2,
2S NETVIBES | Exalead CloudView

CloudView CV23
Mashup Programmer

Table of Contents

Table of Contents

NPT o 10 o I o o Yo =1 1] 0 1= P 4
L g 1= AT N PP 5
Packaging Custom ComPONENES.. ...t 6
About Developing CUSEOM FEatUIES. .. .ttt et e et e e et et ettt e e et aaeeeeanenes 6
Installing a Development ENVIrONMENE. ...t 6
Developing Components with the CloudView EclipSe PIUGiN......cvuieiiiiiiiiii e e e eeneas 7
Which Mashup cOmMPpONENtS Can YOU AeVEIOP 2. . ..t ettt e r et e e e e e et e e a s et e e e ens 7

LA G | 8
Generate WAR Files for Heavy CUStOMIZation. ... ettt e e e e e e aneaaeas 8
ST U1 =] 0TS 0 9
Generate @ standard WAR file. ... 9
Generate @ Standalone WAR Fil. ... et 10

(8] oTe] g=Te I aTo I o T T A\ LA =T =T =] T o PP 11
Customizing the Mashup Ul ... s re e aa e e aanes 13
Understanding the SDK ArChitECtUNE. ... ettt e e e e e raeees 13
(6] To I BTV [o 01T i oo =P 14
MONITOr the DeVelOPEr ArEa STatUS.t ittt ettt e e et et et e s e s e e et e s e s e et e e e a e e eens 15
Develop and work on a non-packaged Mashup UL ... e e e eas 15

X V] e I o T 1= o 10 o o 4T Yo [N 15
Use the Mashup UL DebUG T00IS. . ..ttt ittt et e s e e e r e s e s e et e s e s e e st e e s a s et e e n e s a e nenenes 15
CUSTOMIZING SEYIE SNEEES (S S) tutiuiitiit ittt ettt e et et e et e e et et e e et e e e et et e et e e e neneaneanans 17
Customizing the MashUp UL LanQUaguuue ittt it e e rae et et e et e e et e e e e e et e st e e e et e e e e a e ee e aneaneennens 17
About INternationalization fEATUNES.ttt 17
1T e 1] = T Lo = o T U= T PPN 18
X (o = T g o = g T 1= T = 18
Manage I18N for MUItiPle @pPPliCatiONS. ettt e e et e et et e aaas 19
[TV o Tl o T 19
Enforcing the AppliCation LangUage. . ..uiiuiii ittt e e e et e et s et e e et e et e e e e e e e e a e en e an e eeennens 20
(@1 r=T= T T T T [=1 = PP 21
LAV L T = Yo = ot =P 22
LAY L T o 4= L = PPN 23
(@05 T Lo I TV T [1= PP 29
(@05 T o= TV T [T i o< Y] = L o PP 30
Implement how tO diSplay SUDWIAGEES.uiuiii i et e e e r e e e e e e r e a e e e e e e n e e e e e nnnnes 31
Update widgets with Mashup AJaX Clent. ..ot e e et e r e s e e e e e r e r e e a e e e e r e rn e eenennns 32
(o0 =] g T o} T PP 33
Creating Collaborative Widgets USiNg StOrage SerVICe......cuiiiriiiiiiiiiiii e reaeeas 34
Creating Collaborative Widgets UsiNg StOrage SeIVICe. ..ttt ittt et ettt e e eaes 35

S e =T TSI Y o LT 0l o 1= PP 37
(o] a1 0 Te] o] 0= = o o P 38
How clients communicate With the StOrage SeIVICE. ..t e et e e e s 39

L@F =Tl T T o= [PPN 44
L8] o O o g L =T 170 =Y T o [45

JAY o 1S o = Lol ol = T T PP 45
L] L= = = 46

(O <t o[o [I T 1= o= PP 47
PN oo 10| ol =TT =T T I I 1<) o T T T =T o 47
=] 10 o T U T o) =T o = = 49
=T LU o B o T =T o 50
(@19 ST 1o [Vo [@0 o o |11 o= PP 53
Create and package @ CONEIOIIErttt e e et e e 53

R =T o To I] o = W oo o o | = o PPN 54
Managing URL REWIIEING . vttt ettt a e e et s s e et e e e e e e 55
L= o L= U o T o T 56
[@0e] a1 T [T I Lo IR = o g T 56

2 - Table of Contents

Table of Contents

Implementing custom layout or templates as PlUGiNS.......iueiriiiii i 58
Using the Mashup API........oiiii e 59
PN Lo T8 o o g L= = =] T T o I o PP 59
Choosing between the Mashup API and the Search APL........oiiiiiiii s 59
AL = LYo 10 I o= o e (o FR OO 59
HOW to ChoOSe Detween the WO APIS.ttt e e 60
Using the Mashup APL Java ClIENE. ... ettt e e e e e et e e e e a e e e e e e nee e enans 61
Where is the Mashup APL @A DOt 2. ..t e e et e e e e s ettt r e s e e et e s e s a e et e e s a e nenenes 61

[(oY o o T 8L = o o Dtq /2N 62
How to send security tokens to @ secured SEarCh APL.........iiiiiiiii e 62

L Lo TV o o T 8T S = (o YT 62
How to configure the max number of concurrent connections to the distant host.........cocoiiiiiii 63
How to configure the stale CONNECTION CRECK.i.i ettt e e e eaeas 63
How to configure a sOCKEet read TiMEOUL. it e e 63
USING the HT TP MasShUp APl ..ttt ettt r ettt e et et e et et et e et et et et e e n e e e e e rnennnas 64
UsiNg the ALOmM OULPUL Ot ettt et e e et e et er e et et e e a e et et e e e et e e e e naeaneeanans 65
L= ST 1= o 65
] =TT g = o 65

=T o YA =Y 1= o =T o 65
=1 = T =Y 1= 0T o | 66
LESTTe B =1 1= 0 0 1= o o PP 66
L1l AT =T g =T o PSPPI 66

[or= =T Lo oV =T 1= g =T o 66
Creating Parallel REQUESES. ...ttt et e e e et e e e et e e e e a e e e et et e e e et e e e e et e e aarans 67
(o] g} 8T g T ale I o L1 = o Tl a1 0 4 1] o) O PP 69
About the Administration APL......coiiiii i e e 72
AdMINISEratioN METNOAS. .. u ittt et e 72
DS r LU LY =T oV ol TR o o= o] o = PPN 73
(o] a)i e 0T = 1ulo] WS} V2] (=] 0 o 1S PP 73

Table of Contents - 3

Mashup Programmer

Mashup Programmer

The Mashup framework is designed to build highly modular front-end applications. The Exalead
CloudView Mashup Programmer's Guide describes how to develop your own applications and to
go beyond the various possibilities offered by Mashup Builder. It gives examples illustrating the
most common customization but does not cover all the possibilities of the framework which are
manifold.

Audience

This guide is mainly destined to software programmers or users with a few programming skills.

Further reading

You might need to refer to the following guides:

Guide for more details on

Mashup Builder building the front-end of your search application.
Widget Reference Mashup Builder widget descriptions.
Programmer Exalead CloudView customization.
Configuration indexing and search concepts, as well as

advanced functionality.

4 - Mashup Programmer

What's New?

What's New?

There are no enhancements in this release.

Mashup Programmer - 5

Packaging Custom Components

Packaging Custom Components

This section describes how to set up your environment and package custom components.
About Developing Custom Features

Installing a Development Environment

Developing Components with the CloudView Eclipse Plugin

Generate WAR Files for Heavy Customization

Upgrading to a Newer Version

About Developing Custom Features

While the most common Mashup Ul customization use cases can be implemented using the
Mashup Builder, it is sometimes necessary to develop your own mashup components.

If your Mashup Ul customizations are:

* minor, we recommend using the Exalead CloudView Eclipse Plugin, which allows you to
package customized items in zip files. For example, if you want to implement custom widgets,
feeds, triggers etc.

* more complex, you need to generate and deploy a complete WAR file. For example, if you
want to implement business logic using controllers on the server, or to enrich the JSP tag
libraries to delegate complex java tasks.

To address these requirements, the Mashup Ul SDK is delivered in the Exalead CloudView kit in
the sdk/java-mashupui directory. It is delivered as a fully standalone Eclipse project, along
with the javadocs of the different APIs.

Installing a Development Environment

Preparing your Development environment consists in:

» installing Eclipse,

 initializing the Mashup Ul SDK,

« and importing the Mashup Ul configuration file as a project in Eclipse.

You must have the following software on your machine:

» Java JDK 1.8 or higher (http://www.oracle.com/technetwork/java/javase/downloads/index.html)

» Eclipse IDE for JAVA EE Developers Edition 3.6 or higher (http://www.eclipse.org/downloads/)

6 - Mashup Programmer

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/

Developing Components with the CloudView Eclipse Plugin

* Apache Tomcat server 7 or higher (http://tomcat.apache.org/)

Important: To let the Tomcat server know where the license is stored, export the CVLICENSE
environment variable with the command: export CVLICENSE=<path to license.dat>

1. Gotoyour <INSTALLDIR>/sdk/java-mashupui/project directory
2. Initialize the SDK with the following:

run init-sdk.<bat/sh> depending on your operating system,
define the hostname of the Exalead CloudView instance,

define the port number of the Exalead CloudView instance,

define the Application id (for example, "default"),

® a 0o T P

enter the admin login and password.

A development.properties file is generated in: <INSTALLDIR>/sdk/java-mashupui/
project/war/WEB-INF/config. The SDK can now communicate with Exalead CloudView
to read the configuration and work with the Mashup API.

3. Import the Exalead CloudView mashup project into Eclipse:
a. Select File > Import and browse to your <INSTALLDIR>/sdk/java-mashupui directory.

b. Select the project and click Finish.
The mashup project is added to the eclipse Project Explorer.

4. Add the Apache Tomcat server into Eclipse:
a. Select File > New > Server
b. Define your Apache Tomcat server as a new server.
5. Run the Exalead CloudView project as "Tomcat Server", and go to: http://
localhost:8080/mashup-ui

The Mashup Ul opens.

Developing Components with the CloudView Eclipse Plugin

The Exalead CloudView Eclipse plugin is provided to help you develop and deploy plugins in
Eclipse Indigo 3.7 or later. The documentation is packaged with this plugin and is available at
http://eclipse.exalead.com

Which Mashup components can you develop?

Use the Exalead CloudView Eclipse plugin to develop and deploy as zip files your own Mashup
components:

Mashup Programmer - 7

http://tomcat.apache.org/
http://eclipse.exalead.com
http://eclipse.exalead.com

Why use it?

+ Widgets

+ Feeds

* Feed Triggers

* Mashup Triggers

* Pre-Request Triggers
» Security Providers

You can also develop custom components for Exalead CloudView core. For example,
connectors, document processors, prefix handlers, security sources, etc.

Why use it?

« Easy deployment — If you use your Mashup Ul application within your Exalead CloudView
environment, you can package your plugin with customized components to be exported and
deployed automatically on the selected Exalead CloudView instance.

If you want to deploy the Mashup Ul outside of the Exalead CloudView environment, this
avoids rebuilding and redeploying the 360-standalone-mashup-ui.war package for each
customized item.

» Quick export — You can package your plugin with classes that you want to export and then
export it as a zip file on a selected path.

* Manage installs — You can list the deployed plugins on a selected instance of Exalead
CloudView and then select the plugins to remove.

Generate WAR Files for Heavy Customization

If you need to make heavy customization on your Mashup Ul applications that cannot be covered
by adding a few custom plugins as zip files, you will have to compile the sources and regenerate a

.war file.
Our framework allows you to generate:

+ Astandard .war file if you intend to use your Mashup Ul application within your Exalead
CloudView environment.

+ A standalone .war file (embedding the 360 configuration) if you want to deploy the Mashup Ul
outside of the Exalead CloudView environment.

Requirements

Generate a standard WAR file

8 - Mashup Programmer

Requirements

Generate a standalone WAR File

Requirements

Tools

You need to have the following tools properly installed and configured to recompile the sources
and generate a .war file:

* javac, the java compiler found in the jdk

« ant (http://ant.apache.org)

Supported application servers

This section lists the supported platforms when deploying the Mashup Ul outside of the Exalead
CloudView environment.

Platform Level of support
Apache Tomcat 6 Validated

Apache Tomcat 7 Compatible

Jetty 8 Validated

See http://www.3ds.com/fileadmin/Support/Documents/Platform-support-
policies.pdf for Dassault Systémes support policy.

Generate a standard WAR file

Configuration files for MashupUI/360/Exalead CloudView are fetched from the file system.
Therefore, we recommend using a standard WAR file when the deployment server has file
system access to Exalead CloudView configuration folders. Changes made to the Mashup Ul
configuration are immediately reflected in the application, no redeployment is needed.

1. Goto your <INSTALLDIR>/sdk/java-mashupui/project directory.

Note: If you want to move your project to another instance, you have to edit the /WEB-INF/
config/development.properties config file which is automatically filled when you run
init-sdk.sh. For more details, see step 2 in Installing a Development Environment.

Run cloudview-war.<bat/sh> depending on your operating system.

3. Copythe 360-cloudview-mashup-ui.war file into the webapps directory of your Exalead
CloudView instance (<DATADIR>/webapps).

4. Go tothe <DATADIR>/config directory and open the Deployment . xml file.

Mashup Programmer - 9

http://ant.apache.org

Generate a standalone WAR File

Find the <Role> named "MashupUI" and add:

In your <DATADIR>/bin directory, run the following script to apply the configuration files:
cvcmd.sh applyConfig

7. Restart Exalead CloudView.

Generate a standalone WAR File

It is possible to generate a standalone WAR file embedding the 360 configuration. This allows you
to deploy the Mashup Ul outside of the Exalead CloudView environment, for example, on another
server.

To use the war with Tomcat, edit the <installdir>/sdk/java-mashupui/project/war/
WEB-INF/web.xml file, and:

* Delete (or comment) the Gzip filter specific to Jetty.

<l--
<filter>
<filter-name>&ipFilter</filter-nane>
<filter-class>org.eclipse.jetty.servliets. &ipFilter</filter-class>
<init-paranp
<par am name>ni neTypes</ par am nane>
<par am val ue>text/htm , text/plain,text/xm, application/xhtm +xm ,text/css,
appl i cation/javascript, application/ x-javascript,imge/ svg+xnl </ param val ue>
</init-paranp
</[filter>
<filter-mappi ng>
<filter-name>GzipFilter</filter-nanme>
<url-pattern>/*</url -pattern>
</filter-mappi ng>
S

* Delete (or comment) the default servlet.

<l--
<servl et >
<ser vl et - nanme>def aul t </ ser vl et - nane>
<servl et-class>org. eclipse.jetty.servlet.DefaultServlet</servlet-class>
S
<I--
servl et paraneter to solve |ocked files on w ndows
More information https://ww. eclipse.org/jetty/docunentation/9.4.x/
t roubl eshooti ng-1 ocked-fil es- on-w ndows. ht n
-->
<l--

<init-paranp
<par am nane>useFi | eMappedBuf f er </ par am nane>

10 - Mashup Programmer

Upgrading to a Newer Version

<par am: val ue>f al se</ param val ue>
</init-paranr
<l oad- on- st artup>0</| oad- on-start up>
</servlet>
-->

1. Gotoyour <INSTALLDIR>/sdk/java-mashupui/project directory.

2. Run standalone-war.<bat/sh> depending on your operating system.

This prepares a 360-standalone-mashup-ui.war file with an embedded 360
configuration.

3. Copy the 360-standalone-mashup-ui.war into the serving path of your remote javax-
compatible Web Server.

4. Start the Mashup Ul.

Important: Redeploy the application every time you change the configuration through the
Mashup Builder. The configuration is read-only in standalone mode.

Upgrading to a Newer Version

The Exalead CloudView migration option launched during the installation process, for example,
./install.<bat/sh> -migrate, automatically includes all the components of the Exalead
CloudView solution as well as configuration updates.

The migration option cannot migrate the custom code that you may have developed and deployed
in <DATADIR>/webapps/360-mashup-ui.

During the installation process:

1. The system detects that you have an existing Mashup Ul application and moves it to
webapps/360-mashup-ui.old.

2. A new instance of the application is then deployed to the webapps/360-mashup-ui directory.
To migrate your custom code on the new application you have to copy back:

» Resources (stylesheets, images, javascript)

» Custom widgets

* Custom jar files

» Custom JSP files and tags

To ease the migration process, a good practice is to always make your custom code “visible”. For
example, instead of:

« modifying the style.css file, create a new file that just contains your rules.

Mashup Programmer - 11

Upgrading to a Newer Version

* modifying a deployed widget, copy it first to create your very own widget.

These good practices can significantly speed up the migration process.

12 - Mashup Programmer

Customizing the Mashup UI

Customizing the Mashup UI

This chapter describes how to create or customize all Mashup Ul components using the Mashup
Ul SDK

Understanding the SDK Architecture
Using Developer Tools

Customizing Style Sheets (CSS)
Customizing the Mashup Ul Language
Enforcing the Application Language
Creating Widgets

Creating Collaborative Widgets Using Storage Service
Creating Feeds

Creating Triggers

Creating Controllers

Managing URL Rewriting

Implementing custom layout or templates as plugins

Understanding the SDK Architecture

The Mashup Ul SDK architecture (in <INSTALLDIR>/sdk/java-mashupui/) is based on the
following conventions. Only key components are described here.

Directory /sub-dir Contains...

docs The javadocs of the different APIs including the Widget Reference
documentation.
project Project root
lib/ Exalead CloudView related libraries, already available in the global

Exalead CloudView classpath.

src—-core/ Sources root.

* com/exalead/cv360/searchui/mvc/controller: Application
controllers

Mashup Programmer - 13

Using Developer Tools

Directory /sub-dir Contains...

° MashupController.java: Main controller (establishes
connection with Mashup API and render pages

° ConnectController.java: Security / Authentication
controller

* com/exalead/cv360/searchui/view/wi: JSP Template tags

* widgets/tagcom/exalead/cv360/searchui/helper: Simple
helper classes

* com/exalead/cv360/searchui/services: Mashup services
for trigger and resource management
war/ Public content root.
* WEB-INF/: Web application code and configuration

o web.xml: Web application deployment file which contains
information about enabled servlets and filters

o urlrewrite.xml: URL rewriting rules (advanced). Enable the
URL Rewriting filter in the web . xm1 before use.

o 1ib/:Java libraries needed ONLY by this web application

o Jsp/: JSP pages. widgets/: Contains all the widgets. For each
widget, we have a widget.xmlfile (Widget definition file) and a
widget. jsp file (Widget JSP code)

o 118N/: Contains language definition files for internationalization.
* resources/: Application assets

o css/: Global application stylesheet

o Javascript/: Global application javascript libraries

o images/: Global application images

Using Developer Tools

Mashup Builder includes several tools that can be useful to develop and debug your own search
applications.

14 - Mashup Programmer

Monitor the Developer Area status

Monitor the Developer Area status

1. In Mashup Builder, click Application and select Developer area.

2. Look at the Overview section.

The tab displays a list flagging the various indicators status.
Note: You can click Refresh to get up-to-date status views.

3. From the Actions section, click Check global configuration to display the elements that are
not configured as expected for production.

Develop and work on a non-packaged Mashup Ul

To test your custom components (widgets, feeds, etc.) in a development environment like Eclipse,
it is very useful to define a workshop Mashup Ul. It allows you to test your components before
deploying them on your Exalead CloudView instance.

1. In Mashup Builder, click Application and select Developer area.
2. In Mashup Ul URL, enter the URL of your workshop Mashup UlI.

Switch to Debug mode

1. In Mashup Builder, click Application and select Developer area.

2. Inthe Mashup Ul section, select Mashup Ul debug mode.
Results:
o The Messages panel displays that The Mashup Ul is currently in debug mode.

> On the Mashup Ul, a Debug bar appears at the bottom of your search application pages.

Use the Mashup Ul Debug tools

When the Development mode is on in the Mashup Builder, the Mashup Ul displays a Debug bar at
the bottom of your search application pages.

Debug: | N8N | Widgets | Templates | Timeline | English, American v

Click to...

118N Highlight the internationalization elements.

1. Select the language for which you want to edit the internationalization.

Mashup Programmer - 15

Click

Widgets

Templates

Timeline

Use the Mashup UI Debug tools

to...

2. Hover above highlighted elements to see and edit the text that can be
translated.

Editing the text through the interface updates the MashupI18N.xml file, then,
when [18N is reloaded it:

» (For edits on a specific language only) creates an
application {lang}.properties file.

* (For edits on ALL languages) edits the application.properties file.

See also Manage 118N for multiple applications.

Important: Do not modify the application.properties file directly!

Highlight the various widgets used in the page. When you hover over one of them,
you can see:

* its name (as defined in the widget .xml files) and WUID
» the path of its JSP file template

* the feeds it uses

Highlight the various JSP components used in the page.

When you hover over one of them, you can see its full path. This saves time to find
the JSP that must edited for a given component.

Open a reporting screen if Reporting was enabled in the Mashup Builder in
Application > Application Properties menu, and/or in Application > API
Properties:

» The mashup-ui-reporting collects data relative to task execution and to CPU
activity on the Mashup Ul. For example, when a user queries a page, the
reporter retrieves data such as the execution and CPU time of pages, widgets
and triggers.

» The mashup-api-reporting reporter collects data relative to feeds, subfeeds
and triggers execution. This reporter allows you to understand explicitly the
feed execution process, with subfeeds and triggers and to identify possible
problematic issues.

16 - Mashup Programmer

Customizing Style Sheets (CSS)

Customizing Style Sheets (CSS)

One of the most common cases of user interface customization is to make the application look
and feel the way you want. Even if some of these simple style issues can be fixed by changing the
Image widget or adding a few CSS rules with a Custom CSS widget, sometimes you need to go
further and make changes in the style of the application.

All the Mashup Ul stylesheets are under the same global resource directory, located at:

<DATADIR>/webapps/360-mashup-ui/resources/css

Note: Each widget may declare additional stylesheets that are usually located under their css/
directory: <DATADIR>/webapps/360-mashup-ui/WEB-INF/jsp/widgets/<WIDGET
NAME>/css

Customizing the Mashup UI Language

This section describes how to customize the Ul language using 118n.
About Internationalization features

Set default language

Add a new language

Manage 118N for multiple applications

Develop with 118N

About Internationalization features

Text labels and headings can be externalized into resource bundles, allowing the Mashup Ul
internationalization features to automatically display web pages in the appropriate language.

Three resource bundle files are used:

* messages_en.properties for English,

* messages_fr.properties for French,

* and messages.properties, the default used if no other file is found.

The following files contain key-value pairs representing text for the web pages in different
languages, for example:

* messages en.properties with application.name=hello world

* messages fr.properties with application.name=bonjour monde

Mashup Programmer - 17

Set default language

* messages.properties With application.name=hello world

Important: All properties defined in the widget's messages*.properties (/WEB-INF/jsp/
widgets/*/messages*.properties) will override global properties defined in /WEB-INF/i18n/
messages®.properties. The override mechanism is case-sensitive.

Set default language

You can change the Mashup Ul default language in the product configuration. For example, to
change the default language to French, set the value to fr.
1. Goto <INSTALLDIR>/sdk/java-mashupui/project/war/WEB-INF/ directory.
2. Editthe 360-search-ui.xml file.
3. To set a default language:
a. Uncomment the defaultLocale property

Set its value to the ISO language of your choice.

<bean id="localeResolver" class="org.springframework.web.servlet.il8n.CookieLoc:
<!--<property name="defaultLocale" value="en"/>-->
</bean>

Note: If necessary, you can also specify the country code of the language. For example,

en_US represents U.S. English.

4. Save and close the file.

Go to Administration Console > Home page and restart the search server in the list of
Processes.

Add a new language

We recommend maintaining all Ul labels in a centralized messages <ISO NAME .properties
file. Changing labels using the Debug mode 118n tool, as described in Using the Mashup Builder
Developer Tools, is not recommended, as it saves changes in another file.

» Do not configure your internationalization resources in the application.properties file.

+ Editing the messages*.properties located in <INSTALLDIR>/sdk/java-mashupui/
project/war/WEB-INF/118n/, willimpact the whole Mashup Ul.

» To make a change for a specific widget only (for example, change a specific meta label), edit
the messages*.properties file located in the widget’s folder. The widget-specific file will
override the global one.

18 - Mashup Programmer

Manage 118N for multiple applications

Create a new *.properties file

1. Goto <INSTALLDIR>/sdk/java-mashupui/project/war/WEB-INF/il18N

2. Copy the message.properties file to create a new messages <ISO NAME
>.properties file.

Configure the UI labels

Edit the messages <ISO NAME .properties file
Edit the existing meta or facet label value you want to display in the UI.

3. To add a new meta, prefix it by meta and use the following format: meta <new meta>=<UI
label> For example, meta publicurl = Public URL

4. To add a new facet, prefix it by facet and use the following format:
facet <facet Root>=<UI label> Forexample, facet Top/classproperties/
file folder=File folder

Save and close the file.

Go to Administration Console > Home page and restart the search server in the list of
Processes.

Manage I18N for multiple applications

If you have multiple Mashup Ul applications made with a single Exalead CloudView instance, use
the MashupI18n.xml file of each application to control its localization.

1. Gotothe <DATADIR>/config/360/applications/<app-name>/*

2. Editthe MashupI18n.xmnl file of the application as needed. The following sample shows an
application with two languages.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<Mashupl 18N xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
fal | backOnNor mal i zedFor m"t rue" xsi: noNamespaceSchemalLocati on="">
<Messageli st |ang="fr">
<Message message="Suggestions activées" code="nhoresults.suggesti onEnabl ed"/ >
</ Messageli st >
<MessagelLi st | ang="en">
<Message nessage="Suggesti ons enabl ed" code="noresults. suggesti onEnabl ed"/>
</ Messageli st >
</ Mashupl 18N>

Develop with I18N

This procedure gives the main steps to develop your own 118N features.

Mashup Programmer - 19

Enforcing the Application Language

1. You must first add the <SupportI18N> tag in the widget.xml, as shown below.
<W dget nane="W dget nane">

<Support | 18N supported="true" />
</ W dget >
This <SupportI18N> xmltag allows all mnessages*.properties files located in the widget
folder to be loaded by the I118NLoader automatically.

2. Convert JSP pages using the <i18n:message> tag from the i18n tag library.
<U@taglib prefix="i18n" uri="http://ww. exal ead. com j spapi /i 18n" %

The <i18n:message> tag is a subset of the Spring <spring:message> tag (see
http://static.springsource.org/spring/docs/3.0.x/javadoc—api/org/
springframework/web/servlet/tags/MessageTag.html)

<i 18n: message code="application. nane" text="hola rmundo" />

If the application.namekey is undefined in all properties files, the text=""attribute is used
as backup.

3. By convention, all metas are prefixed by meta and facets by facet . To get consistency
when displaying meta and facets between all widgets, you must set the following:
<i 18n: message code="neta_${netaNane)}" text="${netaName}" />
<i 18n: message code="facet _${fn:replace(category.path, ' ', ' ")}" text="${category
4. 118N can be used server-side like in a custom controller. To achieve this, you need the
ServletContext and the HttpServletRequest, for example:

i mport java.util.Local e;
i mport org.springframewor k. cont ext. MessageSour ce;
i mport org. springframewor k. web. cont ext . support. WbAppl i cati onCont ext Uil s;
MessageSour ce nmessageSour ce = (MessageSour ce) WebApplicati onContext Uil s. get WebApp
(t hi s. pageCont ext . get Ser vl et Cont ext ()) . get Bean(" messageSour ce");
Local e | ocal e = Request ContextUtils. getLocal e((HttpServl et Request) this. pageCont
String str = | 18NLoader . get Message(nessageSource, "application. nane", "hola nmund
Systemout.println(str);

Enforcing the Application Language

The Mashup Ul uses by default the 118N Trigger at the application level, that is to say that it is
executed for all pages. This trigger forwards a 1ang parameter to the Mashup API with the current
locale of the Mashup UL.

Otherwise, the default configuration of theMashup Ul is to use a LocaleResolver called
CookieLocaleResolver. This is a Spring interface that will:

20 - Mashup Programmer

Creating Widgets

+ either send the locale stored in a cookie (/mashup-ui/lang/{locale}), which is created
when the user selects a language, for example, when using the language selector widget.

+ or, if there is no cookie, send either:
o the default language (none set by default)
o or the request's accept-header locale, which is the browser's language.

This resolver is configured in <DATADIR>/webapps/360-mashup-ui/WEB-INF/360-search-

uli.xml:

<bean id="localeResolver" class="com.exalead.cv360.searchui.handler.CookielLocaleResol
<!-—<property name="defaultLocale" value="en"/>-->

<property name="cookieName" value="clientlanguage"/>

<property name="cookieMaxAge" value="100000"/>
</bean>

You may want to modify the LocaleResolver to enforce the language so that it will not be
determined by the browser or be editable by users. Note that several implementations are
available out-of-the-box:

* AcceptHeaderLocaleResolver — uses the primary locale specified in the "accept-
language" header of the HTTP request.

* FixedLocaleResolver — always returns a fixed default locale.

* SessionLocaleResolver — uses a locale attribute in the user's session in case of a custom
setting, with a fallback to the specified default locale or the request's accept-header locale.

* CookieLocaleResolver — uses a cookie sent back to the user in case of a custom setting,
with a fallback to the specified default locale or the request's accept-header locale.

Creating Widgets

This section describes how to create, implement and update widgets.
Widget architecture

Widget manifest

Create a widget

Create a widget template

Implement how to display subwidgets

Update widgets with Mashup Ajax Client

Troubleshooting

Mashup Programmer - 21

Widget architecture

Widget architecture

Widget Manifest and Logic

For each widget, there is a <widgetName> directory located in: <DATADIR>/webapps/360-
mashup-ui/WEB-INF/Jjsp/widgets

Each widget has at least two files:
* widget.xml

The manifest, describing the widget and its options (used by the Administration Console).
* widget.]jsp

The actual widget logic, using JSP.

The Tag Library Descriptors (TLD) documentation is available in the following directory:
<INSTALLDIR>/sdk/java-mashupui/project/doc/tld

Tip: If you have installed the Eclipse Plugin, you can open these TLDs from the Project
Explorer panel. Right-click MashupUI and select CloudView Mashup > Open tag libraries
documentation.

The Widget Reference documentation, which lists all available predefined widgets, is available in:
<INSTALLDIR>/sdk/java-mashupui/project/doc/widget-reference/index.html

Tip: If you have installed the Eclipse Plugin, you can open the widget reference documentation
from the Project Explorer panel. Right-click MashupUI and select CloudView Mashup > Open
widgets documentation.

Resources

A Widget can also contain resources such as images, JavaScript, CSS and so on. These
resources must be located in sub-folders of the widget directory, for example:

* images/

° test-image.png
* css/

°© style.css
* Js/

° gcript.js

Theses resources can be accessed through a conventional URL:

22 - Mashup Programmer

Widget manifest

http://<HOSTNAME>:<BASEPORT>/<CONTEXT PATH>/resources/widgets/

<widgetName>/<sub-directory>/<resourcename.ext>
Example:

http://localhost:10000/mashup-ui/resources/widgets/myWidget/images/test-

image.png

You can refer to them in your widget JSP code with a relative path, using the tag <wh:resource
path="path/to/resource" />

Example:

<wh:resource path="images/test-image.png" />

Libraries

The <widgetName>/11ib/ directory can contain a set of packaged JAR files. For example, you
can add the jar of a controller under:

* myWidget/
o 1lib/

myController.jar

Note: This is just an example. You do not necessarily need to create a widget to embed a
controller. For more information about controllers, see Create and package a controller.

Widget manifest

Let’s take a look at a simple widget in , Hello World, to understand how a widget is structured:

widget.xml

The Widget Manifest file is required to create widgets in the Mashup Builder. For example, the
Hello World Widget Manifest file is as follows:

<xml version="1.0" encoding='UTF-8'>
<Widgetl name="Hello World" group="Style Tools">
<Description2> Widget description</Description>
<Preview3>
<! [CDATA[
<h2>Hello World</h2>
11>
</Preview>
<Includes4>
<Include type="css" path="css/style.css" />
<Include type="css" path="/resources/static/css/style.css" />

Mashup Programmer - 23

</Includes>
<SupportWidgetsId5 arity="ZERO OR MANY" />
<SupportFeedsId6 arity="MANY" />
<SupportIl18N7 supported="true" />
<OptionsGroup8 name="Configuration">
<Option9 id="person" name="Person" arity="ONE">
<Descriptionl(O>Person you want to say Hello to</Description>
<Valuesll>
<Value>World</Value>
<Value>Tintin</Value>
</Values>
<Functionsl2>
<ContextMenul3>Pages () </ContextMenu>
<Displayl4>SetHeight (3)</Display>
<Checkl15>1isPageName</Check>
</Functions>
</Option>
</OptionsGroup>
<DefaultValuesl6>
<DefaultValue name="person">World</DefaultValue>
</DefaultValues>
</Widget>

This file contains the following information:
Element/tag Description

1 Widget name: The widget’s user friendly name.

Widget manifest

Declaration group: The widget's group name (can be hierarchical using slashes); used to

group similar widgets in the Mashup Builder.

2 Description The widget’s description.
3 Preview The preview can contain any text or HTML embedded using CDATA tags.
4 Includes List of widget assets to inject in the page.

* type: The type of the asset (css or js).

* path: Path of the resource. The path can be relative to the widget (for
example, css/style.css) or absolute (for example, /resources/

static/css.style.css).

5 SupportWidgetslDefines how this widget supports sub widgets.
arity: ZERO, ZERO OR_MANY, ONE, MANY

If you want to restrict the possibilities of sub widgets types, you can nest
Widgetld tags to describe them: <WidgetId>tabContent</WidgetId>

24 - Mashup Programmer

Widget manifest

Element/tag

Description

6 SupportFeedsld Defines how this widget supports feeds.

7 Supportl18N
8 OptionsGroup
9 Option

10 Description

11 Values

12 Functions

13 ContextMenu

arity: ZERO, ZERO_OR_MANY, ONE, MANY

If you want to restrict the possibilities of feed types, you can nest FeedId tags
to describe them: <FeedId>myFeed</FeedId>

Widget internationalization support.

supported: Boolean value to enable internationalization

Declares an Option Group (displayed as a tab in the widget configuration).

name: Option group name

Declares a widget Option.
« id: Internal ID of the option, to be used to retrieve the option value
* name: Displayable name of the option

« arity:ZERO, ZERO_OR_MANY, ONE, MANY
User-friendly option description.

Declares the option's value(s). Declaring several values will create a selection
box.

A container to describe this Option's expected display, behavior, error
checking, etc.

Use this tag to specify the types of functions that will be available in the Value
tab of the dynamic list displayed on the left of the widget properties panel:

+ addContext(name, values): Appends a custom context to the
dynamic list. The context is defined with names and values. For
example, list ["a", "b"] or [{display:"A",value:"a "},
{display:"B",value:"b "}]

« Aggregations(facetOptionld): Gets all facet aggregations, for example,
count, score etc. Optionally you can use facetOptionId to specify the ID
of the option that contains the facet aggregation you want to retrieve.

« ApiCommand(): Gets all the search APl commands of all Search API
configurations (see > Search API).

» ApiConfig(): Gets the names of all the Search API configurations (see
Adminstration Console > Search API). For example, sapi0, sapil,
sapiz2, etc.

Mashup Programmer - 25

Element/tag

Widget manifest

Description

appendOnChange(str): A click of the user on the dynamic list, will append
the specified string to the active input.

Cookies(): Displays how to access the attributes of the dynamic
list > Cookies parameters node in Mashup Expression
Language. For example, the name attribute is accessed via the

${cookies[' cookieName '].name} expression.

DataModelClass(): Gets a list of all data model classes (see
Administration Console > Classes).

DateFacets(): Gets all Date facets from the feeds used by the widget.

emptyOnChange(): A click of the user on the dynamic list, will remove the
current value of the option before setting the clicked value.

EntryVariables(): Displays how to access the variables of an entry in
Mashup Expression Language.

Eval(): Gets all possibilities evaluated by the widget.
EvalCategory(): Gets all possibilities evaluated by the category.
EvalFacet(): Gets all possibilities evaluated by the facet.
EvalMeta(): Gets all possibilities evaluated by the meta.

Facets(facetType, refinementPolicy): Gets all facets from the feeds used
by the widget. facetType can be a string 'DATETIME' or an array
['DATETIME', 'NUMERICAL']

Feeds(): Gets the feeds called by the widget.

FeedVariables(): Displays how to access the variables of a feed in Mashup
Expression Language.

Fields(): Gets all the virtual fields, numerical fields and RAM-based fields
from the feeds used by the widget.

GeoFacets(refinementPolicy): Gets only Geographical facets from the
feeds used by the widget.

Hierarchical2DFacets(refinementPolicy): Gets only Hierarchical2D
facets from the feeds used by the widget.

118N(): Displays how to access the attributes of the dynamic list >
Internationalization and localization parameters node in Mashup
Expression Language. For example, the code attribute is accessed via the
${i18n[' code ']} expression.

26 - Mashup Programmer

Widget manifest

Element/tag Description

+ JsKeys(): Gets a list of all the 18N jskeys available.
* Metas(): Gets all metas from the feeds used by the widget.

+ MultiDimension2DFacets(refinementPolicy): Gets Multi-dimension 2D
facets from the feeds used by the widget.

« MultiDimensionFacets(refinementPolicy): Gets Multi-dimension facets
from the feeds used by the widget.

+ NormalFacets(refinementPolicy): Gets only Category facets from the
feeds used by the widget.

* NumericalFacets(refinementPolicy): Gets Numerical facets from the
feeds used by the widget.

+ PageParameters(parameterld): Displays how to access the attributes
of the dynamic list > Page parameters node in Mashup Expression
Language. For example, the lang attribute is accessed via the
${page.params['lang']} expression.

+ Pages(): Gets the names of available pages.
+ PageVariables(): Displays how to access the variables of a page in MEL.

* QueryPrefixes(): Gets all the query prefix handlers of the search logics
(see Administration Console > Search logics > Query Language).

* Reporters(): Gets all the reporters defined in Administration Console >
Reporting).

* Request(): Displays how to access the attributes of the dynamic list >
Request parameters node in Mashup Expression Language. For example,
the authPath attribute is accessed via the ${request.authType}
expression.

+ SearchLogics(): Gets a list of all Search Logics (see Administration
Console > Search logics).

« SearchTargets(): Gets a list of all Search Targets (see Administration
Console > Build Groups > Search targets).

+ Security(): When the user is logged in, it gets all user-related information
(the token, the user name and the display name).

+ SecuritySources(): Gets a list of all Security Sources (see Administration
Console > Security Sources).

+ SelfMetas(): Gets the metas of the current feed only.

Mashup Programmer - 27

Element/tag

14 Display

15 Check

Widget manifest

Description

Session(): Displays how to access the attributes of the dynamic
list > Session parameters node in Mashup Expression Language.
For example, the creationTime attribute is accessed via the

${session.creationTime} expression.
Sorts(): Gets all the feed elements that can be sorted.
SubMetas(): Gets the current subfeed metas.

SuggestNames(): Gets the names of all the suggests and suggest
dispatchers (see Administration Console > Suggest).

SuggestServices(): Gets the complete URLs of all the suggests and
suggest dispatchers (see Administration Console > Suggest).

WUIDS(): Gets a list of this page Widget’s unique IDs.

Use this tag to specify how the property will be displayed. For example, you
can force the property to act as a select box, force it to act as an input (default
is Text area), force it to act as a password input, etc.

Code Editor: Transforms the property's input field into a code editor
Number: Transforms the property's input field into a number input field.

Password: Transforms the property's input field into a password input field
(encrypted).

Radio: Transforms the property's input field into a radio button.

SetHeight: Sets the minimum height (in terms of lines) of the option's input
field.

TextEditor: Transforms the property’s input field into a rich text editor.
TextArea: Transforms the property's input field into a text area field.

ToggleDisplay: Shows/hides properties conditionally depending on the
selected property value. For example, value1 of PropertyA will display
PropertyB and PropertyD, value2 will display PropertyB and PropertyC.
You need to set: * the value to match (using the valueToMatch and
ifEquals attributes) * the options to hide (in hideOptions) * the options
to show (in showOptions).

Error checking functions to validate user input.

isinteger: Checks that the value is an integer and displays an error
message if not.

28 - Mashup Programmer

Create a widget

Element/tag Description

+ isAlphanum: Checks that the value is a chain of alphanumerical
characters and displays an error message if not.

+ isPageName: Checks that the value is a page name and displays an error
message if not.

+ isEmpty: Checks that the value is NOT empty and displays an error

message if it is the case.

16 Default Values Specifies the default value of the option (one of the values specified for the
"Value" element).

widget.jsp

The actual code of the widget is pretty simple too, for example:

<%Q@ taglib prefix="tiles" uri="http://tiles.apache.org/tags-tiles" %>1
<%@ taglib prefix="wh" uri="http://www.exalead.com/widgets-helpers"%>2
<tiles:importAttribute name="widget" />3

<h2>${wh:getOption (widget, 'person')4}</h2>

The file contains the following functions:

+ Import of the tiles functions (required to retrieve our widget configuration).

* Import of the widget helpers functions (useful to manipulate widgets).

+ Import of the "widget" variable (our widget configuration) into the current scope.

» Retrieval of the "person" option value.

Create a widget

This section explains how to create a new widget. Read the previous sections to get information
on the two main widget components, the widget . xml file and the widget. jsp file.

Create a widget manually

1. Start by creating a new directory for your widget.
2. Describe itin the widget .xml file.
3. Add the logic in the widget. jsp file.

Your widget should appear automatically after reloading the widgets in the Mashup Builder, and
should be ready to be used.

Mashup Programmer - 29

Create a widget template

Note: JSP files are compiled at the application startup. Changing a .jsp file requires restarting the
searchserver.

Create a widget using the Eclipse plugin

Using the Eclipse plugin is more convenient as the widget is created with all required files at once.

1. In the Eclipse Project Explorer panel, right-click a Mashup Ul project.
2. Select New > Other. A wizard dialog box opens.
3. Select CloudView Mashup Components > Mashup-Ul widget and click Next.
4. Define your widget general configuration:
a. Specify a source folder. Widgets are usually stored under <project>/war/WEB-INF/
jsp/widgets
b. Giveita name.
c. Specify in which widget group this widget must be filed.
5. Click Finish.

The new widget is added to the selected project in the Project Explorer panel.

6. Edit the widget file as needed.

Create a widget template

You can customize the look-and-feel of several standard widgets supporting templates (for
example, the Result List and HTML widgets), by creating and referencing your own widget
templates.

These templates must be JSP files, that can either include specific HTML codes or reference CSS
files.

Reference a JSP file in the Result List widget

1. In Mashup Builder, go to the /search page and select the Design view.

2. Click the header of the Result List widget.

3. On the widget properties panel, go to the Hit templates tab.

4. Inthe Hit JSP template field, enter the absolute path of your custom JSP file.

For example: /WEB-INF/jsp/custom. jsp
Reference a JSP file in the HTML widget

1. In Mashup Builder, open a page and select the Design view.

2. Drag the HTML widget to the Design view.

30 - Mashup Programmer

Implement how to display subwidgets

3. On the widget properties panel, go to the Advanced tab.
4. Inthe JSP file path field, enter the absolute path of your custom JSP file.

For example: /WEB-INF/jsp/custom. jsp

Implement how to display subwidgets

You may want to include widgets within other widgets, this is what we call subwidgets.
You can choose between two modes to display subwidgets in widget containers:
» List mode (default behavior), to display subwidgets in a list, one after the other.

+ Layout mode, to display subwidgets in rows and columns. For example, see the Tab and
Table widgets.

Once the widget is packaged with the required code in the widget.xml and widget. jsp files,
a new Edit Widget Layout entry is available in the widget menu, to let you customize the layout,
exactly like a page.

Display subwidgets in List mode

widget.xml

<SupportWidgetsId arity="ZERO OR MANY" displayType="LIST" />
€== gE ==>
<SupportWidgetsId arity="ZERO OR MANY" />

widget.jsp

<%@ taglib prefix="render" uri="http://www.exalead.com/jspapi/render" %>
<%@ taglib prefix="widget" uri="http://www.exalead.com/jspapi/widget" %>

<%-- Iterate and render all subwidgets --%>
<render:subWidgets />
<%$--Iterate and render all subwidgets for a specific entry --%>

<widget:forEachSubWidget widgetContainer="${widget}" feed="${feed}" entry="S${entry}"
<render:widget />
</widget: forEachSubWidget>

Display subwidgets in Layout mode

widget.xml
<SupportWidgetsId arity="ZERO OR MANY" displayType="LAYOUT" />
widget.jsp

<%@ taglib prefix="render" uri="http://www.exalead.com/jspapi/render" %>
<%Q@ taglib prefix="widget" uri="http://www.exalead.com/Jspapi/widget" %>
<render:import varWidget="widget" varParentEntry="parentEntry" varParentFeed="parentF

Mashup Programmer - 31

Update widgets with Mashup Ajax Client

<render:definition name="tableLayout">

<render:parameter name="prefix" value="${widget.wuid}" />
<render:parameter name="layout" value="${widget.layout}" />
<render:parameter name="parentFeed" value="${parentFeed}" />
<render:parameter name="parentEntry" value="${parentEntry}" />
</render:definition>

Update widgets with Mashup Ajax Client

Below are examples on how to:

Let's consider the following page:

<div class="container">
<div class="wuid djH4dg djH4dg 0 page">
<div class="wuid jkg934f jkg934f 0 cloudview">
</div>
<div class="wuid jkg934f jkg934f 1 cloudview">
</div>
</div>
</div>

The $ ('.container') parameter shown in the following code snippets, is the starting point for
all DOM lookup by the client. For performance reasons, it should be as close as possible to the
widgets that will be updated. If omitted, the whole body of the page will be used.

Update all subwidgets

The widget container has the wuid jkg934f

var client = new MashupAjaxClient ($('.container'));
client.addWidget ('jkg934f"') ;
client.update();

Update the top widget

Here the widget at the top of the widget container has the wuid djH4dg

var client = new MashupAjaxClient ($('.container'));
client.addWidget ('djH4dg") ;
client.update();

Update a specific subwidget with extra parameters

Here the subwidget has the wuid jkg934f 1 cloudview

var client = new MashupAjaxClient ($('.container')):;
client.addWidget ('jkg934f 1 cloudview');
client.addParameter ('paramName', 'paramValue');
client.addParameters ('paramName2', ['valuel', 'value2']);

32 - Mashup Programmer

Troubleshooting

client.update();

Update a specific subwidget every 5 seconds

var client = new MashupAjaxClient ($('.container'));
client.addwWidget ('jkg934f 1 cloudview');
client.updateInterval (5000) ;

Troubleshooting

You may encounter the following issues:

Changes in .jsp files are not taken in account

While changes to Javascript, CSS and images files are taken into account directly, JSP files are
compiled by Jetty for performance reasons.

However, it is possible to switch the Jetty JSP servlet in development mode in the Mashup Ul
web . xml file located in <DATADIR>/webapps/360-mashup-ui/WEB-INF/web.xml. To do so,
edit the following section:
<!-- Enables development mode on JSP servlet -->
<servlet>
<servlet-name>jsp</servlet-name>
<init-param>
<param-name>development</param-name>
<!-- SWITCH THIS TO TRUE TO GET YOUR JSP FILES RELOADED ON EACH REQUESTS -->
<param-value>true</param-value>
</init-param>
</servlet>

URL/XML encoding issues

Sometimes, the default behavior of the Mashup Ul does not fit your needs:
* A meta value is URL encoded where it should not be, leading to invalid links (or the opposite).
* A meta value is not XML escaped, leading to invalid HTML (or the opposite).

Having complex rules to try to determine whether we should escape the content or not would

be very hard and will obviously fail at some point. Instead, a default behavior per situation that
matches 90% of the cases is used. For example, when building links, as in the Hit title link field,
meta values will be URL encoded by default.

Nevertheless, a few flags have been added to let the user invert the default behavior which allows
you to control everything by yourself:

* !u: Invert URL encoding, for example: @ {bi.publicurl!u}

Mashup Programmer - 33

Creating Collaborative Widgets Using Storage Service

* !'x: Invert XML escaping, for example: @ {bi.description!x}
* !'h: Remove the highlight on metas

* You can use + or - signs after the exclamation mark to force or remove the value, for example:
@{bi.publicurl!+u} or@{bi.description!-x}

You can also combine flags, for example: @ {bi.name!ux}.

I can't see my new code after deploying a custom plugin

For MS Windows deployments, it may happen that you can't see your newly coded element after
deploying a custom plugin (e.g. a custom widget).

The problem comes from the new version of Jetty (9.4.) which locks the files it accesses in mmap
mode. For more information, see

The problem was fixed by adding the following servlet definition in the Mashup Ul <DATADIR>/
webapps/360-mashup-ui/WEB-INF/web.xml file:
<servlet>
<servlet-name>default</servlet-name>
<servlet-class>org.eclipse.jetty.servlet.DefaultServlet</servlet-class>
<init-param>
<param-name>useFileMappedBuffer</param-name>
<param-value>false</param-value>
</init-param>
<load-on-startup>0</load-on-startup>
</servlet>

Important: If you meet this problem in your Mashup Ul instance, restarting the search server
should solve the issue.

Creating Collaborative Widgets Using Storage Service

This section describes how to create and manage collaborative widgets.
Creating Collaborative Widgets Using Storage Service

Storage type scopes

Common operations

How clients communicate with the Storage Service

34 - Mashup Programmer

Creating Collaborative Widgets Using Storage Service

Creating Collaborative Widgets Using Storage Service

When using a collaborative widget, you actually enrich your document with data corresponding to
the user’s inputs. This data can be stored using the storage service.

The storage service is an untyped key/value storage that is accessed through a HTTP REST
interface using simple commands such as get or put.

The storage service main intent is to provide persistence for Mashup Ul applications that stretches
beyond HTTP cookies and flat file storage. It is not a general-purpose database, and does not
support SQL or any other query language.

Two client wrapper implementations exist for Javascript client use (asynchronous) and Java client
use (synchronous).

Using the storage, you can:

» Get arbitrary chunks of data (JSON strings, images, Java objects, etc.) attached to your
Mashup Ul application.

» Delete, replace and append metas and categories to Exalead CloudView documents.

» Store private data per user.

Note: Keep in mind that data consistency/operation atomicity is not supported (not suitable for
sensitive data).

Limitations

The storage does not:

« Support any kind of typing - All data that is put in the storage is treated as binary blobs, which
means that they are not treated at all.

» Support transactions or ACID.

+ Guarantee data consistency.

By default the storage works with an SQLite engine and is therefore limited in terms of:
* concurrent accesses, as each write action blocks the whole database,

+ scalability, when the number of entries is really big.

However, you can configure its JDBC connection to work with compatible databases (SQL Server,
MySQL or Oracle) if you need the storage to be more scalable.

For more information, see Configure a compatible database for better performance.

Mashup Programmer - 35

Creating Collaborative Widgets Using Storage Service

Key/value pairs

Each key can be associated with one or [1:M] values. If a key name ends with '[]" it points to
[1:M] values.

Examples:

* single value pair: shoppingListLength -> 3

* multi-valued pair: shoppingList[] -> [eggs, milk, toast]
The same key can exist in several scopes. Each pair is scoped using:

+ The Mashup Ul application ID. If you are running multiple Mashup Ul applications in your
Exalead CloudView instance they have different ids.

* The storage type scope which can be DOCUMENT, SHARED or USER.

Configure a compatible database for better performance

Tweaking the settings of the StorageService.xml file allows you to:
+ Switch from SQLite to another RDBMS for storage backend.

» Change connection pooling parameters.

» Disable the internal locking mechanism for SQLite.

The Storage does not expose its settings in any GUI, instead you have to manipulate the
<DATADIR>/config/360/StorageService.xmnl file directly.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<StorageService xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="">

<StorageEngine className="com.exalead.cv360.storage.engine.jdbc.JdbcStorageEngine">
<!-- The JDBC driver's class name —-->

<Parameter value="org.sglite.JDBC" name="driver"/>

<!-- JDBC connection string, vendor-specific -->

<Parameter value="jdbc:sqglite:{dataDir}/storageService/storage.db.sglite"
name="connection"/>

<!-- Tables are prefixed, useful if you are using the same database for many
different applications -->

<Parameter value="cv360" name="tablePrefix"/>

<!-- Internal read/write synchronization, disable for performance gain. Tries to
avoid potential file-system-level locking problems that can can occur if any

of the following applies:

1. You are using SQLite over a networked file-system

2. You are using SQLite under Mac 0S/X

3. You are using an old version of SQLite

If none of the above applies you can safely disable this option.See http://
www.sqlite.org/lockingv3.html for more information on this issue —-->

36 - Mashup Programmer

Storage type scopes

<Parameter value="true" name="synchronizedWrites"/>

<!-- DB username / password -->

<Parameter value="" name="username"/>

<Parameter value="" name="password"/>

<!-- The database connections are pooled, to avoid reconnecting every time. When

using a non-SQLite RDBMS, You can tweak (increase) the settings below for a
performance gain.poolMaxActive: Max. num opened connections - Keep low for -->
<Parameter value="1" name="poolInitialSize"/>

<Parameter value="3" name="poolMaxActive"/>

<Parameter value="2" name="poolMaxIdle"/>

</StorageEngine>

<RepushDocuments>false</RepushDocuments>

</StorageService>

Important: After each configuration change, you need to run the <DATADIR>/bin/cvcmd. sh
applyConfig script and restart your Exalead CloudView instance.

Storage type scopes

Document scope

The DOCUMENT scope is used for attaching pairs (metas) to Exalead CloudView documents. Pairs
stored on documents can optionally be indexed and pushed back into the index.

The DOCUMENT scope saves the doc ID, the build group and the source of the document, to link
the data to the document. This is how it works:

* When a document X is pushed in the storage, a pair A is added to the storage and linked to
document X.

* A repushFromCache request is triggered on document X.

» The document travels through the analysis pipeline, the StorageServiceDocumentProcessor
queries the storage to retrieve all the pairs linked to document X.

* Each document pair is added as a meta within document X. For example, the processor
attaches meta A to document X (if a meta A already exists it is replaced, otherwise it is
created). Multi-valued pairs are pushed as multi-valued metas.

User scope

The USER scope allows a user to store private data. If user X stores the key A in his/her user
scope, it is not accessible to any other user. This is good for keeping per-user state in applications
(shopping carts, preferences, etc.).

The USER scope data is not meant to be indexed by Exalead CloudView as it contains private user
data.

Mashup Programmer - 37

Shared scope

Common operations

The SHARED scope is a general-purpose scope which is shared across Mashup Ul applications. It
allows you to store data that you do not want to link to a document (see DOCUMENT scope).

The SHARED scope data is not meant to be indexed by Exalead CloudView.

Common operations

The common operations supported by the REST protocol are described in the following table.

Note: Both the Javascript and the Java clients have been designed to help you execute these

operations.

Operation

AGGREGATE

GET
GET MANY

ENUMERATE

SET

SET MANY

PUT

PUT MANY

DELETE

Description

Returns aggregated values applied to the key.

The possible operations are COUNT, MIN, MAX, AVG, SUM.

The value must be a number except for COUNT which works with everything
(numbers, alphanumerical strings, etc.)

Gets all values associated with a single key.

Gets many keys and all their corresponding values simultaneously.

Prefixed get.
Provides a prefix and gets all pairs matching that prefix.

For example, an enumerate query ‘france paris ’ would get all values

associated with ‘france paris chatelet, france paris montmartre,

etc.

Adds a key/value pair to the storage. If the key exists, it is replaced or appended
(whether it is single or multi-valued).

Sets many values for a given key and replaces existing ones by the new ones.
See also PUT MANY.

Adds a key/value pair to the storage. If the key exists, an error is returned and the
value is left untouched.

Adds several values to a given key and keeps existing ones.

Deletes a single key with its associated values

38 - Mashup Programmer

How clients communicate with the Storage Service

How clients communicate with the Storage Service

There are two ways to communicate with the storage service:

The Java client communicates directly with the service at: http://<HOSTNAME> : <BASEPORT

+10>/storage-service

The Javascript client communicates with the service through the storage proxy at: http://
<HOSTNAME>: <BASEPORT>/mashup-ui/storage

The Javascript client is meant to communicate through the proxy for the 3 following reasons:

The XHR requests issued by the Javascript client is subject to the cross-domain restrictions that
apply to all XHR requests. Therefore, a proxy on the same port/domain is necessary.

The proxy has rudimentary XSRF protection (X-Requested-With header checking) for the
Javascript client's calls, preventing a user X to make changes to the state of user Y's data
using XSREF.

The USER scope. The proxy automatically appends the login name of the user who is currently
logged in to the outgoing requests. When communicating directly with the storage service, the
user needs to supply the user token manually.

Javascript client use

By default, the Javascript client is included in the Mashup Ul. Your custom widget must reference it
in its widget.xml file as shown below.

<Includes>

<Include type="js" path="/resources/javascript/storage/storage-client-0.2.7js" />
</Includes>

You must use the StorageService class.

// Instantiates a new JS storage client

var storage = new StorageClient (storageType, url, options)

The parameters of the StorageClient class are described in the following table.

Parameter Description

storageTypeThe value can be user, shared or document depending on the selected scope.

url The URL of the storage proxy:

http://<HOSTNAME>:<BASEPORT>/mashup-ui/storage

Note that the JS client is only capable of communicating with the proxy, never
directly with the storage-service (because of the cross-domain restriction of XHR
requests).

Mashup Programmer - 39

How clients communicate with the Storage Service

Parameter Description

If you are in the context of a Mashup Ul page, the url parameter is optional. It will

be discovered by the storage client automatically.

options Optional object that accepts any/all of the following properties:

* timeout: Timeout of the XHR requests in milliseconds (ms) before the error
callback is invoked.

* defaultErrorCallback: function (httpStatusCode,

XmlHttpRequestObj, storageErrorEnum, storageErrorEnumDesc):

Overrides the default error handler that is invoked on every failed request.

* defaultSuccessCallback: function(items, XmlHttpRequestObj):

Overrides the default success handler that is invoked on every successful
request.

All requests are asynchronous. You always need a callback function to read the output from the
client's calls:

// This will not work
// The alert is executed before the response is ever received
var storage = new StorageClient ('shared');
var value = storage.get ('myStorageKey');
alert (value); // undefined
// This will work better: A callback function is invoked
// after the client has received the response
storage.get ('myStorageKey', function (items) {
alert (items[0] .value); // prints the first item in the collection

1)

If the storage service client is instantiated with USER or SHARED, all non-destructive calls (get,
getMany, enumerate) take a key parameter, a success and an error callback.
storage.get (keyString, successCallback, errorCallback);

storage.enumerate (successCallback, errorCallback);
storage.getMany ([keyl, key2, ...], successCallback, errorCallback);

storage.aggregate ([keyl, key2, ...1,[aggrl, aggr2, ...], successCallback, errorCallbe

The DOCUMENT scope calls take extra parameters: docBuildGroup, docSource, docUrl

storage.get (docBuildGroup,docSource,docUrl, keyString, successCallback, errorCallback

storage.enumerate (docBuildGroup,docSource,docUrl, KeyString, successCallback,

errorCs

storage.enumerate (docBuildGroup, docSource,docUrl, successCallback, errorCallback);

// Gets all the possible permutations for the docObject and key parameters
var docObjectl = {

docBuildGroup : "docBuildGroup",

docSource : "docSource",

docUrl : "docUri"

40 - Mashup Programmer

How clients communicate with the Storage Service

J 8

storage.getMany ([docObjectl, docObject2, ...], [keyl, key2, ...], successCallback,
storage.aggregate (docBuildGroup,docSource,docUrl, [keyl, key2, ...],[laggrl, aggr2,
errorCallback) ;

For the USER and SHARED scopes, destructive calls look like this:

// singleKey is a key targeting a single element (Ex: 'mySingleKey')

// tries to put singleKey -> value in the storage, call errorCallback if

// key already exists for this scope

storage.put (singleKey, value, successCallback, errorCallback);

// puts singleKey -> value in the storage. If the key already exists,

// its value is overwritten.

storage.set (singleKey, value, successCallback, errorCallback);

// removes the pair with key singleKey from the storage

storage.del (singleKey, successCallback, errorCallback);

// multiKey is targeting [1:M] values

// appends another value to the bundle pointed to by multiKey

storage.put (multiKey, value, successCallback, errorCallback);

storage.set (multiKey, value, successCallback, errorCallback);

// adds several values to the key and keeps existing ones
storage.putMany (multiKey, [valuel,value2, ...], successCallback, errorCallback);
// sets several values to the key and replaces existing ones
storage.setMany (multiKey, [valuel,value2, ...], successCallback, errorCallback);
// deletes all values stored for multiKey

storage.del (multiKey, successCallback, errorCallback);

// multiKeyElement is targeting 1 value in a multi valued context

// The only way to get a 'multiKeyElement' is to get all the pairs for a multiKey,
// and then to use one of the keys in the response

storage.set (multiKeyElement, wvalue, successCallback, errorCallback);

// updates the existing value

storage.del (multiKeyElement, successCallback, errorCallback); // deletes one value

For the DOCUMENT scope, destructive calls require:
* adocumentBuildGroup (build group name),
* adocumentSource (source connector name),

* and a documentId argument.

er

st or age. put (docunent Bui | dGr oup, docunent Source, docunentld, singleKey, value, succ

error Cal | back) ;

st or age. set (docunent Bui | dGr oup, docunent Source, docunentld, singleKey, value, succ

error Cal | back) ;

st or age. del (docunent Bui | dG oup, docunent Source, docunentld, singleKey, successCal

/] adds several values to the key and keeps existing ones

st or age. put Many(docunent Bui | dGr oup, docunent Source, docunentld, mul ti Key, [val uel, va

successCal | back, errorcCall back);
/'l sets several values to the key and repl aces existing ones

st or age. set Many(docunent Bui | dG oup, docunent Source, docunentld, nultiKey,[valuel,v

Mashup Programmer - 41

How clients communicate with the Storage Service

successCal | back, errorcCall back);
/1 deletes all pairs stored for a given docunent:
st or age. del (docunent Bui | d&G oup, docunent Source, docunmentld, successCall back, error
[l ... the nulti Key and mul ti KeyEl emrent exanpl es are |i ke above, but with
/! docunent Bui | dG oup, docunent Sour ce, docunentld prepended the other paraneters

For real examples, go to your <DATADIR>/webapps/mashup-ui/WEB-INF/jsp/widgets/
directory, and look at the source code of the following widgets:

* savedQueries: which uses multi-valued keys with USER or SHARED storage
* todoList: which uses single-valued keys with USER or SHARED storage
* starRating: which uses single-valued keys with DOCUMENT storage.

These widgets make extensive use of the storage service.

Java client use

To use the Java client, make sure that the 360-storage-client. jar is included in your
Eclipse project.

All the Java client's calls are synchronous, meaning that they are blocked until a response is
received from the server.

The Java client is made to communicate directly with the storage service at:
http://<HOSTNAME>:<BASEPORT+10>/storage-service

The Java client provides very destructive methods (clear operations) therefore it should be used
with caution.

StorageClient client = new StorageClient (Constants.STORAGE SERVICE URL, Constants.MAS
client.scratch(); // Scratches everything in the Storage

client.scratchForApplication ("default"); // Scratches everything for application 'def
Other applications’ states are preserved

client.scratchForWidget ("default", "starRating"); // Scratches all states for the 's
of application 'default'

DocumentClient dclient = client.getDocumentStorage () ;

//For Cloudview Documents: use a document descriptor (buildgroup, source,docurl)
DocumentDescriptor descriptor = new DocumentDescriptor ("bg0", "docSource", "docl");
dclient.put (descriptor , "helloWorldKey" "Hello World DocumentStorage!".getBytes ("UTE
// puts value if key does not already exist

List<byte[]> myValues = new ArrayList<byte[]>();

myValues.add ("Hello World DocumentStorage!".getBytes ("UTF-8")) ;

myValues.add ("Good bye!".getBytes ("UTF-8")) ;

dclient.putMany (descriptor , "helloWorldKey[]", myValues);

//puts multiple values to the key and keeps existing ones

dclient.setMany (descriptor , "helloWorldKey[]", myValues);

//sets multiple values to the key and replaces existing values

Entry entry = dclient.get (descriptor , "helloWorldKey") ;

42 - Mashup Programmer

How clients communicate with the Storage Service

dclient.set (descriptor , "helloWorldKeyDuplicate", entry.getValue()):;
// replaces whatever value (if any) that was previously set in helloWorldKeyDuplicate
DocumentDescriptor descriptor = new DocumentDescriptor ("buildGroup", "source", "docun
String[] bagKey = new String[] {"testbagkey[]"};
StorageAggregationType[] aggrs = new StorageAggregationTypel[] {
StorageAggregationType.COUNT,
StorageAggregationType.AVG,
StorageAggregationType.MAX,
StorageAggregationType.MIN,
StorageAggregationType.SUM
i
List<AggregationsResult> resultlList = this.doc.aggregate (descriptor, bagKey, aggrs);

Example: Simple 'Badge Manager'

On some social networks, a user's profile can be awarded with one or several predefined badges.
Badges can be represented as a string of text, and each badge can be either ‘on’ or ‘off’. In the
example below, a badge is ‘on’ if the text string is stored for a particular user, and ‘off’ if it does not
exist.

The class attaches one or several predefined text strings to a particular Exalead CloudView
document with a multi-valued key ending with * []’. No other values than the predefined ones are
allowed to exist on the key.

public class BadgeManager {
private final String badgeDatabaseKey;
private final ImmutableSet<String> availableBadges;
private final DocumentStorage db;
// availableBadges are a list of the predefined text-strings that you want to use,
// for example ['cool', 'humid', 'warm', 'really-warm']
// badgeTag is the multi-valued key to store on in the storage, for example "perceive
public BadgeManager (String[] availableBadges, String badgeTag) {
this.availableBadges = ImmutableSet.of (availableBadges) ;
this.badgeDatabaseKey = badgeTag;
// Instantiate the Java Storage Client given the URL to the Storage Service
// (Normally http://CVHOST: [BASEPORT+10]/storage-service) and the Mashup Application
// Instead of .getDocumentStorage () we could have used .getUserStorage() or .getShare
this.db = new StorageClient (Constants.STORAGE SERVICE URL,
Constants.MASHUPUI APPID) .getDocumentStorage ()
}
public Set<String> getAvailableBadges () {
return this.availableBadges;
}
public void addBadge (DocumentDescriptor document, String badge) throws Except
if ('hasBadgeEntry (componentId, badge)) {
// To put a pair on a document we supply the Document Source and the document id
// The document source is the source connector's name, the document id is the URI of
// All values are stored as byte blobs, so the string needs to be converted into a by

Mashup Programmer - 43

Creating Feeds

db.put (document, badgeDatabaseKey, badge.getBytes ("UTF-8"));

}

public void removeBadge (DocumentDescriptor document,
if (hasBadgeEntry (document, badge)) {
Entry toRemove = getBadgeEntry (document, badge) ;

// To delete a single entry from a multi-valued meta an argument "unique" is needed.
// Unique is an extra key that identifies a single value in a multi-valued pair
deleteByUniqueKey (document, toRemove.getKey () .getKey (), toRemove.ge

String badge) throws Exc

}
public Set<String> getAllBadgesFor (DocumentDescriptor document) throws Except

Set<String> badges = Sets.newHashSet () ;
for (Entry e : getBadgesFromStorage (document)) {
badges.add (new String(e.getValue(), "UTF-8"));

}
return badges;

}

public void removeAllFor (DocumentDescriptor document)
// If no unique argument is provided, all of the pair's values are de

throws StorageClientExc

db.delete (document, badgeDatabaseKey) ;

}
private boolean hasBadgekEntry (String documentId, String badge) throws Excepti

return getBadgeEntry (document, badge) != null;

}
private Entry getBadgeEntry (DocumentDescriptor document, String badge)
for (Entry b : getBadgesFromStorage (document)) {
if (new String(b.getValue(), "UTF-8").equals (badge)) {

return b;

throws E

}
return null;

}

private List<Entry> getBadgesFromStorage (DocumentDescriptor document)
// Returns all the values associated with the document 'docId' and trt

throws

return db.get (document, badgeDatabaseKey) ;

Creating Feeds

Creating feeds can be useful when the standard feeds library is not sufficient. For example, if you
want to connect and retrieve data from an unsupported database.

44 - Mashup Programmer

Using the Eclipse plugin

Using the Eclipse plugin
The Eclipse plugin allows you to create the feed with all required files at once.

1. In Eclipse, select File > New > Other.

Select CloudView Mashup Components > Mashup-API feed and click Next.
3. Define your feed general configuration:

a. Specify a source folder.

b. Specify a package.

c. Giveita name.
4. Click Finish.

The new feed is added to the specified source folder in the Project Explorer panel. Edit the feed
files as needed.

Abstract class Feed

public abstract class Feed {
/*
* API to implement
*/
/'k*
* Return a human friendly name for this Feed, to be used by the Administration C
*/
abstract public String getDisplayName () ;1
/'k*
* Execute routine. Called when receiving a request without any specific ID.
* @param context
* @return Return the ResultFeed for the given QueryContext
* @throws AccessException
*/
abstract public ResultFeed execute (QueryContext context)4 throws AccessException;
/**
* Get routine. Called when receiving a request with a specific ID. Must return c
* @param context
* @param id
* @throws AccessException
*/
abstract public ResultFeed get (QueryContext context, String id) throws AccessExce
/'k*
* Get the list of available metas for the given feed configuration.
* @param feedConf
* @throws AccessException
*/

@Override

Mashup Programmer - 45

public AvailableMetas getAvailableMetas (Map<String,

AvailableMetas m = new AvailableMetas|() ;

String[] mv = { "metaName", "feedOptionl"

m.addType (new AvailableMetas.Type ("all",
return m;

}

/**

Sample Feed

J 8

mv, null));

* Get the list of supported parameters by this Feed.

* @return An array of supported Parameters

*/

abstract protected Parameter[] getSupportedParameters();3

String[]> feedConf) throws Ac

Sample Feed

import
import
import
import
import
import
import
import
import
import
import
import

java.util.HashMap;

java.util.Map;

com

com.
com.
com.
com.
com.
com.
com.

com.

com

.exalead
exalead

.exalead

exalead.
exalead.
exalead.
exalead.
exalead.
exalead.
exalead.

.access.feedapi.AccessException;
.access.feedapi.Entry;
access.feedapi.Feed;
access.feedapi.Meta;
access.feedapi.QueryContext;
access.feedapi.ResultFeed;
access.feedapi.utils.FeedHelper;
access.feedapi.vl10.AvailableMetas;
access.feedapi.v10.Parameter;
.cv360.customcomponents.CustomComponent;

@CustomComponent (displayName = "Sample Feed")

public class SampleFeed extends Feed {

@QOverride

public String getDisplayName () {

return "Sample Feed";

}

@QOverride

public ResultFeed execute (QueryContext context)

String feedOptionl = this.getEvaluatedParameter (context,
ResultFeed r = new ResultFeed(this);
Entry e

new Entry("42");

e.addMeta (new Meta ("metaName", "metaValue")):;
e.addMeta (new Meta ("feedOptionl", feedOptionl));
r.addEntry(e) ;

return r;

}

@QOverride

throws AccessException {
"feedOptionl") ;

public ResultFeed get (QueryContext context, String id) throws AccessException ({

return null;

}

@QOverride

public AvailableMetas getAvailableMetas (Map<String,

String[]> feedConf)

throws Acces

46 - Mashup Programmer

Creating Triggers

AvailableMetas m = new AvailableMetas();

String[] mv = { "metaName", "feedOptionl" };
m.addType (new AvailableMetas.Type("all", mv, null));
return m;

}

@Override
protected Parameter[] getSupportedParameters () {
return new Parameter[] { new Parameter ("feedOptionl") };

}

public static void main (String[] args) throws Exception ({

com.exalead.access.configuration.v10.Feed config = new com.exalead.access.configursa

config.addParameter (new com.exalead.access.configuration.v10.Feed.Parameter ("feedOr

Feed pageSearch = FeedHelper.getTestPageFeed ("search");
pageSearch.getSubFeeds () .add (FeedHelper.getTestFeed (SampleFeed.class, "test",
// FeedTrigger trigger = new testFeedTrigger () ;

// testFeed.getTriggers () .add(trigger) ;

Map<String, String> params = new HashMap<String, String>();

params.put ("test.feedOptionl", "feedOptionlValue"):;

ResultFeed result = FeedHelper.runFirstFeed (pageSearch, params);
for (Entry e : result.getEntries()) {
for (Object s : e.getMetas() .keySet().toArray()) {
System.out.println(s + " : " + e.getMeta((String) s).getFirstValue()):;

}
}
}
}

Creating Triggers

This section describes how to create triggers. Using the Exalead CloudView Eclipse plugin, select
File > New > Other > CloudView Mashup Components > <Type of> Trigger

About Feed and Design Triggers
Mashup Ul interface
Mashup API interface

About Feed and Design Triggers

Feed Triggers

A Feed Trigger is an entry point to alter the behavior of a Feed. It is called by the Mashup API
before and after the feed execution, allowing for query manipulation, context modification and
results manipulation. Therefore, Feed Triggers can do the following:

Mashup Programmer - 47

confi

About Feed and Design Triggers

» Decide to override the query to be issued to the actual ‘execute’ method based on query
expansion (beforeQuery method)

» Decide to replay the feed execution because the result obtained is not satisfying, for example,
if there are no results (afterQuery method that returns Result.EVAL AGAIN)

Example:

You can use a Feed Trigger on any Feed in your configuration to customize query processing or
feeds behavior for different purposes such as:

* Query rewriting
* Query computing from previously retrieved results

« Enabling / Disabling feeds

Design Triggers

Design triggers are called by the Mashup Ul and include:

* Pre-request triggers which can be used to decide whether the user should be redirected to
another page or not. The back end is not yet called, so no special load is triggered on the
system. For example, redirect the user to the page called /imagesearch if the query starts
withimage (s).

+ Page and widget triggers which have the possibility to alter the behavior of the display by
making decisions to draw things or even change the configuration (each user request gets a
fresh copy of the original configuration, so any changes at query time are safe). For example:
decide whether a widget should be displayed or not.

» Application triggers which are executed on all application pages.

Execution Flow

The Mashup trigger sequence is as follows:

48 - Mashup Programmer

Mashup UI interface

Mashup Trigggers

[Mashup API] [Mashup Ul] [Browser J { End user

Click Search

[Pre-request triggers (before) j

Feeds/search?g=foo

[Feed trigger (before) J

CloudView (Feed request)

| Feed trigger [after)]

ResultFeed

[Pre-reguest triggers (after)]

[Page trigger]

___________ [Widget trigger (before) J

1
Y- I

L Widget trigger (after)]

HTML
Page rendenng
Mashup Ul interface
Pre-request triggers
@CustomComponent (displayName = "Custom redirect (PreRequestTrigger)")

public class CustomRedirectNew implements PreRequestTrigger {
@Override
public boolean beforeQuery (Map<String, Object> modelMap, AccessRequest acces
HttpServletRequest request, HttpServletResponse response, HttpSession session) throws
response.sendRedirect ("http://exalead.com") ;
return false;
}
@Override
public boolean afterQuery (Map<String, Object> modelMap, Map<String, ResultFe
HttpServletRequest request, HttpServletResponse response, HttpSession session) throws

return true;

Mashup Programmer - 49

Mashup API interface

Page & widget triggers

@CustomComponent (displayName = "Removes entry (Test)")
public class RemoveEntry implements MashupWidgetTrigger {
@Override
public boolean beforeRendering (DataWidgetWrapper dww, TriggerContext trigger
for (String feedName : dww.getResultFeeds () .keySet()) {
java.util.Iterator<Entry> it = dww.getResultFeeds () .get (feec
.1terator () ;
while (it.hasNext()) {
Entry entry = it.next();
if (entry.getMeta ("source") .equals ("hotel")) {
it.remove () ;

}

return true; // return false to hide the widget

}

@Override

public void afterRendering(DataWidgetWrapper dww, TriggerContext triggerCont
}

Application triggers

The code is exactly the same as the one shown above. The only difference is the way you call
them in Mashup Builder, that is to say, either on a page or on an application.
Implementing a page trigger

public class MyPageTrigger implements MashupTrigger<MashupPage> {
/* Implementation */

Implementing a widget trigger

public class MyWidgetTrigger implements MashupTrigger<Widget> {
/* Implementation */

Mashup API interface

Feed triggers

/**
* Feed Trigger interface: A Feed Trigger is an entry point to alter the
* behavior of a Feed. It is called before and after the feed execution,

50 - Mashup Programmer

Mashup API interface

* allowing for query manipulation, context modification and result
* manipulation. IMPORTANT: Feed Triggers are shared across the request and thus
* MUST be both stateless and threadsafe. If you need to keep states
* between the beforeQuery call and the afterQuery call, you can store the
* variables in the QueryContext:
* beforeQuery: context.setVariable ("myComputedScore", 42);
* afterQuery: context.getVariable ("myComputedScore") ;
*/
public interface FeedTrigger {
/**
* Before Feed Execution call. Return Result.STOP to skip the evaluation of
* the feed, Result.CONTINUE for the normal behavior.
*
* @param feed
* @param context
* @throws AccessException
*/
public Result beforeQuery(Feed feed, QueryContext context) throws AccessException;
/**
* After Feed Execution call. Return Result.CONTINUE for the normal behavior,
* or Result.EVAL AGAIN to re-execute the feed after overriding a few
* parameters.
*
* @param feed
* @param context
* @throws AccessException
*/
public Result afterQuery(Feed feed, QueryContext context, ResultFeed resultFeed) tr
AccessException;
public enum Result {
CONTINUE,
SHE@ES
EVAL AGAIN
}
/**
* A Trigger that implements BeforeSubfeedAware will receive an additional event af
method,
* but before the sub feeds processing.
*/
public static interface BeforeSubfeedAware {
public Result beforeSubfeeds (Feed feed, QueryContext context, ResultFeed resultFe
AccessException;

}

Mashup Programmer - 51

Mashup API interface

Feed trigger example

The following Java snippet is an example of basic query rewriting, replacing all occurrences of the
word "rain" by the word "sun".

package my.test;
import com.exalead.access.feedapi.AccessException;
import com.exalead.access.feedapi.Feed;
import com.exalead.access.feedapi.FeedTrigger;
import com.exalead.access.feedapi.QueryContext;
import com.exalead.access.feedapi.ResultFeed;
public class SampleTrigger implements FeedTrigger ({
public Result beforeQuery (Feed feed, QueryContext context) throws AccessException {
// Fetches the original g parameter
String originalQuery = feed.getEvaluatedParameter (context, "q");
System.out.println ("Original query: " + originalQuery) ;
// Computes the new query
String newQuery = originalQuery.replace("rain", "sun");
System.out.println ("New query:" + newQuery);
// Forces the "q" parameter to the new query
feed.overrideParameter (context, "qg", newQuery):;
return Result.CONTINUE;
}
public Result afterQuery(Feed feed, QueryContext context, ResultFeed resultFeed) tt
return Result.CONTINUE;

}

// To get your custom code running into your CloudView 360 instance, compile it into
// a .jar file and drop it in the javabin directory of your CloudView 360 kit.
// Finally, to plug your Trigger in the Access.xml configuration file,
// just add a <Trigger> tag to the targeted feed:
<Feed id="bi" enable="true" embed="true" className="com.exalead.access.basefeeds.Busi
<Trigger className="my.test.SampleTrigger" />
<Parameters>
<Parameter name="searchAPIVersion">5.0</Parameter>
<Parameter name="searchapi">{access-api.searchapi.url}/search</Parameter>
<Parameter name="gq">${page.params["g"]}</Parameter>
<Parameter name="type">all</Parameter>
<Parameter name="page">1</Parameter>
<Parameter name="defaultQuery">all</Parameter>
<Parameter name="per page">10</Parameter>
</Parameters>
</Feed>

52 - Mashup Programmer

Creating Controllers

Creating Controllers

You can create custom Spring Controllers to add server side logic to the application.
Create and package a controller

Reference JSP in a controller

Create and package a controller

Create a controller

You must respect the following requirements:

* Your class must be in a subpackage of package:
com.exalead.cv360.searchui.view.widgets.controller. For example:

com.exalead.cv360.searchui.view.widgets.controller.hello
* There must be an @CustomComponent annotation.
* The Spring Controller is a class annotated with the @Controller annotation.

Example of an "Hello World" controller:

package com.exalead.cv360.searchui.view.widgets.controller;
@CustomComponent (displayName="Hello World")

@Controller
public class HelloWorldController {
@RequestMapping (value = "/helloWorld", method = { RequestMethod.GET })

public void helloWorld (HttpServletRequest request, HttpServletResponse response)
response.getWriter () .print ("Hello World!!");

}

}

This Controller can then be reached at: http://<HOSTNAME>:<BASEPORT>/<context-
name>/helloWorld

Package the controller in a custom Plugin

The Exalead CloudView Eclipse plugin must be installed.

1. From the Package Explorer panel, right-click on the Controller class and select CloudView
Mashup > Export to file.

2. Inthe Mashup > Export plugin window, specify the name and destination of the plugin and
click Finish.

3. The plugin is packaged as .zip file and can be uploaded in Mashup Builder, in Application >
Manage components > Plugins.

Mashup Programmer - 53

thr

Reference JSP in a controller

4. Restart the search server.
a. Go to Application > Developer area.
b. Click Reload components
c. Select the Restart search server processes option.

5. Go to Application > Manage components > Controllers.

The new controller should be added to the list of controllers.

Package your controller manually in a jar

You can also package your controller manually in a jar but we strongly recommend to package
your controller as a plugin.
1. Right-click the controller class and select Export...
2. Inthe Select window, expand the Java node and select JAR file.
3. Click Next and in the Jar File Specification window:
a. From Select the resources to export, select the class file to export.
b. From Select the export destination, select where you want to export the JAR file.
c. Select the Add directory entries option.
d. Click Finish.

4. Copy the exported jar in your <DATADIR>/webapps/360-mashup-ui/WEB-INF/1lib/
folder.

5. Open Mashup Builder and restart the search server.
a. Go to Application > Developer area.
b. Click Reload components.
c. Select the Restart search server processes option.
6. In your browser, open the mashup-ui page, for example, http://myhost:10000/mashup-

ui/helloWorld.

The page should display Hello World!!

Reference JSP in a controller

Follow the procedure below to reference JSP in a controller
1. Copy your JSP somewhere within the following directory: <DATADIR>/webapps/360-
mashup-ui/WEB-INF/jsp/
2. Edit the following file: <DATADIR>/webapps/360-mashup-ui/WEB-INF/tiles-def.xml

3. Add aline within <tiles-definitions>, for example: <definition
name="mytemplate" template="/WEB-INF/jsp/path/of/the/jsp/page.jsp" />

54 - Mashup Programmer

Managing URL Rewriting

4. Create and package a custom controller and deploy it as a plugin, for example:

package com exal ead. cv360. searchui . vi ew. wi dgets. control |l er;

i mport javax.servlet.http. HtpServl et Request;

i mport javax.servlet.http. HtpServl et Response;

i mport org. springframework. stereotype. Controller;

i mport org.springfranmewor k. web. bi nd. annot ati on. Request Mappi ng;
i mport org. springframewor k. web. bi nd. annot at i on. Request Met hod;

@ontrol |l er
public class TestController {
@Request Mappi ng(value = "/test", method = { Request Met hod. GET, Request Met hod. P
public String test(HttpServl et Request request, HtpServl et Response response) {
return "nytenpl ate";

}
}

5. Restart the search server.

Your page should be accessible at the following URL: http://<HOSTNAME>: <PORT>/
mashup-ui/test Where:

o mashup-ui is the context path of the application deployed by jetty.

o /test is the path specified by the @RRequestMapping annotation.

Note: The default controller renders pages as /page/pageName, for example, http://
<HOSTNAME>:<PORT>/mashup-ui/page/search and is written as follows:

@request Mappi ng(val ue = "/ page/ { pageNane}", nmethod = Request Met hod. GET)
public String renderPage(HttpServl et Request request, HttpServl et Response respo
(“pageNane”) String pageNane) throws Exception {
}

Managing URL Rewriting

Defining pretty URL for accessing and configuring a Mashup Ul page is a very common use case
for business-focused Apps and eCommerce.

For example, we want to rewrite the URL: http://www.mysite.com/mashup-ui/page/
search?type=clothes&products=shirts to map it to a specific product refinement on the /
products page and get a cleaner URL like: http://www.mysite.com/products/clothes/
shirt

To handle URL rewriting, we use Url Rewrite Filter version 3.2. For more information, see
the documentation at: http://urlrewritefilter.googlecode.com/svn/trunk/src/doc/manual/3.2/
index.html#filterparams

Mashup Programmer - 55

http://urlrewritefilter.googlecode.com/svn/trunk/src/doc/manual/3.2/index.html#filterparams
http://urlrewritefilter.googlecode.com/svn/trunk/src/doc/manual/3.2/index.html#filterparams

Enable URL rewriting

Important: The rewriting rules you define take precedence on the default Mashup Ul behavior and
may lead to errors. For example, some widgets allow exporting data through the service http://
www.mysite.com/export. If your rule rewrites all pages to http://www.mysite.com/
<PAGENAME>, requests for /export will redirect to a page called export instead of the export
service. To prevent this, you should set exception rules to redirect requests to the correct service.

Enable URL rewriting

1. Go to <DATADIR>/webapps/360-mashup-ui/WEB-INF/
Edit the WEB-INF/web.xml file.

3. Uncomment the UrlRewriteFilter filter node.

<filter>
<filter-name>Url RewriteFilter</filter-nanme>
<filter-class>org.tuckey.web.filters.urlrewite. Ul RewiteFilter</filter-class>
<init-paranp
<par am nanme>| ogLevel </ par am nanme>
<par am: val ue>| og4j </ par am val ue>
</init-paranr
<init-paranp
<par am nanme>conf Rel oadCheckl nt er val </ par am nanme>
<par am val ue>5</ par am val ue>
</init-paranr
<init-paranp
<par am nanme>st at usEnabl ed</ par am nane>
<par am val ue>f al se</ param val ue>
</init-paranr
</[filter>
<filter-mappi ng>
<filter-name>Wrl RewriteFilter</filter-nanme>
<url-pattern>/*</url -pattern>
</filter-mappi ng>

4. Save and close the file.

Configure URL rewriting

1. Inthe <DATADIR>/webapps/360-mashup-ui/WEB-INF/ directory, edit the WEB-INF/

urlrewrite.xml file.

2. Uncomment the content of the urlrewrite node, and add/edit the rewriting rules as needed.
For our example of /products/clothes/shirt we would have the following configuration.

<urlrewite>
<l-- Services have the highest priority -->
<rul e enabl ed="true">
<nanme>Ser vi ces</ nane>

56 - Mashup Programmer

Configure URL rewriting

<fromp”/ (resources|fetch|alerting|export|utils|login|errors]|lang|storage|l ogou
| st agi ng- bui | der| t est Production) (. *)?</frone
<to last="true">/ $1$2</t o>
</rul e>
<l-- redirects /page/index to / -->
<rul e enabl ed="true">
<nane>Redi r ect | ndex</ nanme>
<fronp”/ page/ i ndex$</fronp
<to last="true" type="redirect">%context-path}/?%query-string}</to>
</rul e>
<I-- redirects /page/ pageNane to /pageNane -->
<rul e enabl ed="true">
<nane>Redi r ect Pages</ nane>
<fronp”/ page/ (\ w+) $</ fr onp
<to last="true" type="redirect">% context-path}/$1?% query-string}</to>
</rul e>
<l-- [-->
<rul e enabl ed="true">
<name>| ndex</ name>
<fronp™/ $</fromp
<to | ast="true">/page/index</to>
</rul e>
<l-- [pageNane -->
<rul e enabl ed="true">
<name>Pages</ name>
<fronp™/ (\ w+) $</ fronp
<to last="true">/page/ $1</t o>
</rul e>
<l-- /[products/clothes/shirt -->
<rul e enabl ed="true">
<name>Sear ch</ nane>
<from™/ (\w+)/ (\w+)/ (\wt) </ fronp
<t 0>/ page/ sear ch?t ype=$1&anp; $2=$3</t 0>
</rul e>
</furlrewite>

Note that:

o First, all the services that can be called by the Mashup Ul (export, alerting, storage, etc.)
are processed. We make sure they will not be impacted by URL rewriting to avoid errors.
We can then add filter rules for the URLs of the application pages.

o /page/ is hidden from the URL
o The / redirects to the index page

3. Save and close the file.

Mashup Programmer - 57

Implementing custom layout or templates as plugins

Implementing custom layout or templates as plugins

You may want to implement custom layouts or templates as plugins and use them in the Mashup

ul.

1. Create a plugin with a cvplugin.properties file looking like
cl oudvi ew. ver si on=V6R2016x. R2. 80158

pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi
pl ugi

Note:

n.
. conponent s. | ayout s=NAME_OF YOUR _FOLDER
. copyri ght =Dassaul t Syst enes

. descri ption=bl abl a

. hanme=pouet

.type=mashup

.versi on=420. 0. 0- SNAPSHOT

5 3 3 3 3 S

aut hor =you

For more information about CVPIlugin packaging, see "Packaging Custom Components

as Plugins" in the Exalead CloudView Programmer's Guide.

In your folder, add layout. jsp file containing your custom layout.

In Mashup Builder:

o o oo

Click the Edit page settings at the right of the screen icon at the right of the top bar.

In General > Custom layout enter the name of the plugin containing your custom layout.
Select the Preview to check your configuration changes.

Click Apply.

58 - Mashup Programmer

Using the Mashup API

Using the Mashup API

The Mashup API, also known as the Access API, provides a public HTTP interface to access the
commands defined in CloudView’s Search API configuration.

About the Mashup API

Choosing between the Mashup APl and the Search API
Using the Mashup API Java client

Using the HTTP Mashup API

Using the Atom Output Format

Creating Parallel Requests

Configuring Hits Enrichment

About the Mashup API

The Mashup API, also known as the Access API, provides a public HTTP interface to access the
commands defined in Exalead CloudView Search API configuration.

The Mashup API provides a standardized way to search and retrieve hits from heterogeneous
sources, called feeds. Feeds can be queried independently to retrieve different types of
information, or nested to enrich hits from a previous feed.

By default the Mashup API retrieves hits using parallel requests. If you depend on the results of a
given feed to alter another feed, you can set this feed as Synchronized in the Feed settings. For
more information, see "Synchronizing feeds on a page" in the Exalead CloudView Mashup Builder
User's Guide.

Choosing between the Mashup API and the Search API

You can use either the Mashup API or the Search API for search in your applications.

What you can do

Exalead CloudView gives you the following search possibilities:
» Use case 1: You can use the Mashup API with a Mashup Ul application, for example, app1.

» Use case 2: You can use the Mashup API with a third-party application, if you don’t want to use
a Mashup Ul application for the front-end.

Mashup Programmer - 59

How to choose between the two APIs

» Use case 3: You can use the Search API with a third-party application, if you don’t want to use
the Mashup APl and address the Search API directly.

These search possibilities are illustrated in the following diagram.

' CloudView
Index :' Clnud'-.liiew [|
| config |/
Search Logic ’ p—t
Data Model
Search Target
Aelevance Tuming
Bovgsbed Hid
Symanyms applicaticnssppl/Access apphcations app 1, Maskupll
Search API
" Mashup API)
{(mashup appl)
" CVfeed1 |
|—J | Feed request | Mashup Ul
| CV feed2 {mashup appl)
- Feed response | usecosel
| Cvfeed... | \
¥ —_— =
| Other feed] _
Search Client —_— Access Client
A

_—

[3rd party

3rd party
L External S
application data source application
use case 3 use case 2

th

End User

How to choose between the two APIs

Use the Mashup API if you want to:

* Federate several Exalead CloudView searches.

« Federate with external data sources (supported by Mashup feeds).

« Enable security on your application pages using the Mashup Builder Security Providers.
» Build advanced front-end applications easily with the Mashup Builder.

* Use the Mashup Expression Language (MEL) which allows you to:

o construct text that contains dynamic content from your feeds,

60 - Mashup Programmer

Using the Mashup API Java client

o perform common operations that would usually require editing JSP files.
Use the Search API if you want to:
» Fetch a large number of results (>1000).
» Fetch a large number of facets or facet values.
» Have specific tools to formulate complex queries (SearchQuery accessors, helpers, etc.).

* Handle security entirely on your own.

Using the Mashup API Java client

You can access the Mashup API Java client in <INSTALLDIR>/sdk/java-clients

You interact with the Mashup API using the AccessClient java library (access-core.jar).
The AccessClient library is a simple wrapper around the HTTP/Atom protocol. It delivers results
in two different formats:

* ResultFeed Object - using the getResultFeed (AccessRequest request) method

+ Atom XML as an InputStream - using the getResultStream (AccessRequest request)
method

Note: The AccessClient objectis thread safe. You should use only one instance of the
AccessClient for your whole program. It will ensure that the HTTP connection is alive, to
maintain request queueing without establishing useless connections to the service.

AccessClient example

ServerInfos serverInfos = new ServerInfos ("http://host:10010/access");
AccessClient client = AccessClientFactory.createAccessClient (new ServerInfos[] {
serverInfos });

AccessRequest request = new AccessRequest () ;

request.setPage ("search") ;

request.addParameter ("g", "disney"):;

ResultFeed result = client.getResultFeed (request) ;

Note: SERVICE URI is the Mashup API endpoint where the AccessClient should make the
requests.

Where is the Mashup API endpoint?

For the default application: http://<HOSTNAME>:<BASEPORT+10>/access

For every other applications: http://<HOSTNAME>: <BASEPORT+10>/

access.<applicationId>

Mashup Programmer - 61

How to configure a proxy

How to configure a proxy

ServerInfos serverInfos = new ServerInfos ("http://HOST:PORT/access") ;
serverInfos.setProxyHost ("host") ;

serverInfos.setProxyPort (8080) ;

serverInfos.setProxyLogin ("login") ;

serverInfos.setProxyPassword ("password") ;

AccessClient accessClient = AccessClientFactory.createAccessClient (new ServerInfos]|]
serverInfos });

AccessRequest request = new AccessRequest () ;

request.setPage ("search") ;

request.addParameter ("g", "disney"):;

ResultFeed result = client.getResultFeed (request) ;

How to send security tokens to a secured Search API

Requirement: To send security tokens, you must first enable security on your Mashup Ul pages.
For more information, see "Adding Security to Your Application" in the Exalead CloudView Mashup
Builder User's Guide.

You can then list security tokens as follows:

ServerInfos serverInfos = new ServerInfos ("http://HOST:PORT/access") ;
AccessClient client = AccessClientFactory.createAccessClient (new ServerInfos|]
{serverInfos });
List<String> tokens
AccessRequest request = new AccessRequest () ;

new ArrayList<String>(); tokens.add("Everybody");

request.addParameters (AccessParameter.SECURITY, tokens) ;
request.setPage ("search") ;

request.addParameter ("q", "disney");

ResultFeed result = client.getResultFeed (request) ;

How to configure failover

To enable failover, you must specify the isAlive path. Note that:
* The higher the power the higher the request priority.

» If they have the same power, requests will be uniformly distributed between the hosts.

ServerInfos hostl = new ServerInfos ("http://HOSTI1:PORT/access") ;
hostl.setIsAlivePath ("/admin/isAlive") ;

hostl.setPower (1) ;

ServerInfos host2 = new ServerInfos ("http://HOST2:PORT/access"):;
host2.setIsAlivePath ("/admin/isAlive") ;

host2.setPower (10) ;

AccessClient accessClient = AccessClientFactory.createAccessClient (new ServerInfos](]
hostl, host2 });

62 - Mashup Programmer

How to configure the max number of concurrent connections to the distant host

AccessRequest request = new AccessRequest () ;
request.setPage ("search") ;
request.addParameter ("g", "disney");

ResultFeed result = client.getResultFeed (request) ;

How to configure the max number of concurrent connections to the distant host

ServerInfos serverInfos = new ServerInfos ("http://HOST:PORT/access") ;

Properties options = new Properties();

options.put ("http.max number of connections per server", 10);

AccessClient accessClient = AccessClientFactory.createAccessClient (new ServerInfos]|]
serverInfos }, options);

AccessRequest request = new AccessRequest () ;

request.setPage ("search") ;

request.addParameter ("g", "disney"):;

ResultFeed result = client.getResultFeed (request) ;

How to configure the stale connection check

See Apache documentation: http://hc.apache.org/httpclient-3.x/

performance.html#Stale connection check

ServerInfos serverInfos = new ServerInfos ("http://HOST:PORT/access") ;

Properties options = new Properties|();

options.put ("http.commons-httpclient.stale checking enabled", "true");

AccessClient accessClient = AccessClientFactory.createAccessClient (new ServerInfos|]
serverInfos }, options);

AccessRequest request = new AccessRequest ()

request.setPage ("search") ;

request.addParameter ("q", "disney");

ResultFeed result = client.getResultFeed (request) ;

How to configure a socket read timeout

The following code snippet shows how to configure a socket read timeout to 5000 milliseconds (5
seconds). If set to 0, timeout is disabled.

ServerInfos serverInfos = new ServerInfos ("http://HOST:PORT/access") ;

Properties options = new Properties():;

options.put ("http.socket.timeout", 5000); // 5 seconds timeout

AccessClient accessClient = AccessClientFactory.createAccessClient (new ServerInfos]|]
serverInfos }, options);

AccessRequest request = new AccessRequest () ;

request.setPage ("search") ;

request.addParameter ("g", "disney"):;

ResultFeed result = client.getResultFeed (request) ;

Mashup Programmer - 63

http://hc.apache.org/httpclient-3.x/performance.html#Stale_connection_check
http://hc.apache.org/httpclient-3.x/performance.html#Stale_connection_check
http://hc.apache.org/httpclient-3.x/performance.html#Stale_connection_check

Using the HTTP Mashup API

Using the HTTP Mashup API

The Mashup API can also be queried directly through HTTP GET at the following URL.:

http://<HOSTNAME>:<BASEPORT+10>/access/feeds/<page name>

Page parameters can be given just as normal HTTP parameters. Subfeed parameters have to be
prefixed by the subfeed id.

The following pages and subfeeds are available:
* page: search (parameters: q)

o subfeed: bi (id: bi, parameters: page, per page, etc.)
* page: details (parameters: id)

o subfeed: bi (id: bi, parameters: page, per page, etc.)

o subfeed: flickr (id: f1ickr, parameters: tag, latitude, longitude, etc.)
Note: To output a JSON string instead of the default XML output format, add
soutputFormat=json at the end of you query.

A few sample requests are:
* http://<HOSTNAME>:<BASEPORT+10>/access/feeds/<page name>/?g=disney
+ Page parameter and pagination:

http://<HOSTNAME>:<BASEPORT+10>/access/feeds/<page name>/?
g=disneyé&bi.page=2 http://<HOSTNAME>:<BASEPORT+10>/access/feeds/<page

name>/?detailsid=42
« Page parameter and image tags:

http://<HOSTNAME>:<BASEPORT+10>/access/feeds/<page name>/
detailsid=42&flickr.tag=disney

Note: Adding a <class name> parameter after <page name> allows you to target more
specific information, and thus avoid adding query restriction parameters.

For details of the output, see Using the Atom Output Format.

64 - Mashup Programmer

Using the Atom Output Format

Using the Atom Output Format

This section describes the MashupFeed response elements. Collectively these formats may be
referred to as MashupFeed 1.0 or simply MashupFeed. The MashupFeed Schema makes use of
the OpenSearch v1.1 extension to the Atom format.

The following elements are described below:

namespace

The XML Namespace URI for the XML data formats described in this specification is:
http://schemas.exalead.com/access/1.0

Note that this namespace is subject to change in the MashupFeed 1.1 version to:
http://schemas.exalead.com/mashupfeed/1.1

All the examples below will assume that the namespace is used as the "exa" prefix.

link element

In the MashupFeed Schema, nested data feeds described with the <1ink> element with an
"application/access+xml" type may be embedded right into the <1ink> element content.
<link type="application/access+xml" rel="bi" href="http://host:9510/access/feeds/
search/cT01MjNhbGw/bi">

<feed>

<id>bi</id>

<generator>com.exalead.access.basefeeds.BusinessItemFeed</generator>

<entry>

</entry>
</feed>
</link>

entry element

In the MashupFeed schema, an entry has the following properties:
« one id which is optional (required by the standard specification)
* a title which is optional (required by the standard specification)

* many exa:meta which are optional

<entry>
<i d>MDA1QTAWMVDAWVDBRak RWSUFL</ i d>
<link rel="self" type="application/access+xm " href="http://I|ocal host: 9510/ acces

Mashup Programmer - 65

meta element

cTOl M NnbGw bi / MDA1 QT AWVDAWMVDBRak RWSUFL" / >
<exa: nmeta nane="id" displayNane="i d">005A0000000Q Dpl AK</ exa: net a>
<exa: nmeta nane="user nane" di spl ayNane="user nane" >doe@ryconpany. conx/ exa: nmet a>

<exa: nmeta nane="enmi | " di spl ayNanme="emai | ">j ohn. doer @ryconpany. conx/ exa: net a>
<exa: neta nane="nane" displ ayNane="nane">John Doe</exa: met a>
</entry>

meta element

The MashupFeed meta element describes a single information element as represented in the
EXALEAD index. Its location is Standard <entry> element. The meta element syntax is
defined by:

* arequired name attribute describing the meta name (string)
« avalue in the content part of the tag (string, may be empty)

« an optional displayName attribute for internationalized / nicely formatted names

<exa: nmeta nane="firstnane">John</ exa: net a>
<exa: meta nanme="| ast nanme" di spl ayNanme="fam |y name">Doe</ exa: net a>

feed element

The feed element may contain many facet elements that describe the different axes available for
faceted search. Its location is Standard <feed> element.

facet element

The facet element describes the root of a faceted search axe and can contain several category
elements.

Its location is Standard <facets> element.The facet element syntax is defined by:
* arequired name attribute for the facet full name (string)
* arequired description attribute for the facet display name (string)

* many category elements which are optional

<exa: facet name="Top/user/nane" description="user nane">
<exa: cat egory pat h="Top/ user/ nane/john doe" description="John Doe" count="1" sta
</ exa: facet>

category element

The category element is a leaf of the facet tree. It may contain many category elements that are
sub categories of the current category.

66 - Mashup Programmer

Creating Parallel Requests

Its location is Standard <facet> element. The category element syntax is defined by:

* arequired path attribute: category full path in the facet tree (string)

* arequired description attribute: category display name (string)

* arequired count attribute: number of hits of this category for the given query (long)

* arequired state attribute: state of the category (enum: DISPLAYED|EXCLUDED|REFINED)

« optionally many category sub-elements

<exa: cat egory pat h="Top/ case/type/electrical" description="Electrical" count="9" s

Creating Parallel Requests

Creating parallel requests is useful if you have different indexes or if you want to search for
specific content in the same index using different queries.

The following use case describes how to proceed if you want your application to fetch hits from
two sources using the same query basis:

* One of these source is a filesystem crawl retrieving data through a Files connector.

In our example, the set of documents located under the <INSTALLDIR>/docs/ directory.
« The other one is a web crawl retrieving data through an HTTP connector.

In our example, the Exalead website (http://www.exalead.com/software/).

Our application is configured in the Mashup Builder to use two CloudView Search
feeds that will select the 2 most relevant hits for the request on the search results page
${page.params ["q"]} to focus on the two specific data sources.

By making a query on the Mashup Ul, we see below that the search page displays results coming
from the two data sources:

+ one from an Exalead website URL
« another from the filesystem

Example of parallel requests on the Mashup Ul

Mashup Programmer - 67

Creating Parallel Requests

hitp:itaeane exalead. comisoftwarefproductsicloudyiews 3607

Cloudviews 360 Package vd Dowenload | Preview

These modules include the Mashup Builder, the Semantic Factory, the Business Cansole
and Trusted Grueries ... The Mashup Builder is 3 Drag'n'Crop interface for rapidly
prototyping and deploving S8As .. Using the Mashup Builder, vou can prototype a rolbust,
full-featured [Read more]

File name Exalead-Cloudview-360-for- File zize 1843267
SBA-in-the-Enterprise-EM. pdf
publicurl hitpihnanse. exalead. com
fzoftwarefcommon

fpdfsfproductsicloudiew
(Exalead- Cloudview-360-Tor-
SBA-in-the-Enterprise-EN. pof .

hitpifaesar exalead. comisoftwarefcommaonipdrsiproductsicloodviesdExalead- Cloudview- 36 0-far-SBA-in-
the-Enterprise-EMN. pdf

Mashup Builder Llser's Guide Diownload — Preview

Mashup Builder allows vou to build maore than a simple search front end .. Mashup Builder
allowes you to create and customize vour oven search applications throudgh a drag and drop
interface ... Mashup Builder gives you the possihility of customizing the layout of vour search
applications very precisely

e b

File path fdataingproductvguesnia File name MashupBuilder_UserZuide_EMN_
fcloudwiew-deyv_trunk dey. 3787 8- W pdf

linus=xE4idocs

MashupBuilder_LserGuide_EM_

WE. pof

File size 1296640

id: Me2Fdata%2Fnoproduct¥ 2Fyquesnia% 2F cloudviews-dey_trunk.dey 3787 8-linux-x64 % 2Fdocs
MashupBuilder_UserGuide_EM_WE pdf

LInderstanding the Mashup Builder Interface Download — Preview

XML configuration example

The following XML Configuration represents how the parallel requests presented above are coded.

<Feed id="page" enable="true" embed="true" className="com.exalead.access.basefeeds.

<Parameters>

<Parameter name="gq">${page.params["g"]}</Parameter>

68 - Mashup Programmer

Pe

Configuring Hits Enrichment

</Parameters>

<SubFeeds>

<Feed id="crawls" enable="true" embed="true" className="com.exalead.access.basefeeds.
<Parameters>

<Parameter name="searchAPIVersion">V6R2015x</Parameter>

<Parameter name="searchapi">{access-api.searchapi.url}/search</Parameter>
<Parameter name="g">source:web ${page.params|["q"]}</Parameter>

<Parameter name="defaultQuery">#all</Parameter>

<Parameter name="page">1</Parameter>

<Parameter name="per page">3</Parameter>

</Parameters>

<Properties>

<Property kind="TITLE" name="TITLE">S${entry.metas["title"]}</Property>
</Properties>

</Feed>

<Feed id="files" enable="true" embed="true" className="com.exalead.access.basefeeds.C
<Parameters>

<Parameter name="searchAPIVersion">V6R2015x</Parameter>

<Parameter name="searchapi">{access-api.searchapi.url}/search</Parameter>
<Parameter name="g">source:fs ${page.params|["qg"]}</Parameter>

<Parameter name="defaultQuery">#all</Parameter>

<Parameter name="page">1</Parameter>

<Parameter name="per page">3</Parameter>

</Parameters>

<Properties>

<Property kind="TITLE" name="TITLE">S{entry.metas["filename"] }</Property>
</Properties>

</Feed>

</SubFeeds>

</Feed>

Configuring Hits Enrichment

Nesting feeds in one another gives you the possibility of enriching the hits of a query with other
sources to bring related content to the user. This can be achieved because nested feeds can use
parent metas.

In the following use case, our application starts by retrieving information about TV series using a
CloudView Search feed. It then tries to enrich each hit with images retrieved by a Google Search
feed using the TV series title.

Example of hit enrichment in Mashup Ul

Mashup Programmer - 69

Configuring Hits Enrichment

Le Trine de fer ;: Game of Thrones > Saison 2 - AlloCingé Download Preview

Accuell = Séries TV = Le Trdne de fer : Game of Thrones = Saisan 2 . Le Trdne de fer :

Game of Thrones > Saison 2 ... Vous avez vu la saison 2 de Le Trine de fer - Game of
Thrones P
[|
File size 175960 publicur hittpe /A allocine. fi/series
ficheserie-7 157 /saison-19981/ &
Source SEries Data model class document
Language B B French Last modification 202 =01=09

hitp: Sfaeweee allocine, fifseriesfficheserie-7 157 fsaison- 19981/
Garne of Thrones saison 2: une premiére bande-annonce | TVQAC

La deuxigme saison de Game of

imaneld AMdIGcRE4GRaAKE So7 | RZ0KYEEnTuwW nlz QApEhIkdM_7 IZ-TY cxz_ichOmd
titleMoFarmatting: Game of Thrones saison 2! une prermigre bande-annonce | TVGIC
unescapedUrl; http A trgc, comdwp-content/uploads201171 2/ petar-dink lage-game-of
thrones jpg £

thlrl: kitp: A% gstatic. comfimages?o=tbn ANdSGCRE4 Gf-

aAkES o7 [R20KYI93nTuAnd 2QApEhIkAN_7 2747 Y exz_ichOmd &2

tbWidth: 131

tbHeight: 84

width: 520

height: 333

content: La deuxidme saison de Game of

originalContextlr hitp:Seewes tvgc comd201141 2 game-of-thrones-saison-2-une-premiere-
bande-annonces =

id: ANdYGoRELGEaAKB Do/ |R20KY | MEn TuW Y ndzApbhIkd N 7 A5 Y erz ichOmd

The following XML Configuration represents how the hit enrichment presented above is coded.

<Feed id="test" enable="true" embed="true" className="com.exalead.access.basefeeds.Psz
<Parameters>

<Parameter name="qg">${page.params["q"]}</Parameter>

</Parameters>

<SubFeeds>

<Feed id="movies" enable="true" embed="true" className="com.exalead.access.basefeeds.
<Parameters>

<Parameter name="searchAPIVersion">V6R2015x</Parameter>

<Parameter name="searchapi">{access-api.searchapi.url}/search</Parameter>

<Parameter name="gq">${page.params["g"]}</Parameter>

70 - Mashup Programmer

Configuring Hits Enrichment

<Parameter name="defaultQuery">#all</Parameter>

<Parameter name="page">1</Parameter>

<Parameter name="per page">10</Parameter>

</Parameters>

<Properties>

<Property kind="TITLE" name="TITLE">S${entry.metas["title"]}</Property>
</Properties>

<SubFeeds>

<Feed id="pictures" enable="true" embed="true" className="com.exalead.access.basefeec
<Parameters>

<Parameter name="searchapi">http://api.exalead.com/search/</Parameter>
<Parameter name="g">${entry.metas["title"]}</Parameter>

<Parameter name="defaultQuery">#all</Parameter>

<Parameter name="type">image</Parameter>

<Parameter name="apiKey">appkey</Parameter>

<Parameter name="page">1</Parameter>

<Parameter name="per page">10</Parameter>

</Parameters>

</Feed>

</SubFeeds>

</Feed>

</SubFeeds>

</Feed>

Mashup Programmer - 71

About the Administration

The Mashup Builder has its own administration APls
them very easily with the 360-admin-client.jar
you work with high level objects.

Administration Methods

Here is a list of the administration methods available:

Method

void saveConfiguration (Object

configuration)

Object getConfiguration (Class

configurationClass)

void resetConfiguration (Class

configurationClass)

boolean hasStagedConfiguration (Class

configurationClass)

ApplyStagingConfigurationAnswer
applyStagingConfiguration ()

ApplyStagingConfigurationAnswer
applyStagingConfiguration (List<Class>

confClasses)

void checkStagingConfiguration ()

void generateCloudViewConfiguration ()

About the Administration API

API

accessible through HTTP REST. You can use
Java library that abstracts everything to let

Description

Saves a configuration object to the staging
area. You only need to provide a configuration
object as configuration classes are naturally
tied to a filename.

Retrieves the last version of a given
configuration class, from the staging area. If
there are no staged configurations available,
the latest applied configuration is returned.

Removes the staged instance of the given
configuration class to cancel changes.

Returns true if an instance of this
configuration class is stored in the staging
area.

Applies all the staged configuration files.

Applies only the given staged configuration
files.

Runs a full configuration consistency check
towards the staged configuration.

Enforces the evaluation of the Data Ontology
to generate and apply the underlying Mashup
Builder configuration.

72 - Mashup Programmer

Default Services Locations

Default Services Locations

The following table lists the various service types and their locations. If you have multiple
instances of the Mashup Builder, add the application name to the path.

Service Type Deployment Role Instance name Location Path
mashup-builder Mashup Builder 360-administration- BASEPORT + /mashup-
console 1 (gateway) builder
360-administration- Gateway 360-administration- BASEPORT /360-admin-
service service + 11 service
(gateway)
360-mashup-ui Mashup Ul 360-mashup-ui-mu0 BASEPORT /mashup-
+ 0 ui/page/
(searchserv<PAGENAME >
ss0)
access-api Mashup API access-api-acO BASEPORT /access/
+ 10 feeds/

(searchserv<PAGENAME >

ss0)

trustedQueriesServiceTrusted Queries trustedQueriesServicBASEPORT /360-

API tgsO + 10 trustedqueries
(searchserv
ss0)
businessConsole Business Console businessConsole BASEPORT + /business-

1 (gateway) console

Mashup Builder services all answer to /admin/isAlive if they are alive. For example:

http://<HOSTNAME>:<BASEPORT+10>/access/admin/isAlive

Configuration System

Exalead CloudView modules are managed by a distinct configuration system, introducing a new
staging area and a per module configuration management. The configuration works as follows:

* On save (through Mashup Builder / Administration API), files are staged in <DATADIR>/gct/
staging

Mashup Programmer - 73

Configuration System

* On apply (through Mashup Builder / Administration API), all or specified files are copied in
<DATADIR>/config/360. Configuration files in this directory are considered as applied.
Then, the applyConfiguration call of the underlying Exalead CloudView instance is
invoked.

» Atruntime, services read their configuration from <DATADIR>/gct/<last version>/
master/360

* When a new configuration is applied, services are notified and reload their configuration
without having to restart.

If you want to modify the Mashup Builder configuration manually in the <DATADIR>/config/360
directory, you need to invoke an apply configuration order on Exalead CloudView by running the
command: <DATADIR>/bin/cvcmd.sh applyConfig

74 - Mashup Programmer

	Table of Contents
	Mashup Programmer
	What's New?
	Packaging Custom Components
	About Developing Custom Features
	Installing a Development Environment
	Developing Components with the CloudView Eclipse Plugin
	Which Mashup components can you develop?
	Why use it?

	Generate WAR Files for Heavy Customization
	Requirements
	Generate a standard WAR file
	Generate a standalone WAR File

	Upgrading to a Newer Version

	Customizing the Mashup UI
	Understanding the SDK Architecture
	Using Developer Tools
	Monitor the Developer Area status
	Develop and work on a non-packaged Mashup UI
	Switch to Debug mode
	Use the Mashup UI Debug tools

	Customizing Style Sheets (CSS)
	Customizing the Mashup UI Language
	About Internationalization features
	Set default language
	Add a new language
	Manage I18N for multiple applications
	Develop with I18N

	Enforcing the Application Language
	Creating Widgets
	Widget architecture
	Widget manifest
	Create a widget
	Create a widget template
	Implement how to display subwidgets
	Update widgets with Mashup Ajax Client
	Troubleshooting

	Creating Collaborative Widgets Using Storage Service
	Creating Collaborative Widgets Using Storage Service
	Storage type scopes
	Common operations
	How clients communicate with the Storage Service

	Creating Feeds
	Using the Eclipse plugin
	Abstract class Feed
	Sample Feed

	Creating Triggers
	About Feed and Design Triggers
	Mashup UI interface
	Mashup API interface

	Creating Controllers
	Create and package a controller
	Reference JSP in a controller

	Managing URL Rewriting
	Enable URL rewriting
	Configure URL rewriting

	Implementing custom layout or templates as plugins

	Using the Mashup API
	About the Mashup API
	Choosing between the Mashup API and the Search API
	What you can do
	How to choose between the two APIs

	Using the Mashup API Java client
	Where is the Mashup API endpoint?
	How to configure a proxy
	How to send security tokens to a secured Search API
	How to configure failover
	How to configure the max number of concurrent connections to the distant host
	How to configure the stale connection check
	How to configure a socket read timeout

	Using the HTTP Mashup API
	Using the Atom Output Format
	namespace
	link element
	entry element
	meta element
	feed element
	facet element
	category element

	Creating Parallel Requests
	Configuring Hits Enrichment

	About the Administration API
	Administration Methods
	Default Services Locations
	Configuration System

