes, as shown in the
following screenshot example.

Chart with labels on axes

Mashup - 39

Specify widget interactions

Specify widget interactions

Widget interactions allows certain widgets to interact with one another, for example, Result List,
Google Map, Bookmarks etc. All these widgets contain an Interactions tab in their properties
panel.

This feature provides:

• a list of widgets on which you can create interactions.

• a field to specify the name of the widget that must be linked to the current widget, in
exa.io.<property name> fields.

The following use case shows how to create a form with widget interactions. In this example we
want to restrict the search results with two input widgets: one to select an author and one to select
a start date using a datepicker. The aim is to link the input widgets to the Standard Search Form
widget so as to submit the form with its Search button. The results will be filtered according to the
selected author and start date.

1. In Mashup Builder, select a page, for example /search, and select the Design view.

2. From the Widgets panel, drag and drop widgets to assemble your form.

In our example, we add a set of Label and Input widgets to create a form, as represented in
the following table and screenshots.

Row # Label Widget Input Widget

1 Text: Author Name: author, Type: text

Interactions: Standard Search Form

2 Text: Start
Date

Name: startdate, Type: datepicker

Interactions: Standard Search Form

40 - Mashup

Adding Triggers

3. Select the Preview to check your configuration changes.

You should see the form on your Mashup Builder page, and be able to complete it.

4. Click Apply.

Form inputs linked to the Search button of the Standard Search Form

Adding Triggers

For each application created within your Mashup Builder Premium instance, you can configure
Feed and Design Triggers.

About Feed and Design Triggers

Add triggers to an application or a page

Mashup - 41

About Feed and Design Triggers

Add triggers to a widget

Add triggers to a feed

About Feed and Design Triggers

Feed Triggers

A Feed Trigger is an entry point to alter the behavior of a Feed.

It is called by the Mashup API before and after the feed execution, allowing for query manipulation,
context modification and results manipulation.

Therefore, Feed Triggers can do the following:

• Decide to override the query to be issued to the actual ‘execute’ method based on query
expansion (beforeQuery method)

• Decide to replay the feed execution because the result obtained is not satisfying, for example,
if there are no results (afterQuery method that returns Result.EVAL_AGAIN)

Example:

You can use a Feed Trigger on any Feed in your configuration to customize query processing or
feeds behavior for different purposes such as:

• Query rewriting

• Query computing from previously retrieved results

• Enabling / Disabling feeds

Design Triggers

Design triggers are called by the Mashup Builder

They include:

• Pre-request triggers which can be used to decide whether the user should be redirected
to another page or not. The back end is not yet called, so no special load is triggered on the
system. For example, redirect the user to the page called /imagesearch if the query starts
with ‘image(s)’.

• Page and widget triggers which have the possibility to alter the behavior of the display by
making decisions to draw things or even change the configuration (each user request gets a
fresh copy of the original configuration, so any changes at query time are safe). For example:
decide whether a widget should be displayed or not.

• Application triggers which are executed on all application pages.

42 - Mashup

Add triggers to an application or a page

Execution Flow

The Mashup trigger sequence is as follows:

Add triggers to an application or a page

This section describes how to add Feed and Design Triggers to a given application or a given
page.

Note that:

• Application triggers will be applied globally throughout all the pages of the application.

• Page triggers will be applied on the selected page only.

Note: The Feed and Design triggers that can be applied at the ‘page level’ are the same as the
ones that can be applied at the ‘application level’.

Add Feed triggers to a given application or page

1. In Mashup Builder, select a page and then select its Feeds view.

Mashup - 43

Add triggers to an application or a page

2. From the Triggers > Feed Triggers pane, drag the Feed (or Mashup API) triggers that you
want to apply to the application level or to the page level.

Feed triggers description

Feed Trigger Description

Category name regexp
processing

Uses regular expressions to search and replace category names for a
given feed.

It contains the following properties:

• Facets– Enter the facet name.

• Search for – Enter a Java regular expression string to search for a
specific category name.

• Replace with – Enter a Java regular expression string to replace the
category name found by the Search for string by another category
name.

Look up the reference for String.replaceAll() for further
information.

Create facet Creates pseudo-facets on the fly. This can be useful to create virtual
facets for feeds returning a lot of unsorted hits.

For example, an XML feed returns several hits, one hit corresponds to
a color meta and we want to use this meta as a facet in a pie chart to
represent a pie section.

It contains the following properties:

• meta name – Enter the meta name.

• facet name – Enter the facet name.

• facet description – Enter a description

Query Builder This is the most important trigger.

It computes simple queries out of a feed result to override another feed's
query. In other words, it allows you to programmatically build a query
using previously fetched results, assembling metas, facets, etc.

Important: The current feed must be synchronized, otherwise unexpected
behavior may occur! To synchronize the feed, select the Feeds view, and
in the Feed Options section, set the Synchronized property to true.
Sorting is important if you select the Synchronized option in the feed
properties. It determines the execution order of your feeds. The first feed

44 - Mashup

Add triggers to an application or a page

Feed Trigger Description
in the drop zone is executed first, when results are retrieved, the second
feed is executed etc.

It contains the following properties:

• xml – Displays the XML code that will be used by the trigger. This
code contains the following nodes (the values in green are sample
values only):

◦ <string value="str" />: Appends the string "str" to the
query. It is useful for static query chunks.

◦ <join glue=" OR ">: Joins the values generated by the
embedded nodes using the specified glue.

◦ <metaValues metaName="title" max="3"

quotes="true"/>: Retrieves up to 3 values of the "title" meta
and surrounds them with quotes for an exact match query.

◦ <facetLeaves facetId="coffee" max="10"

quotes="true" />: Retrieves up to 10 values of the "coffee"
facet and surrounds them with quotes for an exact match query.

◦ <expr expr="${feeds["feedname"].metas["metaname"]

+ 10}" />: Executes the specified MEL expression.

◦ <replace pattern="fo[uo]" replacement="bar"

caseInsensitive="false">: Applies the specified
replacements on the values generated by embedded nodes.

◦ <if test="${expr}">: Executes the specified MEL expression
test, and if true, calls the embedded generator nodes. You must
format the node as follows: <if test="> <then> ... </
then> <else> ... </else> </if>

Important:
Using only <if test="> ... </if> does not work.

• Feed to override – Enter the name of the feed to override or simply
select it from the list of available feeds from the Values tab (on the
left).

• Parameter to override – Enter the feed parameter to override.

• Execution mode – Select the trigger mode:

◦ beforeQuery: builds the query for the current feed.

Mashup - 45

Add triggers to an application or a page

Feed Trigger Description

◦ afterQuery: allows to take the feed's results to build a query for
another feed.

◦ Query Builder

◦ Enable feed if disabled – Enables the feed if it is disabled, that is
to say, if the Feed options > Enable property is set to false. You
can indeed choose to disable a feed by default to launch it only if
the query builder is executed to build a specific query. Note: This
property is used only in afterQuery mode, that is to say after the
execution of a first query.

◦ Launch if empty – Launches the QueryBuilder trigger if the feed
is empty or has no results. Note: This property is used only in
afterQuery mode, that is to say after the execution of a first query.

JSON to Meta Trigger Transforms JSON meta values into metas. This is useful for the
collaborative widgets returning unreadable and unusable JSON strings
that bring valuable information.

It contains the following property:

jsonMetaNames – Enter the JSON meta name that must be transformed
into a standard Exalead CloudView meta.

Recommendation
Trigger

Defines the feed that will be used for result-condition-based analysis in
the Content Recommender. It checks whether the triggers have matched
on the page.

Important: The current feed must be synchronized and placed on top of
the recommendation feeds, otherwise unexpected behavior may occur.
To synchronize the feed, select the Feeds view, and in the Feed Options
section, set the Synchronized property to true.

Transform Categories Applies transformations to a single category using a JavaScript
expression. It contains the following property:

JavaScript expression – Enter a JavaScript expression to transform
a specific category (available object: category) For example:
category.count = category.count / 2

Transform Facets Applies transformations to a single facet using a JavaScript expression.

It contains the following property:

46 - Mashup

Add triggers to an application or a page

Feed Trigger Description

JavaScript expression – Enter a JavaScript expression to transform a
specific facet (available object: facet) For example: facet.name =
\"New facet name\"

Page Feed Triggers description

Page Feed Trigger Description

Aggregation Builder This trigger can be added to the Page or to the Application level. It adds
on-the-fly aggregations to a given facet. For example, you can add an
aggregation to get the percentage corresponding to each category.

The calculation can also be performed using the values of different feeds.
For example, FeedA relates to a group of items, FeedB relates to one of
these items, and you want to make a comparison between these two.

Limitation: This trigger does NOT work with MultiDimension facets and
Hierarchical2D facets.

It contains the following properties:

• Target Feed – Specifies the target feed on which you want to create
on-the-fly aggregations.

• Target Facet – Specifies the target facet on which you want to create
on-the-fly aggregations.

• Facet Iteration mode – Specifies the iteration mode used to iterate
each facet category. For example, the "Year" facet is set to YYYY/MM/
dd:

◦ ALL – recursive iteration,

◦ FLAT – iteration on the first facet level, in our example: 2010, 2011,
2012, etc.

◦ LEAVES – iteration on the last facet level, in our example: Monday,
Tuesday, Wednesday, etc.

• Aggregation name – Specifies the aggregation name.

• MEL expression (Facet level) – Enter the MEL expression that will be
evaluated at facet level to create the target aggregation value.

• MEL expression (Category level) – Enter the MEL expression that
will be evaluated at category level to create the target aggregation
value.

Example:

Mashup - 47

Add triggers to an application or a page

Page Feed Trigger Description

Target feed: cloudview, Target Facet: area, Aggregation
name: percent, MEL expression (Facet level): 100, MEL
expression (Category level): ${(category.count*100)/
feed.facets["myfacet"].count}

Join feed trigger This trigger allows you to Join several feeds using a meta as key. It should
be used with a query builder

It contains the following property:

Feeds to join: A list of feeds that you want to join using a given joinKey.
The first feed of the list will contain the result of the join.

3. Click Save and then Apply your configuration changes.

Add triggers to a given application or page

1. In Mashup Builder, select a page and then select its Design view.

2. From the Triggers pane, select the type of trigger that you want to apply. For example, Pre
Request Trigger.

3. Drag the Design triggers that you want to apply to the application level or to the page level. In
the following screenshot the Pre Request Trigger I18N... is applied at the application level.

Mashup Page Triggers description

Mashup Page Trigger Description

Business Console
Debug Trigger

This trigger is required for the Business Console Test UI.

It communicates a list of matched rules to the Business Console (Content
Recommender tool) and will override subfeeds according to matched
rules output configurations.

Google Analytics
Trigger

Launches a Google Analytics event trigger. Google Analytics allows you to
track how often viewers click particular links on your website.

It contains the following property:

Google Analytics profile: Enter the name of your Google Analytics
account ID. For example a code like ‘UA-10876-1’.

Override Page Title Overrides the page title using result feeds. For example, if you want to set
a title from the first hit name.

It contains the following property:

48 - Mashup

Add triggers to an application or a page

Mashup Page Trigger Description

title: Enter the page title that will override the title configured in the Page
properties. If blank, it will use the title defined in the WEB-INF/i18n/
commons.properties file.

Pre Request Triggers description

Pre Request Trigger Description

Cookie to parameter Reads a cookie and sends its value to a new parameter that can be used
by feeds as a page parameter.

By default, a timezone.js file (specified in Application > General
> JavaScript) retrieves the local timezone of the user session and
stores it in themashup-timezone cookie. The Cookie to parameter
trigger retrieves this cookie value and pushes it to the timezone page
parameter. The user timezone information is provided for each feed in the
Advanced Parameters > Timezone Parameter

This trigger contains the following properties:

• Parameter name: Specifies the name of the parameter that will
contain the cookie value.

• Cookie name: Specifies the name of the cookie which contains the
value.

I18N: Retrieve
the locale in the
MashupAPI

Adds a new parameter containing the locale used in the Mashup Builder
to the MashupAPI.

The MashupAPI has no ‘user session’ information whatsoever, and does
not know which locale is used by the Mashup Builder. It can however be
required when a trigger is launched so as to use it in your feed.

It contains the following property:

parameterName: Enter the name of the parameter which contains the
locale.

Page Redirection Redirects to another page used on a javascript routine.

It contains the following property:

expr: Enter a Javascript expression to redirect the user to another page.
You must return the name of the page to be called, or null to stay on this
page.

Mashup - 49

Add triggers to a widget

Pre Request Trigger Description

Important: If you are looking for an optimized way to do this, a Java
PreRequestTrigger may be preferred.

Redirect by group Redirects authorized/unauthorized group of users to specific page.

It contains the following properties:

• Regular expression: Enter a regular expression to extract the group
value from security tokens.

• Rules: Define the group of users impacted by the redirection.

Redirect if mobile
device

Redirects the user to a given URL if the User Agent comes from a mobile
device.

It contains the following property:

url: Enter the URL where the user must be redirected to if the User Agent
comes from a mobile device

4. Select the Preview to check your configuration changes.

5. Click Apply.

Add triggers to a widget

Triggers can be configured for a given widget. These triggers will be applied on the selected
widget only.

1. In Mashup Builder, select a page and then select its Design view.

2. From the Triggers pane, select Mashup Widget Trigger.
3. Choose a widget and drag the triggers that you want to apply to its drop zone:

Mashup Widget Triggers description

Mashup Widget Trigger Description

Asynchronous ajax
loading

Loads the widget asynchronously.

Conditional display Adds a conditional display to the widget, using a MEL expression
parameter.

Remove if facet is
empty

Hides a widget when the given facet is empty.

Remove if logged in Hides a widget when the user is logged in.

50 - Mashup

Add triggers to a feed

Mashup Widget Trigger Description

Remove if no entries Hides a widget when its sources contain no entries.

Remove if not logged
in

Hides a widget when the user is not logged in. It is also hidden, if security
is disabled or ill-configured.

Transform to Ajax links Transforms all widget links to Ajax links. This is useful when you want to
reload some widget components only, and NOT reload the whole page.

4. Click Save and then Apply your configuration changes.

Add triggers to a feed

Triggers can be configured for a given feed. These triggers will be applied on the selected feed
only.

Note: The Feed triggers that can be applied at the ‘feed level’ are the same as the ones that can
be applied at the ‘application level’.

1. In Mashup Builder, select a page and then select its Feeds view.

2. Choose a feed and drag the triggers that you want to apply to its drop zone.

3. Click Save and then Apply your configuration changes.

Configuring Data Storage for Collaborative Widgets

With collaborative widgets (Comments, Star Rating, etc.) you can enrich your document with
added data saved in the data storage.

Note: Collaborative widgets are available in Mashup Builder Premium only.

Storage in Mashup allows you to:

• Get arbitrary chunks of data (JSON strings, images, Java objects, etc.) attached to your
Mashup Builder application.

• Delete, replace and append metas and categories to Exalead CloudView documents.

• Store private data per user.

By default collaborative widgets only save and retrieve data from the data storage. They
manage their own data display and safeguard. They do not communicate with the index. This
default behavior guarantees that each action performed within the collaborative widgets will be
instantaneously propagated to all search pages.

Mashup - 51

Configure storage to index collaborative data

Optionally, you can choose to index storage data to improve your data model. You will then be
able to apply all index features on collaborative data (analysis, processing, search, refinement,
etc.). Every change made to the document will be notified to Exalead CloudView. Changes will
therefore be available after the next indexing action. The elapsed time between each indexing
action can be configured in the Administration Console.

Configure storage to index collaborative data

Storage Administration

Troubleshooting

Configure storage to index collaborative data

The following procedures describe how to configure your index to use data coming from the
storage.

It includes:

• the Exalead CloudView document cache has to be enabled on the document build group.

• the RepushFromCache setting must be set to true in StorageService.xml.

• the StorageServiceDocumentProcessor must be configured in the Analysis pipeline.

• the data of the collaborative widget should be mapped to metas.

Requirements

When you use a collaborative widget with the “DOCUMENT” scope, it uses the build group, the
source and the doc URI, to identify each document. These values are required and must be set to
be used for hit content.

1. In the Administration Console, go to Search Logics > Facets, expand the Source category.

2. Make sure that the Root property is set to Top/source. This source category is required to
retrieve the hit information used to create primary keys in the storage mechanism, so as to link
the collaborative widget to a document.

3. Make sure that the Use for hit content option is selected. Otherwise, your collaborative will
have no source on the Mashup Builder.

Enable the build group cache

1. In the Administration Console, go to Deployment > Build groups.

2. Select Document cache.

52 - Mashup

Configure storage to index collaborative data

Enable the RepushDocuments property

1. Go to your Exalead CloudView <DATADIR>/config/360 directory.

2. Open the StorageService.xml file.

3. Set the RepushDocuments property to true.

Configure the StorageServiceDocumentProcessor in the Analysis pipeline

1. In the Administration Console, go to Index > Data Processing.

2. Select your analysis pipeline, for example ap0.

The Document Processors tab displays.

3. From the Processor Types panel:

a. expand the Other node,

b. drag a Storage Service Document Processor to the list of Current Processors
(preferably near the top of the list).

4. Click the StorageServiceDocumentProcessor link and define the Instance property.

Usually the instance is sts0. You can check the instance name from the Roles menu, by
expanding the Storage Service role.

5. Click Save and then Apply your configuration changes.

Make data searchable

1. In Mashup Builder, check the meta name property of your collaborative widget.

For example, the Tags meta name for a Tags widget is set by default to tags[].

2. In the Administration Console, go to Data Model.
3. Click Add Property to add a property matching the meta name specified in the Mashup Builder

(see step 1). For example:

◦ Name: tags

◦ Data Type: Alphanum

◦ Semantic Type: text

◦ Field Type: Dedicated field only

4. Click Accept.

By default the property is searchable.

5. Select the Preview to check your configuration changes.

6. Click Apply.

Mashup - 53

Storage Administration

You should now be able to search on your meta in the Mashup Builder. For example, you can
search on your tag values by entering tags:MyTag

Index aggregated results

1. Make sure you followed the standard indexing workflow described in the previous procedures.

2. Go to your Exalead CloudView <DATADIR>/config/360/applications/<APPLICATION
NAME> directory.

3. Open the Storage.xml file.

4. Add as many StorageKey nodes containing Aggregate nodes as necessary. In the
following example, we want to index the COUNT and SUM aggregation values for the bagkey
StorageKey.
<Storage xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation=">

 <Indexing>

 <StorageKey name="bagKey[]">

 <Aggregate type="COUNT"/>

 <Aggregate type="SUM"/>

 </StorageKey>

 </Indexing>

</Storage>

5. Build your configuration:

a. Go to your Exalead CloudView <DATADIR>/bin/directory.

b. Launch the following command: buildgct.<sh|bat>

The StorageServiceDocumentProcessor will create the corresponding metas with aggregate
operations as suffixes. For our example: bagKey_count and bagKey_sum

Storage Administration

Back up the Storage SQLite database

1. Go to <DATADIR>/storageService/storage.db.sqlite

2. Back up the database.

Enhance the Storage performance

By default the storage works with an SQLite engine and is therefore limited in terms of concurrent
accesses, as each write action blocks the whole database; and scalability, when the number of
entries is really big.

However, you can configure its JDBC connection to work with compatible databases (SQL Server,
MySQL or Oracle) if you need the storage to be more scalable.

54 - Mashup

Troubleshooting

1. For more information, see "Creating Collaborative Widgets Using Storage Service" in the
Mashup Programmer Guide .

Set up a storage linked to a replicated MySQL server

The storage service uses a standard JDBC configuration. A JDBC URL can therefore be
configured to manage failover.

For example, with MySQL, we could have:

jdbc:mysql://[host][,failoverhost...][:port]/[database] » ?propertyName1[=propertyValue1][&propertyName2]
[=propertyValue2]...

However, this MySQL failover configuration does not guarantee real High Availability, as database
queries will be read-only queries, preventing users to enrich documents with storage information
(for example, saving the preferences of the advanced table widget, comments, star rating, saved
queries, etc.).

See the MySQL documentation: http://dev.mysql.com/doc/refman/5.5/en/
connector-j-reference-configuration-properties.html

Troubleshooting

Repush is not launched after document modifications

1. Enable the cache before indexing. Note that dumping the storage database will not trigger an
automatic repush from cache.

I can’t search on my collaborative data

A meta corresponding to the collaborative data must be mapped to a "searchable" field or facet in
your data model.

1. Check that the collaborative widget data has been properly indexed.

To do so, you can use a debug processor as explained in Troubleshoot all issues related to the
storage service behavior.

Apply actions fail if the search server and the related storage service are not on the
same host

Storage can't be used from a remote search server due to SQLite limitations.

It is yet fully compatible with MySQL and Oracle.

Troubleshoot all issues related to the storage service behavior

1. In the Administration Console, go to Logs.

Mashup - 55

http://dev.mysql.com/doc/refman/5.5/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.5/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.5/en/connector-j-reference-configuration-properties.html

Creating Composite Widgets

2. Set the Default logging level to Debug and check the storage service's logs.

3. Make sure that the repushFromCache request is issued without problems.

Important: If you get an error saying invalid source:", it means that the source is empty,
that is to say that there is no source category to display. Go to Search Logics > Facets,
expand the Source category and set the Root property to Top/source

Troubleshoot indexing issues

1. In the Administration Console>, go to Index > Data Processing > pipeline name > Document
Processors.

2. Add a Debug Processor to the bottom of your analysis pipeline.

3. Make sure that values are indexed.

a. Go to Logs.

b. From the Processes select box, select analyzer-<BUILD GROUP NAME>.

The Debug Processor will write explicit logs.

Creating Composite Widgets

When you have very specific needs, you can create your own Composite Widgets with the
standard widget library. Your composite widgets will be added to the Widgets > Composite
Widgets group.

Inside your composite widgets, you can also create your own widget properties and therefore
configure your custom widget from A to Z.

It is also possible to create a composite widget out of:

• a page and reuse that page as a widget in other pages,

• an existing widget.

Note: A composite widget is actually a plugin. Once created, you can export and import it like
any other plugin.

Create composite widgets from scratch

Create custom widget properties

Create a composite from a page or widget

Delete a composite widget

56 - Mashup

Create composite widgets from scratch

Create composite widgets from scratch

This section describes two composite widget use cases to:

• Create a custom form using a set of Label and Input widgets.

• Link addresses to Google Maps.

These use cases show two of the many possibilities offered by composite widgets.

Create a custom form

The following use case describes how to proceed if you want to create an HTML form that has an
impact on the page results.

Note: For another example of form creation with widget interactions, see Specify widget
interactions.

1. In Mashup Builder, select a page, for example /search, and select the Design view.

2. In the Widgets panel header, click the + sign.

3. In the Widgets properties panel:

a. Fill in the Name field, for example Company Form.

b. Enter a description (optional).

c. For Feeds, define how the widget supports feeds by selecting a cardinality.

d. For Widgets, define how this widget supports sub-widgets by selecting a cardinality.

e. Select the platforms for which the composite widget will be available, WEB and/or MOBILE,
for example WEB.

f. For Enclosing tag, select the type of enclosing tag used by the widget. In our example, we
must select form to create a new form.

g. For Action, select the action to launch when the form is submitted.

h. For Method, select how to send the data once the form is submitted. For example, select
GET to attach the form data onto the page URL.

Mashup - 57

Create composite widgets from scratch

4. From the Page Layout panel, organize the layout. For example, two columns and five rows.

5. From the Widgets panel, drag and drop widgets to assemble your composite widget.

a. For the first four rows, add a set of Label and Input widgets in the cells and configure them
as described in the following table.

Row # Label Widget Input Widget

1 Text: Company Name: company, Type: text

2 Text: Login Name: username, Type: text

3 Text: Start Date Name: startdate, Type: datepicker

4 Text: End Date Name: enddate, Type: datepicker

b. Drag a Button widget in the last row of the form and set its properties as follows: Button
label: Send, Type: submit.

Composite widget form example

58 - Mashup

Create composite widgets from scratch

6. Click Save.

You then need to add your composite widget on the Design view of your application page, as
described in Add and configure your form composite widget on a page .

Add and configure your form composite widget on a page

1. Once your composite widget is saved, close the Widget properties panel to return to the main
Design view.

2. Select the page on which you want to add your composite widget.

3. From the Widgets > Composite Widgets group, select your Company Form composite
widget, and drag and drop it on the canvas.

4. From its properties panel, select the page that will display the search results of your form from
the Action property.

5. Select the Feeds view and edit the feed called by the composite widget to define the behavior
of the query so as to search after the start date and before the end date delimited by the two
datepickers.

Mashup - 59

Create composite widgets from scratch

a. Select the feed called by the widget and expand the Advanced parameters section.

b. In the Query restrictions field, restrict the query to use the span of time between your
startdate and enddate datepickers: after:${page.params["startdate"]}
before:${page.params["enddate"]}

6. From the Page parameters panel create two page parameters for startdate and enddate
and choose their default values. The time format of these dates is YYYY/MM/dd.

7. Select the Preview to check your configuration changes.

You should now see the composite widget on your Mashup Builder page, and be able to
complete the form. See Figure 12.

You can use the datepickers to filter the search results.

8. Click Apply.

Form composite widget to refine the page results

Link addresses to static Google Maps

The following use case describes how to proceed if you want to link postal addresses to static
Google Maps in a result list. Each address will be displayed as both text and image, as shown in .

60 - Mashup

Create composite widgets from scratch

Create a composite widget linking addresses to static images

This example requires that an address meta is defined in your data model.

1. In Mashup Builder, select a page, for example /search, and select the Design view.

2. In the Widgets panel header, click the + sign.

3. In the Widgets properties panel:

a. Fill in the Name field, for example Static Google Map.

b. Enter a description (optional).

c. For Feeds, define how the widget supports feeds by selecting a cardinality, for example
ONE.

d. Select the platforms for which the composite widget will be available, for example WEB.

e. >For Enclosing tag, select the type of enclosing tag used by the widget, for example div.

4. Click Add widget property and create the three following properties in the General tab.

Property Options to configure

Address Id: address

Name: Address

Arity: ONE

Description: Meta(s) containing the address to position the
marker

Is evaluated

Check functions: isEmpty()

Context menu functions: Metas()

Display functions: SetType('code', 'js')

Height Id: height

Name: Heigth

Arity: ONE

Description: map height (in pixels but without px extension)

Check functions: isInteger()

Display functions: SetType('number')

Width Id: width

Mashup - 61

Create composite widgets from scratch

Property Options to configure

Name: Width

Arity: ONE

Description: map width (in pixels but without px extension)

Check functions: isInteger()

Display functions: SetType('number')

5. From the Widgets panel, drag and drop an HTML widget.

6. In the HTML code field, enter the following code:
<img width="%{option.width}" height="%{option.height}"

src="http://maps.googleapis.com/maps/api/staticmap?center=%{option.address}&zoom=14&size=%

{option.width}x%{option.height}

&sensor=false&markers=color:blue%7Csize:small%7C%{option.address}" />

This code contains:

◦ Variables made with the custom properties created in step 4 (option.width,
option.height, option.address). They are used to configure the width and height of
the image, and the address display in the widget.

◦ A call to the Google Maps api.

◦ A command to center the address in the static map.

◦ A command to add a blue marker to flag the address in the static map.

7. Click Save.

You then need to add your composite widget on the Design view of your application page, as
described in Add and configure your form composite widget on a page .

Add and configure the static Google Map composite widget

We are now going to add the composite widget within the Result List widget to get one image per
result. If you do not nest the composite widget within the Result List widget, you will get an image
for the first result only.

1. Once your composite widget is saved, close the Widget properties panel to return to the main
Design view.

2. Select the page on which you want to add your composite widget, for example search.

3. From the Widgets > Composite Widgets group, select your composite widget Static Google
Map, and drag and drop it within the Result List widget.

62 - Mashup

Create composite widgets from scratch

4. Click the widget header to open its properties panel, and for the Address property, enter:
${entry.metas['address']} to link the widget to the address meta of the Result List
widget.

5. Select the Preview to check your configuration changes.

You should now see the composite widget as it will be displayed on your Mashup Builder page.
Each result in the result list displays the postal address as test and the location of this address
on a static Google Map.

Postal address linked to static Google Map

Mashup - 63

Create custom widget properties

6. Click Apply.

Create custom widget properties

While creating/editing a composite widget, you can also create the properties and the tabs that will
be available in the widget’s configuration panel when this widget is added to a page.

To do so, you can click the Add widget property button and then click:

• Create property to create new properties, as described in the following procedures.

• Create new property group to create a new tab in the panel.

Create a custom widget property

1. In the Widget properties panel, click the Add widget property button to create a custom
widget property.

The Add widget property panel opens at the bottom of the screen.

64 - Mashup

Create custom widget properties

2. Click Create property and set the options as described in the following table.

Add widget property panel description

Option Description

ID Enter the ID of the widget property.

Name Enter the name of the widget property.

Arity Specify the arity of the widget property. The arity is the number of
arguments that the function takes.

• ONE: For unary operator

• ZERO_OR_ONE: For binary operator

Description Enter a description for the widget property.

Placeholder Specify the placeholder to display to help the user completing the property
field. The placeholder disappears as soon as you enter text.

Possible values Define the property’s values:

If one value is declared, it will behave as a default value.

If several values are declared, a selection box will be displayed.

Is evaluated Choose whether the widget property will be evaluated and have MEL
expressions or not.

Is xml escaped Choose whether the widget property results will be XML escaped or not,
that is to say whether ASCII characters like the angle brackets (<>) will be
encoded in XML.

Is url encoded Choose whether the widget property results will be URL encoded or not.

URL encoding is normally performed to convert data passed via HTML
forms, because such data may contain special characters which are not
allowed on a valid URL format.

Check functions Choose an error checking function to validate user input:

• isInteger: Checks that the value is an integer and displays an error
message if not.

Mashup - 65

Create custom widget properties

Option Description

• isAlphanum: Checks that the value is a chain of alphanumerical
characters and displays an error message if not.

• isPageName: Checks that the value is a page name and displays an
error message if not.

• isEmpty: Checks that the value is NOT empty and displays an error
message if it is the case.

Context menu
functions

Specify the types of functions that will be available in the Value tab of the
contextual menu displayed on the left of the widget properties panel:

• Aggregations(): Gets all facet aggregations, for example, count, score
etc.

• DateFacets(): Gets all Date facets from the feeds used by the widget.

• Eval(): Gets all possibilities evaluated by the widget. The possible
attributes are: facet, category and meta.

• Facets(): Gets all facets from the feeds used by the widget.

• Feeds(): Gets all the feeds used by the widget.

• Fields(): Gets all the virtual fields, numerical fields and RAM-based
fields from the feeds used by the widget.

• GeoFacets(): Gets only Geographical facets from the feeds used by
the widget.

• Hierarchical2DFacets(): Gets only Hierarchical2D facets from the
feeds used by the widget.

• Metas(): Gets all metas from the feeds used by the widget.

• MultiDimensionFacets(): Gets Multi-dimension facets from the feeds
used by the widget.

• Normal facets(): Gets only Category facets from the feeds used by the
widget.

• Numerical facets(): Gets Numerical facets from the feeds used by the
widget.

• appendOnChange(', '): A click of the user on a dynamic list, will
append the given string after the current option value.

• emptyOnChange(): A click of the user on a dynamic list, will remove
the current option value before setting the clicked value.

66 - Mashup

Create custom widget properties

Option Description

• PageParameters(): Gets the page parameters names

• Pages(): Gets the names of available pages.

• Sorts(): Gets all the feed elements that can be sorted.

• WUIDS(): Gets the list of this page Widget’s unique IDs.

Display functions Specify how the property will be displayed. For example, you can force the
property to act as a select box, force it to act as an input (default is Text
area), force it to act as a password input, etc.

• Code Editor: Transforms the property's input field into a code editor

• Number: Transforms the property's input field into a number input field.

• Password: Transforms the property's input field into a password input
field (encrypted).

• Radio: Transforms the property's input field into a radio button.

• SetHeight: Sets the minimum height (in terms of lines) of the option's
input field.

• TextEditor: Transforms the property’s input field into a rich text editor.

• TextArea: Transforms the property's input field into a text area field.

• ToggleDisplay: Shows/hides properties conditionally depending on the
selected property value. For example, value1 of PropertyA will display
PropertyB and PropertyD, value2 will display PropertyB and PropertyC.
You need to set:

◦ the value to match (using the valueToMatch and ifEquals
attributes)

◦ the options to hide (in hideOptions)

◦ the options to show (in showOptions).

3. Click Save.

Use case: Create an Action widget property to reach pages in a Form

To give a simple example of widget property creation, we are going to create an Action property
that will be available in the contextual menu to select an application page.

1. Click the Add widget property button to create a custom widget property.

2. Click Create property and configure the widget property as follows:

Mashup - 67

Create custom widget properties

a. For ID, enter action

b. For Name, enter Action

c. For Check functions, select isEmpty() to check that the value is NOT empty.

d. For Context menu functions, select Pages().

3. Now if we go back to the use case described in Create a custom form, for Widget properties >
Action we can select %{option.action} to use the newly created widget property.

4. Go to the page where the composite widget is added and click its header.

The widget properties panel opens and you can now see the Action property.

5. Click in the Action property field.

The contextual menu displays the application pages that can be used as destination pages
when the form is submitted.

68 - Mashup

Create a composite from a page or widget

6. Select the destination page you want to link for your custom form, for example formanswers.

Create a composite from a page or widget

You are not forced to create a composite widget from scratch. You can also create a composite
widget from a page and reuse that page as a composite widget in other pages, or from an existing
widget and reuse it as a composite widget.

Create a composite widget from a page

1. In Mashup Builder, select a page, for example /search, and select the Design view.

2. From the page editing tools, select Use for composite widget.
3. In the Widgets properties panel:

a. Fill in the Name field, for example MyWidget.
b. Enter a description (optional).

c. For Feeds, define how the widget supports feeds by selecting a cardinality, for example
ONE.

d. Select the platforms for which the composite widget will be available, for example WEB.

e. For Enclosing tag, select the type of enclosing tag used by the widget, for example div.

4. If necessary, add widget properties to your composite widget.

5. Click Save.

Create a composite widget from a widget

1. In Mashup Builder, select a page, for example /search, and select the Design view.

2. From the widget header, click the edit widget properties icon, and choose Use for
Composite Widget.

3. In the Widgets properties panel:

a. Fill in the Name field, for example MyWidget.
b. Enter a description (optional).

c. For Feeds, define how the widget supports feeds by selecting a cardinality, for example
ONE.

d. Select the platforms for which the composite widget will be available, for example WEB.

e. For Enclosing tag, select the type of enclosing tag used by the widget, for example div.

4. If necessary, add widget properties to your composite widget.

5. Click Save.

Mashup - 69

Delete a composite widget

Delete a composite widget

As previously stated a composite widget is a plugin. To delete a composite it widget you need to
remove it from the list of plugins.

1. In Mashup Builder, click the Application button at the top left of the screen.

2. In the Manage plugins panel, select Plugins.

3. From the list of plugins, click the delete action at the right of the screen for the composite
widget you want to delete.

The composite widget is removed from the list and from the Widgets panel.

Modifying the Search Results Display

You can modify the display of results on the search page in many ways. For example, you can
filter the metas displayed in the result list, remove thumbnails, and link hits to a new Details page.

Filter metas in the result list

1. In Mashup Builder, go to the search page and select the Design view.

2. Click the header of the Result List widget.

3. On the widget properties panel (at the bottom of the screen), go to the Hit metas tab.

4. Set Meta filtering method to Exclude.

5. Click inside Meta list. A list of available metas displays in the Values contextual menu on the
left. Select the metas to exclude, separating them with commas.

6. Select the Preview to check your configuration changes.

7. Click Apply.

Set the facet order

1. In Mashup Builder, go to the search page and select the Design view.

2. Click the header of the Standard Facets widget.

3. On the widget properties panel (at the bottom of the screen), set Facet root list mode to
Include.

4. Click inside Facets list.

A list of available facets displays in the Values contextual menu on the left.

5. Select the facets to include, separating them with commas.

The facet order in this field corresponds to the facet order in the UI display.

70 - Mashup

Modify how search results display

6. Select the Preview to check your configuration changes.

7. Click Apply.

Modify how search results display

You can change how the search hits display in the Mashup Builder. By default, the title that
displays for each result shows is based on the metas title and url, but other metas can be
used instead.

For more information about this, see "Modify the display of hit titles" in the CloudView Getting
Started Guide.

Display results in a new page

This example explains how to create a ‘details’ page providing more information for each hit. To
save time, we will create it by copying another page.

1. Go to the /search page, and from the page editing tools, select Copy.

2. At the prompt, enter details as the new page name.

3. On the new details page, select the Feeds view.

4. Drag a CloudView Search feed on the page and call it cloudview.

5. For Query, enter rawurl:${page.params["q"]}

This is to make the query fetch the document that matches the returned URL, as we want to
display the details of each hit in the new account page.

6. Select the Design view to customize the display of the details page. For example:

◦ You can choose to keep only the widgets Image, Spacer, and Result List on this page.

◦ You can select the metas to display, that is to say the information given by your details
page, by going to the Hit metas tab and editing the list of metas to include.

7. Go back to the search page, and click the header of the Result List widget.

8. Configure the hit URL to open the /details page. For Hit URL, enter details?q=
${entry.metas["url"]}

9. Select the Preview to check your configuration changes.

10. Click Apply.

Customize icons in the search results

Default icons used in the search result page are stored in <DATADIR>/webapps/360-edm-
mashup-ui/resources/images/icons. You may need to change these icons.

Mashup - 71

Display hits depending on meta values

1. Add your .GIF file to the icons folder in <DATADIR>/webapps/360-edm-mashup-ui/
resources/images/icons.

2. Edit the mapping-entry-icon.properties file located in <DATADIR>/webapps/360-
edm-mashup-ui/WEB-INF/config and specify the icon name.

Display hits depending on meta values

The search feed can return different kinds of values for a given meta, and you may want to display
these values with specific look and feels in the search hits.

For example, you can have several types of documents - for example an MS Word document, an
intranet page, etc. - and you want to associate each type to a specific look and feel in the search
hits. In this case, you can customize the display of hits by types conditionally, by creating your own
JSP files and referencing them as described in the following procedures.

Note: To customize the look-and-feel, the JSP files can either include specific HTML codes or
reference CSS files.

Conditionally display hits with the Result List widget

1. In Mashup Builder, go to the /search page and select the Design view.

2. Click the header of the Result List widget.

3. On the widget properties panel, go to the Hit templates tab.

4. In the Hit JSP template field:

a. Enter the relative or the absolute path to the directory containing your custom JSP.

b. Use a dynamic hit meta in your path to add a condition on the document type.

For example: mytemplate/${entry.metas["type"]}.jsp

c. The dynamic value will apply a specific JSP template for each type of document that has
its own dedicated JSP. The default template is applied otherwise. For example, let’s say
that you have created the following JSP templates: filesystem.jsp, intranet.jsp,
mail.jsp, etc.

5. Select the Preview to check your configuration changes.

6. Click Apply.

Conditionally display hits with the For Each Hit widget

1. In Mashup Builder, go to the /search page and select the Design view.

72 - Mashup

Using the Google Maps Widget

2. In the Widgets panel, expand the Miscellaneous category and drag a For Each Hit widget on
the workspace.

3. In the Widgets panel, expand the HTML category, and drag the HTML widget within the For
Each Hit widget.

4. On the widget properties panel, in the Advanced > JSP file path field:

a. Enter the absolute path to the directory containing your custom JSPs.

b. To add a condition on the document type, use a dynamic hit meta in the path. For example:
/WEB-INF/jsp/${entry.metas["type"]}.jsp

c. The dynamic value will apply a specific JSP template for each type of document that has its
own dedicated JSP. The default template is applied otherwise.

For example, let’s say that you have created the following JSP templates:
filesystem.jsp, intranet.jsp, mail.jsp, etc.

5. Select the Preview to check your configuration changes.

6. Click Apply.

Using the Google Maps Widget

You can configure your Mashup Builder to display a Google Maps widget for a variety of use
cases.

Textual address Vs GPS coordinates

Restrict the search results to a Geographical Area

Mashup - 73

Textual address Vs GPS coordinates

Link the search results list to a Google map

Textual address Vs GPS coordinates

In order to use Google Maps widget you must provide either:

• the textual address provided from hit meta such as city and country, or

• the GPS coordinates via a GPS point meta; this data must be provided from one of your
sources and defined in the data model.

Note: If you a need a cartographic widget, you can also use the Maps widget which gives
access to mapquest/openstreetmap OR to BING services.

Important: You must pay attention to license issues when using cartographic services! For
Google and Bing, you can use the premium versions by defining your API key in the widget
configuration. If no key is specified, you will use the light versions of these services.

Why use textual addresses

• To easily configure the Google Maps widget using the hit meta. This uses Google Maps API for
the geocoding therefore, you don’t have to supply the GPS coordinates.

• To link the search results to pinpoint on a Google Maps widget. See Link the search results list
to a Google map.

Why use GPS coordinates

• To perform geographical search (both polygon and circle selection), see Restrict the search
results to a Geographical Area.

• To perform calculations such as distance (results in proximity) used for the search results in the
Mashup UI.

Restrict the search results to a Geographical Area

You can configure your Mashup Builder to display a Google Maps widget on which the user
will be able to draw a polygon or a circle and then launch a standard search on the specified
geographical area, for example, a search on the restaurants of this area.

To use the Google Maps widget for geosearch you must provide the GPS coordinates via a GPS
point meta; this data must be provided from one of your sources and defined in the data model.

The workflow to implement geosearch in the Mashup Builder is to:

• Prepare your data model.

74 - Mashup

Restrict the search results to a Geographical Area

• Restrict search results to a geographical area.

Prepare your data model for geographical search

To perform geographical search, you must provide the GPS coordinates via a GPS point meta.
This data must be provided from one of your sources and defined in the data model as follows.
Therefore, this procedure assumes that the coordinates data has already been indexed.

1. In the Administration Console, select Data Model > Classes.

2. Select the property from the data model that will supply GPS coordinates. For example,
location.

3. For Data type, select GPS point.
4. Click Apply.

The index field document_location can now be referenced in the Mashup Builder as the
geographical property to search with.

Link the Standard Search Form and the Google Maps widgets

1. In Mashup Builder, select the Feeds view, add a parameter in Page parameters called
geosearch that will be used for the geographic restriction.

2. In the Exalead CloudView Search feed, expand Advanced parameters and add a custom
parameter named eq.geo_restriction and the geosearch page parameter for the value
as shown below.

3. In the Design view, drag a Vizualization > Maps > Google Maps widget on the index page.

Mashup - 75

Restrict the search results to a Geographical Area

4. In the widget properties General panel, select the Enable geo form editing.

5. Click the header of the Standard Search Form widget to display its widget properties panel.

6. Select the Interactions tab and configure the exa.io.GeoInterface property to restrict the
search on a specific geographical area.

a. For Linked widget, select your Google Maps widget from the contextual menu on the left.

b. For Input parameter for geoData, enter the Page parameter you created in step 2, for
example geosearch.

c. For Meta name to search with, enter the index field name of the geographical property to
search with. The format is <class>_<property>, for example, document_location.
See Prepare your data model for geographical search.

7. Select the Preview to check your configuration changes.

The Mashup Builder should display a Google Maps widget on which you can draw a polygon or
a circle, and a standard search form to search for items in this area. Example of geographical
search on Google Maps.

8. Click Apply.

76 - Mashup

Link the search results list to a Google map

Link the search results list to a Google map

You can also link up the search results lists to pinpoints on the Google Maps widget using hit meta
rather than GPS coordinates. For example, you can view the search results for restaurants and
their associated pinpoint location on Google Maps.

1. Go to the /search page and select the Design view.

2. Drag a Vizualization > Maps > Google Maps widget on the page above the Standard Facets
widget.

3. Click on the Google Maps widget header to display its properties.

4. Select the Based on Entries tab and then select the hit meta for the restaurant address in
Address (1), for example, ${entry.metas['address']}

Note: Alternatively, the Google Maps widget can reference an index field that contains GPS
points for the Location property.

5. Click on the Result List widget header to display its properties.

6. Select the Interactions tab and configure the exa.io.HitDecorationInterface property to add a
gmap pinpoint next to the search result title. The aim is to link the search result pinpoint with a
corresponding pinpoint on the gmap.

a. For Linked widget, select your Google Maps widget from the contextual menu on the left.

b. For Css path, select Default template > Header left from the contextual menu.

c. For Decoration position, choose whether to place the pinpoint before or after the search
result title, for our example, prepend.

7. Select the Preview to check your configuration changes.

The search page of the Mashup Builder should display a list of results with pinpoints before
each result title. Hovering on a search result pinpoint should refresh the Google Maps view to
display the related entry.

Mashup - 77

Adding Trusted Queries

8. Click Apply.

Adding Trusted Queries

Trusted Queries will guide your end-users through a set of structured suggestions based on your
data model classes.

For our example, we’ll set this up for the file_extension category facet in the Administration
Console. Then, in the Mashup Builder, we will add the Trusted Queries widget on the home page
(or /index page) of our Mashup Builder application to enable trusted queries for the category
facet(s) defined in the Data model.

Note: This widget is only available in Mashup Builder Premium.

Configure Category facets for trusted queries

1. In the Administration Console, select Data Model from the menu bar.

2. On the Classes tab, from the Properties for the document class pane, select a property set
as Category Facet. For example, file_extension.

3. Expand the Advanced faceting options, and select Trusted queries support.
4. Repeat steps 2 and 3 for the other category facets on which you want to enable trusted

queries.

5. In Search Logics > Query Language, make sure that datamodel_class_hierar-
chy(class_hierarchy) and trustedqueries are in the list of prefix handlers.

78 - Mashup

Add trusted queries in Mashup Builder

6. Click Apply.

Add trusted queries in Mashup Builder

1. In Mashup Builder, go to the index page and select the Feeds view.

2. Drag and drop a CloudView Search feed.

a. Give it a name, for example, cloudview.

b. For the Query property, enter a query, for example, #all.

3. Select the Design view.

4. Delete the Standard Search Form widget.

5. Add a new Trusted Queries search form widget.

a. In the Widgets panel, click the Search Forms widget category to expand it.

b. Drag the Trusted Queries widget onto your page.

The widget properties panel opens.

6. In the General tab:

a. Specify the feed(s) that should be refined when the user query is submitted, for example,
cloudview.

b. Configure the Action property to submit on the search page.

7. In the Search API tab, for Search Logic, specify the search logic to use. If no search logic is
defined, the default one will be used.

Note: The trusted query widget uses the Search API directly.

8. Select the Preview and click in the Search field.

The Trusted Queries search form displays a list of document types to guide you through the
content.

9. Click Apply.

Mashup - 79

Customizing the Look and Feel

For example, if your feed query includes a date specification like ${page.params["q"]}
after: ${page.params["date"]}, you can test it with a date value in the Preview page to
see the feed behavior.

Customizing the Look and Feel

Mashup Builder gives you the possibility of customizing the look and feel of your search
applications very precisely. You can edit the default look and feel for the whole application and/or
customize specific pages only.

Modify the logo

By default, Mashup Builder is set up to use the Exalead logo. You can easily install your own logo
and switch to your logo to customize your application.

1. Copy your logo into <DATADIR>/webapps/360-edm-mashup-ui/resources/logo/
images.

2. Open Mashup Builder: http://<HOSTNAME>:<BASEPORT+1>/mashup-builder.

3. Select the /index page, and then select the Design view.

4. Click the header of the Image widget.

5. On the widget properties panel at the bottom of the page, modify the Image URL path so it
points to your logo file.

6. Go to the /search page and repeat the previous two steps.

7. Select the Preview to check your configuration changes.

80 - Mashup

Switch to another theme

Note: The placeholder image inside the image widget does not change.

8. Click Apply.

Switch to another theme

By default, Mashup Builder is set up to use the standard theme_enterprise theme. You can easily
install your own themes and switch to another theme to customize your application.

1. You must customize your own theme in a theme.less file.

2. Add your custom theme in a new directory (for example theme_MyCompany) under
<DATADIR>/webapps/360-edm-mashup-ui/resources/themes/

3. Repeat steps 1 and 2 to add more custom themes.

4. In Mashup Builder, click the Application button at the top left of the screen.

5. In Developer Area, click Reload components.

6. In Application properties, select another Theme, for example, theme_MyCompany.

7. Select the Preview to check your configuration changes.

8. Click Apply.

Customize the look and feel for a whole application

You may want to go further than applying themes to customize the look and feel of your Mashup
Builder application. This can be performed either by referencing CSS and JavaScript files, or by
entering inlined CSS or JavaScript code.

1. In Mashup Builder, click the Application button at the top left of the screen.

2. From the Styles menu, specify:

◦ Style files: Enter the path(s) of the CSS files that you want to use on your application.

◦ Style inlined: Enter the inlined CSS code that you want to use on your application (to use
CSS directly within your HTML code).

3. From the JavaScript menu, specify:

◦ JavaScript files: Enter the path(s) of the JavaScript files that you want to use on your
application.

◦ JavaScript inlined: Enter the inlined JavaScript code that you want to use on your
application (to use JavaScript directly within your HTML code).

4. Click Apply.

Mashup - 81

Customize the look and feel of a page

Customize the look and feel of a page

You may want to have a different look and feel for one or several pages of your application,
and override the theme that is applied all throughout, see Switch to another theme. This can be
performed by customizing the CSS of the page(s).

1. In Mashup Builder, select the page you want to customize, for example /search.

2. Select Edit page settings at the right of the screen.

3. From the General section, you can customize the page title with variables and meta headers.

4. From the Resources section, specify:

◦ Style files: Enter the path(s) of the CSS files that you want to use on your page.

◦ Styles inlined: Enter the inlined CSS code that you want to use on your page (to use CSS
directly within your HTML code).

5. From the Style section, specify:

◦ CSS ‘id=’ of the body page: The page unique id that will be used in the CSS.

◦ CSS ‘class=’ of the body page: The page class name that will be used in the CSS.

6. Select the Preview to check your configuration changes.

7. Click Apply.

Add custom code to a page

You can change the look and feel or the behavior of a page by specifying custom code.

1. In Mashup Builder, select the page you want to customize, for example /search.

2. Select the Code view and in:

◦ Styles: Enter the inlined CSS code that you want to use on the page.

◦ JavaScript: Enter the JavaScript code that you want to use on the page.

3. Select the Preview to check your configuration changes.

4. Click Apply.

Customize the layout of a widget with a CSS call

You can change the standard style of widgets by customizing their CSS

1. In Mashup Builder, select the page containing the widget you want to customize, for example /
search, and select the Design view.

2. Click the header of the widget, for example Result List.

82 - Mashup

Customize the layout of a widget with JavaScript

3. On the widget properties panel, select the CSS tab and specify the following:

◦ Widget CSS ‘id=’: Specify the widget’s unique id that will be used in the CSS.

◦ Widget CSS ‘class=’: Specify the widget’s class name that will be used in the CSS.

4. Select the Preview to check your configuration changes.

5. Click Apply.

Customize the layout of a widget with JavaScript

For several chart widgets, you can also set the look and feel from the JavaScript tab by adding
custom JavaScript code.

Note: Most chart widgets come from the highcharts and highstock libraries, we recommend
reading their documentation on http://www.highcharts.com/ for advanced configuration
in the Javascript tab of the chart widget properties.

1. For example, if you want to customize the colors used by a pie chart widget:

◦ Go to the JavaScript tab.

◦ Uncomment the colors line by removing /* and */

◦ Specify your favorite colors using their HTML hexadecimal codes. For example: colors:
['#058DC7', '#50B432', '#ED561B', '#FF9900', '#CC33CC', '#660099',

'#FF00FF']

2. Select the Preview to check your configuration changes.

3. Click Apply.

Edit the layout of widgets within a widget container

For several widgets acting as containers (Tab, Table widgets), you can configure the layout of sub-
widgets by adding or merging cells with the cell designer, resize the width of cells, etc.

1. For example, add two charts within a Tab container widget (the Tab widget must be in a Tabs
Container widget).

2. Click the Edit widget properties icon and select Edit widget layout.
3. Hover your cursor over the cells (the sub-widgets) to display the cell designer, or between two

cells to modify the width of the cells.

In this example, the width of the Stacked Column Chart widget has been increased to use 70%
of the Tab’s width

Mashup - 83

http://www.highcharts.com/
http://www.highcharts.com/
http://www.highcharts.com/

Edit the layout of widgets within a widget container

4. Select the Preview to check your configuration changes.

5. Click Apply.

84 - Mashup

Managing Applications

Managing Applications

Mashup Builder lets you create and manage one or several search applications in a single
Exalead CloudView installation.

By default, the Mashup Builder menu lets you work on a default application presenting a standard
configuration, the Index and Search pages being organized in a very simple way. You can
customize this template and give it a more elaborate display.

You can also create new application instances using predefined templates, that is to say,
template_web for web applications and template_mobile for mobile applications (with Mashup
Builder Premium only). These new applications will actually have different entry points or context
paths in your Exalead CloudView installation.

This section describes how to manage applications within Mashup Builder

Creating New Applications

Managing Custom Components

Adding Security to Your Application

Enabling the Reporting Services

Enhancing Application Response Time with Gzip Compression

Clearing Application or Widget Storage

Deleting an Application

Troubleshooting your application

Creating New Applications

With both Mashup Builder and Mashup Builder Premium, you can create several web applications.

Create a new application

The creation of mobile applications is possible with Mashup Builder Premium only.

1. In Mashup Builder, select Create application from the top menu bar.

Mashup - 85

Select the application to edit

2. In the Create a New Application dialog box:

a. Enter an application name, for example myapp

b. Select a mashup base template from the pull-down menu: template_web,
template_mobile (with Mashup Builder Premium only), or any application already created.

c. Select the host on which you want to deploy the application.

d. Click OK.

The new application is added to the top menu bar.

Note: The Mashup API and Mashup UI roles used by the host to manage applications, are
defined in the Administration Console (in Deploy > Roles).

Select the application to edit

1. If there are more than one application, you can select the application you want to edit by
clicking the application menu in the menu bar.

2. A list of available Applications displays, and you can click one of the Edit > “application
name” > application menu item.

Deploy an application to another Exalead CloudView instance

1. For details on deploying an application to another Exalead CloudView instance, see "Deploying
Applications on Another Instance" in the Exalead CloudView Administration Guide.

86 - Mashup

Managing Custom Components

Managing Custom Components

Mashup Builder Premium gives you the possibility of adding plugins for feeds, widgets and
triggers. You can therefore install and deploy custom components on your applications.

Install plugins

Import custom components

Use plugin controllers

Export widget

Install plugins

The following procedures explain how to install and manage a plugin in your application. It is
basically a .zip file with custom code for a feed, widget, or trigger, that must be imported within
Mashup Builder.

Install a plugin

1. In Mashup Builder, select Application from the top left menu bar.

2. Select Manage components > Plugins.

3. Click Upload plugin.

4. From the Upload Plugin dialog box, click Browse and select the plugin zip file.

The plugin is added to the list of plugins in the Installed plugins pane.

Uninstall a plugin

1. In Mashup Builder, select Application from the top left menu bar.

2. Select Manage components > Plugins.

3. Click the delete icon corresponding to the plugin to uninstall.

Uninstall a plugin manually

This procedure describes how to uninstall a plugin manually and cleanup all its references. This
can be useful if a plugin breaks the search server or the gateway. In the following examples, the
plugin to uninstall is called MyPlugin1.

1. Go to your <DATADIR>/gct/registeredPlugins/ directory and remove all references of
MyPlugin1.
gct/registeredPlugins/

|-- default|

Mashup - 87

Import custom components

 |-- 360-administration-service|

 | |-- MyPlugin1.cvplugin.properties|

 |-- 360-edm-mashup-ui.mu0|

 | `-- MyPlugin1.cvplugin.properties

2. Go to your <DATADIR>/extrajava/ directory and remove all its references of MyPlugin1.
extrajava/

|-- 360-plugins

| `-- applications

| `-- default

| `-- MyPlugin1

Synchronize the plugins with another application

The following procedure details how to synchronize the plugins of a given application with another
application. This action compares the plugins of your current application with the plugins of a
source application. It then adds or deletes plugins on your current application so as to get exactly
the same as those of the source application.

1. In Mashup Builder, select Application from the top left menu bar.

2. Select Manage components > Plugins.

3. Click Synchronize plugins.

A Synchronize plugins dialog box opens.

4. Select the source application from the drop-down list.

5. Click Continue.

Note: If you synchronize a plugin that already exists on the current application (a plugin with
the same name), an error message will be displayed.

Import custom components

You can import custom components for the:

• MashupAPI: feeds, triggers, etc., from <DATADIR>/javabin/

• MashupUI: triggers, security providers, etc., from <DATADIR>/webapps/360-edm-mashup-
ui/WEB-INF/lib

1. In Mashup Builder, select Application from the top left menu bar.

2. Select Manage component > Register Components.

3. Click Add new custom component and enter the full path of the custom class you want to
import.

4. Click Save and apply the configuration.

88 - Mashup

Use plugin controllers

Note: If you change the code of your registered components, do not forget to save, apply
and restart the search servers to get your components correctly updated. The Restart
search server processes option is accessible when you click Developer area > Reload
components.

Use plugin controllers

Mashup Builder is based on a Spring Framework and uses an MVC (Model View Controller)
model.

In Mashup Builder, several plugins embed Spring controllers. A controller can send commands to
its associated view to change the view's presentation of the model. For example, a controller can
launch queries to the Suggest service, take a URL and return a screenshot of the page, send an
email, etc.

Once installed, controllers can be configured through the Mashup Builder interface. This avoids
configuring the plugin XML file manually.

Note: For information on Controllers’ creation and packaging, see "Creating Controllers" in the
Exalead CloudView Mashup Programmer's Guide.

1. In Mashup Builder, select Application from the top left menu bar.

2. Select Manage component > Controllers.

3. Configure the plugins as needed using the controllers.

On the following screenshot, a Proxy plugin containing a controller has been installed and can
therefore be seen under Controllers.

Mashup - 89

Export widget

4. Restart the search servers to get your components correctly updated. The Restart
search server processes option is accessible when you click Developer Area > Reload
Components.

Export widget

If you have created custom widgets, either through the Widget Builder or through custom code, it
can be useful to export them. You can do so to share your widgets as a plugins with other Exalead
CloudView users, or simply to backup your widgets if necessary.

For more information about widget creation, see "Creating Widgets" in the Exalead CloudView
Mashup Programmer's Guide.

1. In Mashup Builder, select Application from the top left menu bar.

2. Select Manage component > Export Widget.
3. Configure the widget to export as follows:

a. Widget: Select the widget to export.

b. Name: Give a name to your widget plugin.

c. Description: Enter a description.

d. Author: Enter the name of the widget’s creator.

4. Click Download this widget and save the widget plugin zip file.

Adding Security to Your Application

You can add authentication to your application by defining a security provider.

Once a security provider has been applied to an application, it is possible to enable the security on
one or several pages of this application.

Note: The Mashup framework provides built-in support for standard Exalead CloudView security
sources but you can also implement your own front-end security provider using the Mashup
Builder SDK.

Add a CloudView Security Provider

Add a Kerberos Security Provider

Add a CloudView Security Provider

The following procedure describes the setup of a standard Exalead CloudView security provider to
use Exalead CloudView security sources.

90 - Mashup

Add a CloudView Security Provider

We assume that a security source named ldap has been properly configured in the Administration
Console. For more information, see "Configuring security sources" in the Exalead CloudView
Administration Guide

1. In Mashup Builder, select Application from the top left menu bar.

2. Select General > Security.

3. Click Add a security provider.
4. From the Add security provider dialog box, select the Exalead CloudView Security Provider.
5. Configure the security provider.

In Source, select a security source that has previously been configured in the Administration
Console, for example ldap.

See the following table if you want to configure the other properties.

Property Description

API Config Indicates the name of the default Search API as defined in the Applications
menu, for example sapi0.

API Endpoints Defines the URL that will be used by the Search API. For example: http://
<HOST>:<PORT+10>

Command Specifies the authentication command. Default is security.

Source Enter the name(s) of your CloudView security source(s).

Authenticate to Select the authentication behavior of your security source(s). By default, the first
source will be used for authentication.

6. In the Mashup pages section, select the pages of your application on which you want to
enable security.

Mashup - 91

Add a Kerberos Security Provider

7. Click Save.

An Authentication Required dialog box asking for your credentials is added to the page(s) on
which security was enabled. These credentials are the ones defined in the security source.

Add a Kerberos Security Provider

This section describes the setup of a Kerberos security provider to secure the access to your
application pages.

The installation procedure requires to:

• Pre-authenticate as a host, using a HOST set of credentials and a keytab.

• Install the spnego plugin (ask it to the Exalead CloudView Support team).

If you want to secure the application sources, you can define a security source in the
Administration Console. For more information, see "Configuring security sources" in the Exalead
CloudView Administration Guide.

Prepare the Kerberos configuration files

You first need to generate the kerberos configuration files and copy them to a folder on the host
running Exalead CloudView.

1. Ask your system administrator to generate the files required to connect to the Kerberos server
on the host on which Exalead CloudView is running. These are:

◦ the krb5.conf,

◦ the login.conf,

◦ and the krb5.keytab files.

login.conf sample file

spnego-client {

 com.sun.security.auth.module.Krb5LoginModule required;

};

spnego-server {

 com.sun.security.auth.module.Krb5LoginModule required

 storeKey=true

 isInitiator=false

 useKeyTab=true

 principal="HOST/<hostname>@OFFICE.EXAMPLE.COM"

 keyTab="/johndoe/kerberos/krb5.keytab";

};

krb5.conf sample file

[libdefaults]

 default_realm = DOMAIN.EXAMPLE.COM

92 - Mashup

Add a Kerberos Security Provider

 dns_lookup_kdc = on

 dns_lookup_realm = on

[domain_realm]

 site1.example.com = DOMAIN.EXAMPLE.COM

 .site1.example.com = DOMAIN.EXAMPLE.COM

 site2.example.com = DOMAIN.EXAMPLE.COM

 .site2.example.com = DOMAIN.EXAMPLE.COM

[realms]

 DOMAIN.EXAMPLE.COM = {

 kdc = domain.example.com

 admin_server = domain.example.com

 kpasswd_server = domain.example.com

}[logging]

 kdc = SYSLOG

 admin_server = SYSLOG

 default = SYSLOG

Important: The login.conf file must reference the KeyTab file (see the line highlighted in
green in the login.conf sample file above).

Note: For information about the KeyTab file generation, see the SPNEGO documentation:
http://spnego.sourceforge.net/client_keytab.html

2. Your system administrator must also add a principal name, using the following commands:

◦ setspn for Active Directory,

◦ or kadmin add_principal command for MIT Kerberos.

The principal name must have the following format: HTTP/<Server name as shown in
the browser URL>

Note: See your browser’s documentation to enable Kerberos authentication.

3. In the Administration Console, add a security source (for instance a unix security source) to
fetch security tokens.

Install the spnego plugin

1. Ask the Exalead CloudView Support team for the spnego plugin.

2. In Mashup Builder, select Application from the top left menu bar.

3. Select Manage components > Plugins.

4. Click Upload plugin and select the spnego plugin.

Add the Kerberos Security Provider to your application

1. In Mashup Builder, select Application from the top left menu bar.

Mashup - 93

http://spnego.sourceforge.net/client_keytab.html
http://spnego.sourceforge.net/client_keytab.html

Add a Kerberos Security Provider

2. Select General > Security.

3. Click Add a security provider.
4. From the Add security provider dialog box, select the Kerberos Security Provider.
5. Configure the Kerberos security provider.

◦ For spnego.login.conf, enter the relative or absolute path of the login.conf file.

◦ For spnego.krb5.conf, enter the relative or absolute path of the Krb5.conf file.

◦ For Source, enter the name of your Exalead CloudView security source.

◦ See the following table if you want to configure the other properties.

Property Description

spnego.login.conf [Required] Path to login.conf file (relative or absolute path)

spnego.krb5.conf [Required] Path to krb5.conf file (relative or absolute path)

spnego.preauth.usernameEnter the Network Domain user name. For Windows, this is sometimes
referred to as the Windows NT user name.

spnego.preauth.passwordEnter the Network Domain password. For Windows, this is sometimes
referred to as the Windows NT password.

spnego.login.server.moduleEnter the server module name specified in the login.conf file.

spnego.login.client.moduleEnter the client module name specified in the login.conf file.

spnego.logger.level Specify a logging level to define the amount of details to display. Valid
values go from 1 to 7 (1 = FINEST; 7 = SEVERE). Set value to 1 for
debugging/verbose logging.

spnego.prompt.ntlm The SPNEGO Filter does not support NTLM.

Set this value to true if clients who wish to authenticate via
NTLM should be offered Basic Authentication (assuming
spnego.allow.basic=true).

Set this value to false if NTLM Authentication should be rejected.

spnego.allow.unsecure.basicWith respect to Basic Authentication, specify if HTTPS is required. If
Basic Authentication is not allowed, this operation is a no-op.

Set this value to false if you do not want to offer Basic Authentication
for non-SSL connections.

spnego.allow.localhost This property is set to false by default, which means that requests
coming from local host will not require authentication.

94 - Mashup

Enabling the Reporting Services

Property Description

Set this value to true if you run a local instance of the server and you
want to avoid having to register an SPN for your workstation.

spnego.allow.basic Valid values are true or false.

Offer HTTP Basic Authentication in addition to Kerberos Authentication.

Consider this option if an HTTP client cannot negotiate SPNEGO
token(s).

Set this value to false if you only want to allow Kerberos Authentication.

API Config Indicates the name of the default Search API as defined in the
Applications menu, for example sapi0.

API Endpoints Enter the URL that will be used by the Search API. For example:
http://<HOST>:<PORT+10>

Command Specifies the authentication command. Default is security.

Source [Required] Enter the name(s) of your CloudView security source(s) if any.
The security source is defined in the Administration Console. It fetches
user security tokens.

For more information, see "Configuring security sources" in the Exalead
CloudView Administration Guide.

Authenticate to Select the authentication behavior of your security source(s). By default,
the first source will be used for authentication.

6. In the Mashup pages section, select the pages of your application on which you want to
enable security.

7. Click Save and apply your configuration.

On your mashup application, the secured page(s) should not ask for your credentials as Kerberos
is an SSO protocol. The retrieved credentials are the ones defined in the security source.

Enabling the Reporting Services

In Mashup Builder > Application, you can enable reporting for your Mashup Builder applications
and for the Mashup API. In both cases, reporting relies on reporters which can be configured in the
Administration Console > Reporting menu.

Note: To configure the reporters available in Mashup Builder, see "Analyzing User Queries with
Reporters" in the Exalead CloudView Configuration Guide.

Mashup - 95

Enable reporting on your Mashup Builder applications

Enable reporting on your Mashup Builder applications

The edm-mashup-ui-reporting reporter collects data relative to task execution and to CPU activity
on the Mashup UI. For example, when a user queries a page, the reporter retrieves data such as
the execution and CPU time of pages, widgets and triggers.

Once configured in the Administration Console, this reporter must be enabled in the Mashup
Builder > Application > Application Properties menu.

As for all reporters, the information collected by the edm-mashup-ui-reporting reporter can be
exported to CSV, JDBC and SQLite repositories, to make reports with external tools. It can also be
sent to a Push API publisher if you want to index this data and use it like other indexed Exalead
CloudView data.

The difference with the other reporters, is that you can directly display collected information into a
timeline chart, accessible when the debug mode is enabled.

Once reporting is enabled for a given application, the debug mode displays a timeline tab, allowing
you to get a graphical view of collected data.

1. In Mashup Builder, select Application from the top left menu bar.

2. Select General > API Properties.

3. In the Reporting section:

a. Select the Enable reporting checkbox.

b. Click in the Reporter field and select the edm-mashup-ui-reporting reporter.

4. Go to Developer area and select the Mashup UI debug mode.

5. Open your Mashup Builder application.

The Debug bar displays at the bottom of your search application pages.

6. Click the Timeline tab.

A window displaying a timeline chart opens (see the following screenshot example).

96 - Mashup

Enable reporting for the Mashup API

Enable reporting for the Mashup API

The edm-mashup-api-reporting reporter collects data relative to feeds, subfeeds and triggers
execution. This reporter allows you to understand explicitly the feed execution process, with
subfeeds and triggers and to identify possible problematic issues.

Once configured in the Administration Console, this reporter must be enabled in the Mashup
Builder > Application > API Properties menu.

As for all reporters, the information collected by the edm-mashup-api-reporting reporter can be
exported to CSV, JDBC and SQLites repositories, to make reports with external tools. It can also
be sent to a Push API publisher if you want to index this data and use it like other indexed Exalead
CloudView data.

The difference with the other reporters, is that you can directly display collected information into a
timeline chart, accessible when the debug mode is enabled.

Note: To get the count of unique users in your edm-mashup-api-reporting (this is displayed in
the Business Console > Query Reporting graph), you must select the Enable Security option
on your feeds. Otherwise, the count will return 0. For more information, see Enable security on a
Exalead CloudView Search feed.

1. In Mashup Builder, select Application from the top left menu bar.

2. Select General > API Properties.

3. In the Reporting section:

a. Select the Enable reporting checkbox.

b. Click in the Reporter field and select the edm-mashup-api-reporting reporter.

4. Go to Developer area and select the Mashup UI debug mode.

Mashup - 97

Enhancing Application Response Time with Gzip Compression

5. Open your Mashup Builder application.

The Debug bar displays at the bottom of your search application pages.

6. Click the Timeline tab.

A window displaying a timeline chart opens (see the following screenshot example). In the
Type column, the edm-mashup-api-reporting information can be seen for the Feed and Feed
triggers entries.

Enhancing Application Response Time with Gzip Compression

Gzip compression is activated by default to improve the application response time. It applies to the
HTML, CSS, and JS code returned by the web server to the web browser.

Recommendation: It is better to leave Gzip compression activated. This section explains how to
deactivate Gzip compression if required.

1. Go to the <DATADIR>/webapps/360-mashup-ui/WEB-INF/ directory.

2. Edit the web.xml file and comment the content of Gzip filter: content compression

3. Repeat these actions for your other Mashup Builder applications, if any.

4. Restart Exalead CloudView.

Clearing Application or Widget Storage

The following procedure details how to clear the data storage for a given application or for a
specific widget.

1. In Mashup Builder, select Application from the top left menu bar.

98 - Mashup

Deleting an Application

2. Select Developer area.

3. In the Actions pane, click Clear storage.

A Clear storage dialog box opens.

4. Either select:

◦ the All application data radio button if you want to clear all data including widget data.

◦ or the Specific widget radio button if you want to select and clear the data of a specific
widget only. This can be useful to clear the stored data of a collaborative widget.

5. Click OK.

Deleting an Application

The following procedure details how to delete a given application.

1. In Mashup Builder, select Application from the top left menu bar.

2. Click the icon at the right the application menu bar.

3. Click Delete application.

A Confirm dialog box opens.

4. Type in YES and click OK.

Troubleshooting your application

This section lists the most common errors and how to troubleshoot them.

Check the Mashup logs

Checking the logs is a very good starting point for troubleshooting your Mashup application. To
check the Mashup logs:

1. In the Administration Console, select Troubleshooting > Logs from the menu bar.

2. From the Processes pull-down menu, select searchserver-ss0.

3. Click Add.

The searchserver-ss0 log displays in a new tab.

I can’t see any data for a specific widget in my Mashup Builder

Don’t panic, this is certainly related to the most common error: you forgot to select a feed in your
widget and therefore, you don’t have any source data.

Mashup - 99

My charts don’t display correctly

Otherwise, it means that the query is incorrect. To find the error, use the debug mode as follows:

1. Click Application and select Developer area.

2. In the Mashup UI section, select Mashup UI debug mode.

3. Open your Mashup Builder.

A Debug bar is displayed at the bottom of your search application pages.

4. Click Widgets to highlight the various widgets used in the page.

5. Hover over the buggy widget and use either the Open XML or the Open JSON links to see the
Mashup API output and check out feed errors.

My charts don’t display correctly

1. Check that the correct facets are selected. Otherwise, check that the query is correct.

How to test my MEL expressions and calculations?

We recommend using the HTML widget to test your MEL expressions and calculations.

1. In the HTML code field, enter your MEL expressions/calculations.

Note: You can press F11 to expand the editor.

2. To validate your MEL syntax, go to the contextual menu, select the Debug tab and click
Validate.

3. Click the Preview icon to check that your code calculates properly.

Note: For more details on MEL expressions, see Appendix - Mashup Expression Language.

How to change IE compatibility to a higher version?

By default, Mashup Builder enforces Internet Explorer compatibility to IE9. You can change this
behavior for each mashup page, by overriding compatible versions in the http-equiv meta.

1. In the Mashup Builder, click Edit Page settings.

100 - Mashup

How to change IE compatibility to a higher version?

2. In the Page properties > General section, edit the Meta http-equiv as follows:

a. For name, enter X-UA-Compatible

b. For Value, enter the compatible version(s) as you would do manually in the content
attribute, for example IE=EDGE.

3. Repeat the previous steps for other pages if necessary and click Apply.

Mashup - 101

Running an Application in 3DDashboard

Running an Application in 3DDashboard

This section describes the main steps to install and configure an application in 3DDashboard.

Overview

Installing your Mashup App

Configuring your Mashup App

Troubleshooting

Overview

What is Mashup Builder?

Exalead Mashup Builder allows you to build applications on top of Exalead CloudView indices.
In context, customers expect all their applications to be available in a seamless user experience
inside the 3DDashboard. Exalead CloudView Mashup Builder allows you to create Apps that can
run inside a 3DDashboard using plugins.

The Mashup Application needs to be configured so that it can run properly inside a 3DDashboard
and leverage components from the 3D#EXPERIENCE platform. When deploying the Application,
you must use the Mashup Builder user interface (to upload plugins and configure SSO security)
and 3D#EXPERIENCE environment (to setup reverse proxy or register Apps).

How do Exalead CloudView and 3DDashboard communicate?

The diagram below shows how 3D#EXPERIENCE components (in dark blue) and Exalead
CloudView components (in light blue) communicate:

102 - Mashup

What can I do with my Mashup App?

The main Exalead CloudView components include:

• Connectors such as ENOVIA Connector for crawling data sources and get data that will be
stored into the index;

• Indices, which are optimized data structures to ensure fast access to indexed data and provide
advanced search and aggregation capabilities;

• Search server web service that allows querying indices to retrieve data, create aggregates
(facets, groups…) and compute analytics. This service is accessed via the low level Search
API and the high level Access API. The Access API provides additional features on top of the
Search API including security and multi-query orchestration;

• Web app server that serves JSP-based web applications. These Apps are created using the
Mashup Builder IDE.

What can I do with my Mashup App?

The diagram below shows a sample Mashup application running in 3DDashboard:

Mashup - 103

Components

You can:

1. Start the Mashup Application from the Compass (available in MyApps catalog)

2. Authenticate to the Mashup Application using the Single Sign On mechanism provided by
3DPassport

3. Search the Mashup Application from the 3DSearch field when using the 'Search In This Tab'
mode

4. Filter the Mashup Application content with 6WTags

5. Adapt the look, feel and behavior of the Mashup Application to match your 3D#EXPERIENCE
interface

Components

The following Mashup Builder components are provided to run Mashup Apps in the 3DDashboard:

Component Description

3D#EXPERIENCE - Widget Builder Mashup controller (web service) that gives
access to a Mashup page as a UWA widget.
This widget can be registered into MyApps as
any Third Party App or added to a packaging
definition to make it a trusted widget.

104 - Mashup

Security

Component Description

3D#EXPERIENCE - Search and Refine Mashup widget (HTML/Javascript page
fragment) that defines the behavior of the
Mashup Application when:

• a search is performed from the 3DSearch
TopBar search field (in 'Search In This Tab'
mode)

• a facet must be registered into the 6WTags

• a refinement event is received from the
6WTags.

CAS Security Provider Mashup Security Provider for authenticating a
user using 3DPassport SSO

3D#EXPERIENCE - Detect Context Mashup trigger (server side Java code executed
before page rendering) that enables the
definition of specific Mashup App behaviors
when run inside a 3DDashboard context

3D#EXPERIENCE - Show / Hide widget Mashup triggers that allow to customize the
Mashup App by either showing or hiding widgets
when in 3DDashboard context

experience:is3DXP MEL (Mashup Expression Language) function
that does the same thing as the Show / Hide
widget triggers, but anywhere in the Mashup
where MEL functions can be used

Security

Security controls rely on Exalead CloudView infrastructure (Security Providers for authorization
on the Mashup side and Security Source on the search server side for authorization). When
integrated into the 3DPassport / CAS single sign on mechanism, the app will delegate
authentication checks to the 3DPassport server. Regarding data access security, the solution
depends on Exalead CloudView ability to handle the associated security (such as LDAP, Active
Directory or ENOVIA security).

Mashup - 105

Limitations

Limitations

Facets

Facets are published to the 6WTags only when a Mashup page is loaded. It means that if the
facets available in the Mashup page change without reloading the page, the 6WTags will not be
updated accordingly. This limitation impacts the Mashup Apps in which widgets and associated
feeds are refreshed/executed using asynchronous queries (ie. AJAX).

6W Vocabulary

The Mashup App doesn't communicate or use the 6W vocabulary services from the
3D#EXPERIENCE platform. As a result, even if the Mashup App is configured to export its
facets to the 6WTags, it doesn't mean that all facets shown inside the Mashup App pages will be
displayed with the same name (especially localization-wise) as in the 6WTags.

Installing your Mashup App

This section describes how to install your Mashup app.

Note: You must have access to 3DDashboard with administrator rights (VPLMAdminUser or any
user who is granted with Admin rights in 3DSpace) to register the new App.

Install 3DExperience Mashup Builder plugin

1. In the Mashup Builder, select Application from the top left menu bar.

2. Select Manage components > Plugins.

3. Click Upload plugin.

4. From the Upload Plugin dialog box, click Browse and select the plugin experience-
api.zip file.

5. Repeat step 4 to upload the plugin experience-ui.zip.

The following plugins must be installed:

◦ experience-api (contains MEL expression)

◦ experience-ui (contains widgets, controllers and triggers)

6. Restart the search server process as asked by the application.

106 - Mashup

Generate UWA widget

Example:

Generate UWA widget

1. In the Mashup Builder, select Application from the top left menu bar.

2. Select Manage components > Controllers.

3. In 3DExperience - Widget Builder:
a. Select Enable to generate 3DExperience widgets.

b. In Page prefix, enter /page if pages are accessed from /page/PAGENAME or leave blank if
pages are accessed directly from /PAGENAME.

c. In Start page, specify the Mashup page to be opened when the widget is started (widget
will be accessed from MASHUP/uwa/widget/START-PAGE)

d. In Title, specify the title displayed in the widget header.

4. Save and apply configuration.

Example:

Setup reverse proxy

1. Log in as root with SSH on 3DExperience.

2. Edit httpd.conf file in /usr/local/reverseproxy/conf/:

a. On virtual host on port *:443

b. Add "ProxyPass /mashup-ui http://cloudview:port/mashup-ui"

c. Add "ProxyPassReverse /mashup-ui http://cloudview:port/mashup-ui"

3. Restart the reverse proxy:
/usr/local/reverseproxy/bin/httpd -k restart

Mashup - 107

Run Mashup App in 3DDashboard

Run Mashup App in 3DDashboard

You need administrator rights (VPLMAdminUser or any user who is granted with Admin rights in
3DSpace) to register the new App.

1. In the 3DDashboard, add a Run Your App widget from the Compass to a Dashboard.

2. Enter the Run Your App URL using the following syntax: https://HOST/mashup-ui/uwa/
widget/search.

Example:

3. Click Run.

The Run Your App widget displays the search page inside a widget.

4. Open the Platform Manager dashboard.

5. Scroll down the Members & Roles tab to access the Third Party Apps section.

6. Click Create Third Party Apps.

7. In the Create Third Party Apps:

a. Enter a short name

b. Specify the compass quadrant

c. Set an icon URL

d. Select the Widget Type
e. Enter the Source code URL as specified at step 2 (https://HOST/mashup-ui/uwa/

widget/search)

f. Save

8. Open the compass in the quadrant specified previously.

Your widget should be displayed in the list.

9. Drag your widget to the dashboard.

The Mashup App should be loaded on the 'search' page.

Configuring your Mashup App

This section describes how to configure a Mashup application to work in the 3D#EXPERIENCE.

108 - Mashup

Configure the 3DSearch Behavior

Configure the 3DSearch Behavior

To configure the search behavior when users run queries in the 3DSearch field, add the
3DEXPERIENCE - Search and Refine widget to the search Mashup page.

1. In the Mashup Builder, select the '/search' page.

2. Go to Widgets > 3DEXPERIENCE.

3. Select the 3DEXPERIENCE - Search and Refine widget and add it to the page.

4. Click the widget header to open the 3DSearch tab of the widget properties.

5. For On search, select:

◦ open page to open the Mashup page specified in the Search page parameter and set the
page parameter defined in Search parameter to the query string input in the 3DSearch
field.

◦ Or run custom code (advanced) to define the Javascript code called when 3DSearch
receives the query.

6. In On reset search, specify the behavior when using the red cross or clearing the search in the
3DSearch field (same options as for On search).

Example:

7. Save and apply configuration.

Define the mapping between Facets and 6WTags

You can refine the result list of a Mashup App using the 6WTags.

In Mashup Builder, you can define the mapping between facets and 6WTags:

• Locally, on a specific Mashup page.

• Globally, at the application level.

The following table summarizes the different mapping strategies:

Define mapping on Mapping definition
with

Possibility to share
mapping

Tag publishing

widget list of facets on the UI none (page-specific) on page loading

widget file app or page on page loading

Mashup - 109

Define the mapping between Facets and 6WTags

Define mapping on Mapping definition
with

Possibility to share
mapping

Tag publishing

tag controller file app or page on-the-fly (AJAX)

Mapping locally using the widget

You can map facets to the 6WTags widget, using the widget configuration parameters.

1. In Mashup Builder, select a page, for example, /search page.

2. Select Widgets > 3DEXPERIENCE.

3. Select the 3DEXPERIENCE - Search and Refine widget and add it to the mashup page.

4. Click the 3DEXPERIENCE - Search and Refine widget header and select the 6WTagger tab.

5. For Define mapping on, select the widget option.

Important: With this option, facets are published in the 6WTags only when a Mashup page
is loaded. It means that if the Mashup page facets change without reloading the page, the
6WTags do not upload. This limitation impacts Mashup Apps in which widgets and associated
feeds are refreshed or executed using asynchronous queries (with AJAX). To update tags
dynamically after page loading, use the tag controller option.

6. Specify a mapping file if you want to upload a configuration and override only a few facets
using the UI.

For more information, see Mapping locally using a mapping file.

7. Map each facet to a 6W predicate.

8. Click Apply.

Mapping locally using a mapping file

You can map facets to the 6WTags widget using a mapping file.

1. Create a mapping file with a .properties extension, mapping facets to predicates as in the
following sample:
closuredate=ds6w:when/ds6w:actualEnd

110 - Mashup

Define the mapping between Facets and 6WTags

current=ds6w:what/ds6w:status

issue_priority=ds6w:why/ds6w:priority

issue_to_assigned_issue=ds6w:who/ds6w:assignee

Language=ds6w:what/ds6w:language

related_project=ds6w:where/ds6w:project

Source=ds6w:where/ds6w:dataSource

type=ds6w:what/ds6w:type

2. Put your .properties file in <DATADIR>/config (or a subfolder).

3. In Mashup Builder, declare the .properties file path in the Mapping file parameter, using
config://

4. Click Apply.

5. From the command line, go to <DATADIR>/bin and force the product configuration update by
running buildgct

6. In Mashup Builder, restart the Search Server:

a. Go to Application > Developer area.

b. Click Reload components.

c. Select the Restart search server processes option.

Note: Repeat these steps whenever the file is modified to take changes into account and apply
them on secondary servers.

Mapping globally at the application level

You can define a tag controller to map facets and 6WTags globally, for all application pages.

1. Go to Application > Manage components > Controllers.

2. In 3DEXPERIENCE - 6WTags mapping service, specify a mapping file to apply to all mashup

pages.

For a mapping file sample, see step 1 in Mapping locally using a mapping file.

3. Drag the 3DEXPERIENCE - Search and Refine widget on your mashup page.

4. For each page, click the 3DEXPERIENCE - Search and Refine widget header and select the
6WTagger tab.

5. For Define mapping on, select the tag controller option.

This option uses AJAX to update tags dynamically after page loading.

Mashup - 111

Trigger the App Display in the 3DDashboard

To extend the global 3DEXPERIENCE - 6WTags mapping service, enter the additional
JavaScript code in Extra

mappings.

6. Click Apply.

Trigger the App Display in the 3DDashboard

You can trigger the display of your Mashup app (show or hide) in the 3DDashboard.

Warning: The HTML preview of multiple MS Excel sheets is not compatible with the embedding of
a mashup app in a 3D#EXPERIENCE Platform widget.

1. In the Mashup Builder, select the '/search' page.

2. Go to Triggers > Pre Request Trigger.
3. Select 3DEXPERIENCE - Detect Context and add it at the top of the /search page.

4. In Propagate 3DExperience context using, select either:

◦ redirect to use the HTTP referrer to propagate the context. It allows you to run an App
inside the 3DDashboard in one browser tab, while running the standalone App in a
separate browser tab (the cookies do not store the context.)

◦ session to store the detected context in the user session (HTTP cookie). It prevents you to
run the Mashup App in the 3DDashboard and the standalone App in the same browser (all
tabs share the same cookies).

5. Go to Triggers > Mashup Widget Trigger.
6. Select either:

◦ 3DEXPERIENCE - Hide in context to hide the Mashup App when inside
3D#EXPERIENCE (for example, in a 3DDashboard).

◦ 3DEXPERIENCE - Show in context to show the Mashup App when inside
3D#EXPERIENCE (for example, in a 3DDashboard).

7. Save and apply configuration.

112 - Mashup

User Authentication from 3DPassport

User Authentication from 3DPassport

To authenticate users from the 3DPassport using an SSO mechanism, first configure the security
source in the Mashup Builder and then add the 3DPassport SSL certificate to the Exalead
CloudView trusted keystore.

Configure the security source

1. In the Mashup Builder, go to Application > General > Security.

2. Click Add a security provider.
3. Select CAS Security Provider and click OK.

4. In the CAS Security Provider section, configure the following parameters:

a. In Authenticate to, select None.

b. In CAS ticket validation filter, select Cas20.

c. In Allow proxy ticket validation, select false.

d. In CAS Server login URL, enter https://<HOSTNAME>:<PORT>/iam/login

e. In CAS Server URL Prefix, enter https://<HOSTNAME>:<PORT>/iam

f. In CAS Server logout URL, enter https://<HOSTNAME>:<PORT>/logout

g. In Server Name, enter https://<HOSTNAME>.

h. In CAS attribute(s) for displayName, enter name.

5. In the Mashup pages section, select the check-box corresponding to the search page.

Mashup - 113

User Authentication from 3DPassport

Configuration:

6. Click Apply.

Add 3DPassport SSL certificate to Exalead CloudView

1. Verify the certificate format using the following command:
openssl x509 -in <infile.cert> -text -inform <format>

Where the format is DER or PEM depending on your needs.

2. Encrypted PEM files usually store private keys. Convert them to a file that is not encrypted.

You can use openssl on the command line:

openssl pkcs8 -topk8 -in <key> -out <hostname>-<instance>.key -nocrypt

3. Verify that the certificate is stored using UNIX LF end of line characters:

a. On Windows, you can use the following tool:

b. On UNIX, you can alternatively use dos2unix.

4. For every product instance, overwrite the key and certificate files generated at installation time
in DATADIR/security.

If you use an alias, the private key name must use the alias and not the default <hostname>-
<instance>.

5. For every product instance, add the server certificate to the truststore:
keytool -import -file <.cert file (DER)> -alias

 <jetty> -keystore DATADIR/security/trusted.servers.ks -storepass

114 - Mashup

Troubleshooting

<exalead>

6. Restart Exalead CloudView.

Note: For more information, see Exalead CloudView Administration Guide: Securing Exalead
CloudView: Securing your installation with HTTPS and SSL.

Troubleshooting

This section explains common issues encountered when installing and configuring 3DDashboard
Apps.

• Check that Search in current dashboard is selected in the search bar options before
searching.

• Check that script execution on your page is not blocked (shield icon in browser location bar)

• Check the web console/Firebug for specific errors

Mashup - 115

Appendix - Mashup Expression Language

Appendix - Mashup Expression Language

This appendix describes the Mashup Expression Language (MEL) Functions.

About Mashup Expression Language

Syntax

Handling Categories, Facets and entries

About Mashup Expression Language

The configuration of the Mashup UI through the Mashup Builder makes an extensive use of
expressions such as ${feeds["cloudview"].metas["name"]} that allows you to construct
text that contains dynamic content from your feeds.

These expressions, known as the Mashup Expression Language (MEL), actually provide much
more than just dynamic variables and support common operations that would usually require
editing JSP files.

MEL Functions appear in a contextual menu on the left when you click in widget and property
fields. The elements displayed in this contextual menu correspond to Mashup API elements in
Atom format, for example:

• ${feed.*} corresponds to <feed>

• ${entry.*} corresponds to <entry>

• etc.

For more information about the Mashup API and its Atom elements, see "Using the Mashup
API" in the Exalead CloudView Mashup Programmer's Guide.

Tip:
When you add MEL expressions, you can verify their syntax by selecting the Debug tab and
clicking Validate. You can also use the autocomplete function by pressing Ctrl+space.

Important: MEL is always computed server-side whereas JS is computed client-side. JS cannot
be used inside MEL, but you can use MEL inside JS. For example, you can use MEL to iterate
over a list and save values as an array/object init in JS, and then use this array/object in your JS.

Syntax

The MEL supports all the key syntactic constructions: variables, operations, loop statements, etc.

The language itself is entirely lower case.

116 - Mashup

Simple variables

The following examples are based on a result feed named persons that has an entry with the
following metas:

• name: roger

• age: 42

• ${feeds["person"].metas["name"]}: roger, bruce

Simple variables

A variable represents a specific data item, or value, and acts as a placeholder for that value. When
a formula encounters a variable, the formula searches for the value of the variable and uses it in
the formula.

The basic syntax is: ${my.variable}

Simple expression examples

Expression Result

hello ${feeds["person"].metas["name"]} hello roger

hello

${feeds["person"].metas["unknown_meta"]}

hello

hello \${feeds["person"].metas["name"]} hello ${feeds["person"].metas["name"]}

Fallbacks

You can declare variable fallbacks using pipes |

• ${my.variable|other.variable}

• ${my.variable|other.variable|last.variable}

• ${my.variable|"hardcoded fallback text"}

Fallback/Advanced expression examples

Expression Result

hello

${feeds["person"].metas["name"]|"world"}

hello roger

hello

${feeds["person"].metas["unknown_meta"]|"world"}

hello world

Mashup - 117

Dynamic variables and functions

Expression Result

hello

${feeds["person"].metas["unknown_meta"]|

feeds["person"].metas["name"]|"world"}

hello roger

hello

${feeds["person"].metas["unknown_meta"]|

feeds["person"].metas["unknown_meta2"]|"world"}

hello world

hello

${feeds["person"].metas["unknown_meta"]|

feeds["person"].metas["unknown_meta2"]}

hello

Dynamic variables and functions

Dynamic variables are variables whose values are determined when the program is run.

• ${i18n["machine_"+robot.id]}

• ${math:${op.sum}(1,1)}

Dynamic expression examples

Expression Result

${fn:${feeds["person"].metas["name"]}

(${feeds["person"].metas["age"]})} =

${fn:roger(42)}

result of the function roger passing the
parameter 42

Operations

• Strings: ${my.age == "42"}

• Supported numerical operators: - + * / % == != < > () ^ >= <= Example:
${(2+3)*4} = 20

• Supported string operators: == !=

• Logical operators: ${(2 <= 3 && 42 != 21) || 3 >= 3} where && = and || = OR

• Brackets support:

◦ ${page.params["q"][1]}

◦ ${math:sum(1,1)[0]}

• Concatenation and sum: + is the concatenation operator (as in Java) and also the sum
operator for numerical operations.

118 - Mashup

Operations

◦ ${"5" + "6"} --> 11

◦ ${"a" + "b"} --> ab

◦ ${"a" + "5"} --> " (it will be resolved to NaN+5)

◦ ${str:join(","a","5")} --> a5

Operation examples

Expression Result

i am ${feeds["person"].metas["age"]} i am 42

i am ${feeds["person"].metas["age"] + 10} i am 52

i am ${feeds["person"].metas["age"] / 2} i am 21

i am ${feeds["person"].metas["age"] % 40} i am 2

i am ${feeds["person"].metas["age"] * 2} i am 84

i am ${feeds["person"].metas["age"] - 20} i am 22

i am ${feeds["person"].metas["age"] +

10.0}

i am 52.0

i am ${feeds["person"].metas["age"] /

2.0}

i am 21.0

i am ${feeds["person"].metas["age"] %

40.0}

i am 2.0

i am ${feeds["person"].metas["age"] *

2.0}

i am 84.0

i am ${feeds["person"].metas["age"] -

20.0}

i am 22.0

i am ${feeds["person"].metas["age"] ==

"42"}

i am true

i am ${feeds["person"].metas["age"] ==

"24"}

i am

i am ${feeds["person"].metas["age"] !=

"42"}

i am

i am ${feeds["person"].metas["age"] !=

"24"}

i am true

Mashup - 119

Functions

Expression Result

i am ${feeds["person"].metas["age"] ==

"roger"}

i am true

i am ${feeds["person"].metas["age"] ==

"robert"}

i am

i am ${feeds["person"].metas["age"] !=

"roger"}

i am

i am ${feeds["person"].metas["age"] !=

"robert"}

i am true

${feeds["person"].metas["age"][0]} roger

${feeds["person"].metas["age"][1]} bruce

${feeds["person"].metas["age"][1][0]} b

${feeds["person"].metas["age"][1][2]} u

${"world"[1]} o

${("hello" + "world")[8]} l

Logical operation examples

Expression Result

I am ${Roger && 42} false

I am ${Roger || 42} true

I am ${Roger || (42 && Roger)} false

Functions

MEL Functions are classified by categories under the following namespaces:

• category functions: className, url.

• currency: format.

• date: addDays, addYears, addMilliseconds, addMonths, addMinutes, addHours,
addSeconds, addWeeks, now, format, elapsedTime.

• entry: cleanId, previewHtmlUrl, thumbnailUrl, downloadUrl, previewImageUrl.

• list: join, size.

120 - Mashup

Internationalization functions

• math: min, atan, max, pow, asin, cos, ceil, sqrt, random, log2, sum, round, divide,
multiply, log, subtract, exp, abs, floor, sin, avg, tan, acos.

• number: format.

Note: For number approximation, we use the rounding modes described in https://
docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html

• str (string): replace, lowerCase, abbreviate, upperCase, length, hashCode, split,
contains, trim, substr.

• var: get, set.

Note: The fn namespace is used as the standard namespace.

Function calls:

• Simple: ${date:now()}

• With arguments: ${str:substr("toto", 2)}

• With variable arguments: ${math:max(${my.age}, ${your.age})}

Function expression examples

Expression Result

I am ${math:substr(page.params["name"],

0, 3)}

I am rog

${number:format(0.25, 1, 4, 1, 1, true,

"HALF_UP")}

0.3

Internationalization functions

• ${user:locale(MELHttpServletRequest request)} returns the locale used by the
current user from the HTTP query.

• ${date:format(MELString date, MELString pattern, MELString locale,

MELString timeZone)} returns the date formatted as the output pattern using the specified
locale and timezone.

• ${i18n:message(MELHttpServletRequest request, MELType code) translates a
string like ${i18n[code]} but using the locale from the HTTP query.

• ${i18n:message(MELHttpServletRequest request, MELType code,

MELType[]... parameters) translates a string containing variable parts (specified by {0},
{1}, etc.) which are replaced by the values in parameters.

Mashup - 121

https://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html
https://docs.oracle.com/javase/7/docs/api/java/math/RoundingMode.html

Combinations

Sample usage:

${user:locale(request)}
> en
${date:format(${entry.metas['date']}, 'dd/MM/yyyy hh:mm:ss', 'en_EN', 'GMT')
> 10/02/2014 12:30:10
${date:format(${entry.metas['date']}, "MM/dd/yyyy hh:mm:ss", "en_US", "GMT-5")}
> 02/10/2014 07:30:10

In localization file (*.properties):

error.message=Error code: {0}
document.summary=created by {0} on {1} at {2}

In the Mashup Builder:

${i18n:message(request, 'error.message', '404')}
> Error code: 404
${i18n:message(request, 'document.summary', author, date, time)}
> created by John Doe on February 10, 2014 at 10:30am

Combinations

• Operations and functions: ${math:max(${my.age}, ${your.age}) + 10}

Ternaries

• Simple: ?{true?yes:no}

• Advanced: ?{${persons.age}?i am ${persons.age / 2}:age not found}

• Short syntax: ?{true?:no}

• Nested: ?{true?{true?nested yes:nested no}:no}

Ternary expression examples

Expression Result

?{feeds["person"].metas["name"]?meta

exists:meta not found}

meta exists

?{feeds["person"].metas["unknown_meta"]?

meta exists:meta not found}

meta not found

?{feeds["person"].metas["age"]?i am

feeds["person"].metas["age"]/2:age not

found}

i am 21

?{true?yes:no} yes

122 - Mashup

If statements

Expression Result

?{yes:no} no

?{true?:no} -

?{true?{true?nested yes:nested no}:no} nested yes

?{true?{?nested yes:nested no}:no} nested no

${if feeds["person"].metas["name"] !=

"roger"} wrong ${elseif math:sum(1,1)

==3} wrong ${elseif math:sum(1,1) == 2}

happy ${else} wrong ${/if}

happy

Special ternary expression examples

Expression Result

hello ${page.params["name"]} hello roger

hello ${page.params["unknown_meta"]} hello

hello ?{page.params["name"]?no otherwise} hello no otherwise

hello ?{page.params["unknown_meta"]?no

otherwise}

-

If statements

The If statement enables you to evaluate a sequence of statements if a condition is true and
evaluate a different sequence of statements if it is not true.

• You are ${if page.params["n"] != 42} wrong ${elseif math:sum(1,1) ==3}

wrong ${elseif math:sum(1,1) == 2} happy ${else} wrong ${/if}

Foreach loop statements

Foreach loops enable you to evaluate a sequence of statements multiple times.

• ${foreach 1,2,3} ${loop.element}?{$loop.hasNext}?,} ${/foreach} go!

• ${foreach number in 1,2,3} ${number}?{${loop.hasNext}?,} ${/foreach}

go!

Loop expression examples

Mashup - 123

Flags

Expression Result

${foreach page.params["name"]}I am

${loop.element}${/foreach}

I am roger

${foreach "a", "b",

"c"}${loop.element}${/foreach}

abc

${foreach 1,2,3}and ${loop.index} ${/

foreach}

and 0 and 1 and 2

${foreach 1,2,3}and ${loop.element} ${/

foreach}

and 1 and 2 and 3

${foreach number in 1,2,3} and ${number}

${/foreach}

and 1 and 2 and 3

Flags

• !m --> HTML escaping

• !x --> XML escaping. For example: ${entry.metas['text']!+x}

• !u --> URL encoding. This flag is useful to declare URLs.

• !h --> Highlighting (only available for metas). For example: ${entry.metas["title"]!h}

Important: We recommend declaring whether flags must be used or not specifically, with the
+ and - signs. For example: !+h or !+h-x Without the + and - signs, the default behavior is
inverted.

Code samples

The two following code samples using MEL can be pasted in an HTML widget. They both contain
typical iteration made with foreach statements.

<h1>Iterate over entries</h1>

${foreach hit in feed.entries}

 <h1>${hit.title}</h1>
 <a href="${entry:downloadUrl(hit, request, '<Page name>')}">Download
 <iframe src="${entry:previewHtmlUrl(hit, request, '<Page name>')}"></iframe>
 <img src="${entry:previewImageUrl(hit, request, '<Page name>')}" />

${/foreach}

<h1>Iterate over the author facet</h1>

124 - Mashup

Handling Categories, Facets and entries

${foreach catElement in feeds[’cloudview’].facets[’author’].leaves}

 <a href="${category:url(catElement, request, feeds[’cloudview’])}"
class="${category:className(catElement)}">
 ${i18n[catElement]}

${/foreach}

Note: request refers to the request variable available in any context.

Handling Categories, Facets and entries

The MEL syntax lets you handle categories, facets and entries to return values. You can access
these in both:

• an absolute way, for example, in a custom HTML widget;

• and a relative way, within a specific context set by the widget, for example, in a chart widget
that requires the setting of a facet.

About Relative access in a given context

When manipulating MEL, you are in a given context. For example, in widgets, you are most of
the time in a ''feed'' context, so you don't need to give the beginning of the context in your MEL
expression as the widget already has set the context for you.

In the contextual menu listing all available Values on the left, select elements from Contextual
feed to add them in a "feed" context in your MEL expression.

For example, a Result List widget iterates over each entry (hit) for each feed, so you can use the
relative access to the entries meta as you are scoped at the ''entry'' level. In MEL, this is written as
${entry.***} rather than ${page.feed.entry} as written in an absolute way.

The following diagram represents a tree view of the MEL relative context.

Mashup - 125

Sample data

Note: You can enter at any level in the context, but you cannot skip sub-context elements.

Sample data

The following data will be used to illustrate the use of the MEL syntax for facet aggregation.

First Result Hit

Name Type Value

title Meta The hitchhiker's guide to the
galaxy

author Meta Douglas Adams

price Meta 42

date Category Top/date/2011/02/01

Facet synthesis sample

Type Count Income

Date Facet 25

2011 Category 16

01 Category 10

126 - Mashup

Facet and Category access

Type Count Income

01 Category 2

03 Category 3

05 Category 5

02 Category 6

01 Category 1

06 Category 2

07 Category 3

2012 Category 9 125000

02 Category 9 125000

09 Category 9 125000

Facet and Category access

Absolute access

• Access to a specific facet

◦ Syntax: ${feeds["feedName"].facets[facetId].attributes}

◦ Example: ${feeds["cloudview"].facets["Date"].path --> Top/date

Note: feeds["feedName"] can be replaced by feed to use the context of the current feed.

• Access to a specific category

◦ Syntax:

${feed.facets[facetId]["2012"].attributes}

${feed.facets[facetId]["Top/facet_id/rest/of/the/

path"].attributes} // Accessing through a path

◦ Example:

${feed.facets["Date"]["2012"].count} --> 9
${feed.facets["Date"]["Top/2011/01"].count --> 10

• Access to the 5th item of facet leaves

◦ Syntax: ${feed.facets[facetId].leaves[5].attributes}

◦ Example:

Mashup - 127

Facet and Category access

${feed.facets["Date"].leaves[5].description} --> 07
${feed.facets["Date"].leaves[5].path} --> Top/date/2011/02/07
${feed.facets["Date"].leaves[5].count} --> 3

Contextual (Relative) access

• Access to a category when in a category context

◦ Syntax: ${category.attributes}

◦ Example: ${category.description} --> 2011

• Access to a facet attributes

◦ Syntax: ${facet.attributes}

◦ Example: ${facet.id} --> date

• Access to a category in a Facet context

◦ Syntax: ${facet["mycat"].attributes}

◦ Example: ${facet["2012"].count} --> 9

◦ Categories can also be returned from a Facet: ${facet.flat} --> 2011,2012 (comma-
separated list of categories description)

• Access to an aggregation function of a facet in a Facet context

◦ Syntax: ${facet["2012"].aggrs["aggregation_id"]}

◦ Example: ${facet["2012"].aggrs["income"]} --> 125000

Available attributes

The available attributes come from a direct mapping of the Access API attributes. These are:

• id

• description

• path

• state

• refinable (facet only)

• flat (iteration on first level)

• all (recursive iteration)

• leaves (iteration over leaves)

• count

• score (category only)

128 - Mashup

Entry access

• aggrs["aggregation_function_name"]

Elements that return list items can also have a list manipulation variable:

• length

• first

• last

Example: ${facet["2012"].length} --> 1

Entry access

Absolute access

• Access to a given meta of a given entry

◦ Syntax:

${feed.entries[n].metas["metaName"]}

${entries[n].metas["metaName"]} // (as a shortcut for feed.entries[n]...)

◦ Example: ${feed.entries[0].metas["title"]} --> The hitchhiker's guide
to the galaxy

• Access to a given facet or category of a given entry

◦ Syntax: ${feed.entries[n].facets["facetId"].attributes}

◦ Example: ${feed.entries[n].facets["Date"].leaves[0].count} --> 1

Contextual (Relative) access

• Access to a given meta

◦ Syntax:

${entry.metas["text"]}

◦ Example: entry.author --> Douglas Adams

• Access to a given facet/category

◦ Syntax: ${entry.facets["facetId"].attributes}

◦ Example: ${entry.facets["Date"].path} --> Top/date/2011/02/01

• Access to entry info

◦ Syntax:

${entry.infos["hitInfos"]} //new way

Mashup - 129

Result set access

◦ Example:

${entry.infos["did"]} --> 1

Available attributes

The attributes available for the INFOS are directly mapped to Access API.

They can be one of the following:

• id

• self

• image

• builGroup

• buildGroupSlice

• score

• did

• slice

• url

• nCollapsed

How to use the entry scope with an HTML widget

If you want to use an HTML widget and iterate on multiple feeds to retrieve their results, you must
target entry positions.

For example, to make an HTML widget retrieve the results of 3 feeds called clients,
technicians and users, we could use the following syntax:

${feeds['clients'].entries[entry.index].metas['address']}
/ ${feeds['technicians'].entries[entry.index].metas['name']}
/ ${feeds['users'].entries[entry.index].metas['userid']}

Result set access

This section shows the syntax for accessing global information regarding the result set.

• Access to result set infos

◦ Syntax: ${feed.infos["resultSetInfo"]}

◦ Example: ${feed.infos["nhits"]} --> 1

130 - Mashup

Feed access

Available attributes

resultSetInfo are directly mapped to the Access API. They can be one of the following:

• id

• totalResults

• startIndex

• itemsPerPage

• query

• context

• last

• start

• estimated

• nhits

• autocorrected

• ellql

• nmatches

• unknown parameter provided by a specific feed

Feed access

• Access to parent parameters in a subfeed

◦ Syntax:
${feed.entries[2].subfeeds["subfeedname"].entries[0].metas["title"]

--> Title of the subfeed’s first entry of the parent feed’s third entry.

Request, Cookie and Session MEL Manipulation

• request gathers all the parameters of the HTTP request.

◦ ${request["contextPath"]}

◦ ${request["queryString"]}

• cookies gathers all the parameters available in the Mashup UI cookies.

◦ ${cookies["name"]}

• session gathers all the parameters available in the user session.

Mashup - 131

Use cases

◦ ${session["username"]}

◦ ${session["name"]}

Use cases

The following examples show typical uses of facet manipulations.

Create a metric-like widget

You can create a metric-like widget using an HTML widget with custom HTML code. MEL allows
the widget to interact with facets and calculate aggregations values. In the following example,
the HTML code retrieves facet descriptions and aggregations to display average values in a
dashboard.

<div class="metric_container">
 <div class="metric_single metric_separator">
 ${feed.facets["area"].aggrs["avg_price"]}

 Average Price
 </div>
 <div class="metric_single metric_separator metric_separator_light">
 ${feed.facets["area"].aggrs["avg_land_sq_feet"]}

 Average Area
 </div>
 <div class="metric_single metric_separator_light">
 ${feed.facets["area"].aggrs["avg_year"]}

 Average Year Built
 </div>
</div>

The HTML widget should display results as shown in the following screenshot.

Format standard facet values

The Standard Facets widget can display categories and facets with an aggregation function.

You can interact with the facet of a category that is defined in the widget.

Iterate over facets in an HTML widget

Iterate over facets in an HTML widget

132 - Mashup

Use cases

You can iterate over facets in an HTML widget using custom MEL. For example, you can iterate on
a category/ facet to replicate the Standard Facets widget behavior.

Mashup - 133

	Table of Contents
	Mashup Builder
	What's New?
	About Mashup Builder
	Mashup Builder or Mashup Builder Premium
	Mashup Builder Terminology
	Overall Description of the Menus
	Understanding the Edit Application Menu
	Pages
	Feeds view
	Design view
	Code view
	The Preview
	Application tools

	Keyboard Shortcuts

	Building Mashup Applications
	Adding Feeds
	About Mashup Builder feeds
	Add a feed
	Make parallel requests with feeds
	Enrich hits with nested feeds
	Synchronizing feeds on a page
	Enable security on a Exalead CloudView Search feed

	Adding Widgets
	Add widgets
	Specify widget interactions

	Adding Triggers
	About Feed and Design Triggers
	Add triggers to an application or a page
	Add triggers to a widget
	Add triggers to a feed

	Configuring Data Storage for Collaborative Widgets
	Configure storage to index collaborative data
	Storage Administration
	Troubleshooting

	Creating Composite Widgets
	Create composite widgets from scratch
	Create custom widget properties
	Create a composite from a page or widget
	Delete a composite widget

	Modifying the Search Results Display
	Filter metas in the result list
	Set the facet order
	Modify how search results display
	Display results in a new page
	Customize icons in the search results

	Display hits depending on meta values
	Conditionally display hits with the Result List widget
	Conditionally display hits with the For Each Hit widget

	Using the Google Maps Widget
	Textual address Vs GPS coordinates
	Restrict the search results to a Geographical Area
	Link the search results list to a Google map

	Adding Trusted Queries
	Configure Category facets for trusted queries
	Add trusted queries in Mashup Builder

	Customizing the Look and Feel
	Modify the logo
	Switch to another theme
	Customize the look and feel for a whole application
	Customize the look and feel of a page
	Add custom code to a page
	Customize the layout of a widget with a CSS call
	Customize the layout of a widget with JavaScript
	Edit the layout of widgets within a widget container

	Managing Applications
	Creating New Applications
	Create a new application
	Select the application to edit
	Deploy an application to another Exalead CloudView instance

	Managing Custom Components
	Install plugins
	Import custom components
	Use plugin controllers
	Export widget

	Adding Security to Your Application
	Add a CloudView Security Provider
	Add a Kerberos Security Provider

	Enabling the Reporting Services
	Enable reporting on your Mashup Builder applications
	Enable reporting for the Mashup API

	Enhancing Application Response Time with Gzip Compression
	Clearing Application or Widget Storage
	Deleting an Application
	Troubleshooting your application
	Check the Mashup logs
	I can’t see any data for a specific widget in my Mashup Builder
	My charts don’t display correctly
	How to test my MEL expressions and calculations?
	How to change IE compatibility to a higher version?

	Running an Application in 3DDashboard
	Overview
	What is Mashup Builder?
	How do Exalead CloudView and 3DDashboard communicate?
	What can I do with my Mashup App?
	Components
	Security
	Limitations

	Installing your Mashup App
	Install 3DExperience Mashup Builder plugin
	Generate UWA widget
	Setup reverse proxy
	Run Mashup App in 3DDashboard

	Configuring your Mashup App
	Configure the 3DSearch Behavior
	Define the mapping between Facets and 6WTags
	Trigger the App Display in the 3DDashboard
	User Authentication from 3DPassport

	Troubleshooting

	Appendix - Mashup Expression Language
	About Mashup Expression Language
	Syntax
	Simple variables
	Fallbacks
	Dynamic variables and functions
	Operations
	Functions
	Internationalization functions
	Combinations
	Ternaries
	If statements
	Foreach loop statements
	Flags
	Code samples

	Handling Categories, Facets and entries
	About Relative access in a given context
	Sample data
	Facet and Category access
	Entry access
	Result set access
	Feed access
	Request, Cookie and Session MEL Manipulation
	Use cases

